A. 大數據存在的安全問題有哪些
【導讀】互聯網時代,數據已成為公司的重要資產,許多公司會使用大數據等現代技術來收集和處理數據。大數據的應用,有助於公司改善業務運營並預測行業趨勢。那麼,大數據存在的安全問題有哪些呢?今天就跟隨小編一起來了解下吧!
一、分布式系統
大數據解決方案將數據和操作分布在許多系統中,以實現更快的處理和分析。這種分布式系統可以平衡負載,避免單點故障。但是這樣的系統容易受到安全威脅,黑客只要攻擊一個點就可以滲透整個網路。
二.數據存取
大數據系統需要訪問控制來限制對敏感數據的訪問,否則,任何用戶都可以訪問機密數據,有些用戶可能會出於惡意使用。此外,網路犯罪分子可以入侵與大數據系統相連的系統,竊取敏感數據。因此,使用大數據的公司需要檢查和驗證每個用戶的身份。
三.數據不正確
網路犯罪分子可以通過操縱存儲的數據來影響大數據系統的准確性。因此,網路犯罪分子可以創建虛假數據,並將這些數據提供給大數據系統。比如醫療機構可以利用大數據系統研究患者的病歷,而黑客可以修改這些數據,產生不正確的診斷結果。
四.侵犯隱私
大數據系統通常包含機密數據,這是很多人非常關心的問題。這樣的大數據隱私威脅已經被全世界的專家討論過了。此外,網路犯罪分子經常攻擊大數據系統以破壞敏感數據。這種數據泄露已經成為頭條新聞,導致數百萬人的敏感數據被盜。
五、雲安全性不足
大數據系統收集的數據通常存儲在雲中,這可能是一個潛在的安全威脅。網路犯罪分子破壞了許多知名公司的雲數據。如果存儲的數據沒有加密,並且沒有適當的數據安全性,就會出現這些問題。
以上就是小編今天給大家整理分享關於「大數據存在的安全問題有哪些?」的相關內容希望對大家有所幫助。小編認為要想在大數據行業有所建樹,需要考取部分含金量高的數據分析師證書,這樣更有核心競爭力與競爭資本。
B. 大數據會帶來哪些問題
一、分布式系統
大數據解決方案將數據和操作分布在許多系統中,以實現更快的處理和分析。這種分布式系統可以平衡負載,避免單點故障。但是這樣的系統容易受到安全威脅,黑客只要攻擊一個點就可以滲透整個網路。
二.數據存取
大數據系統需要訪問控制來限制對敏感數據的訪問,否則,任何用戶都可以訪問機密數據,有些用戶可能會出於惡意使用。此外,網路犯罪分子可以入侵與大數據系統相連的系統,竊取敏感數據。因此,使用大數據的公司需要檢查和驗證每個用戶的身份。
三.數據不正確
網路犯罪分子可以通過操縱存儲的數據來影響大數據系統的准確性。因此,網路犯罪分子可以創建虛假數據,並將這些數據提供給大數據系統。比如醫療機構可以利用大數據系統研究患者的病歷,而黑客可以修改這些數據,產生不正確的診斷結果。
四.侵犯隱私
大數據系統通常包含機密數據,這是很多人非常關心的問題。這樣的大數據隱私威脅已經被全世界的專家討論過了。此外,網路犯罪分子經常攻擊大數據系統以破壞敏感數據。這種數據泄露已經成為頭條新聞,導致數百萬人的敏感數據被盜。
五、雲安全性不足
大數據系統收集的數據通常存儲在雲中,這可能是一個潛在的安全威脅。網路犯罪分子破壞了許多知名公司的雲數據。如果存儲的數據沒有加密,並且沒有適當的數據安全性,就會出現這些問題。
C. 大數據安全面臨哪些風險及如何防護
現如今大數據已經逐漸改變了我們的生活方式,成為必不可少的存在,在我們享野首受大數據給我們帶來的便利時,安全性無論對於企業還是個人都是必須要解決的重大課題。
總結大數據面臨的三大風險問題如下
1.個人隱私問題凸顯
例如大數據中的精準營銷定位功能,通常是依賴於高度採集個人信息,通過多種關聯技術分析來實現信息推廣,精準營銷。企業會掌握用戶大量的數據,不排除隱私部分的敏感數據,一旦伺服器遭到不法分子攻擊導致數據泄露,很可能危及用戶的隱私、財產甚至是人身安全。
2.數據准確與權威性
大數據通過各種渠道獲取大量數據進行計算分析,企業通常直接通過分析結果進行支持決策,有時候企業只看結果,卻忽略了源頭數據的准確性,不準確的數據直接影響大數據分析的結果和企業的利益,錯誤的指導會對企業帶來一定的風險與損失。
3.基礎設施維護壓力
數據量越大,對基礎設施的性能要求就越高,同樣對於網路的安全、恢復、防範依賴性就越強,一定程度上對企業設施安全的維護造成了壓力,基礎設施建設不完善、維護不到位,抱有沒出問題就得過且過的態度,時刻面臨被攻擊的危險可能。
針對上述問題的防護措施如下
1.對用戶早脊嘩而言
雖然在互聯網時代下要完全保護自己的隱私是比較困難的,但也要加強自身信息的防範意識。注冊賬號時,遵循最少原則,不要隨意泄露敏感信息,降陸行低隱私信息被泄露的危險;
2.對企業而言
加強數據安全管理,實現數據的治理與清洗,從源頭保證數據的一致性、准確性。首先升級基礎伺服器環境,建立多重防護、多級互聯體系結構,確保大數據處理環境可信度。其次全方位實時監控、審計、防護,防止敏感數據泄露、丟失,確保數據風險可控,並不斷通過體系化的大數據安全評估,形成數據安全治理的閉環管理;
3.對政策而言
應該加強對數據信息的保護,對數據的使用進行一定的監管與限制,對非法盜用、濫用數據信息者嚴懲,之後加強對技術安全研發使用的推廣與實施,保證數據安全,加強對數據治理的力度。
大數據時代的到來,可以為我們的生活帶來切實的利益,行業的數據規范正在建立並逐步趨於完善,對於我們來說,既不要因為安全風險問題而排斥大數據,也不要疏忽於對個人/企業信息的保護,合理看待和利用大數據,讓其發揮真正的價值。
D. 大數據面臨哪些安全與隱私問題
(一)大數據遭受異常流量攻擊
大數據所存儲的數據非常巨大,往往採用分布式的方式進行存儲,而正是由於這種存儲方式,存儲的路徑視圖相對清晰,而數據量過大,導致數據保護,相對簡單,黑客較為輕易利用相關漏洞,實施不法操作,造成安全問題。由於大數據環境下終端用戶非常多,且受眾類型較多,對客戶身份的認證環節需要耗費大量處理能力。由於APT攻擊具有很強的針對性,且攻擊時間長,一旦攻擊成功,大數據分析平台輸出的最終數據均會被獲取,容易造成的較大的信息安全隱患。
(二)大數據信息泄露風險
大數據平台的信息泄露風險在對大數據進行數據採集和信息挖掘的時候,要注重用戶隱私數據的安全問題,在不泄露用戶隱私數據的前提下進行數據挖掘。需要考慮的是在分布計算的信息傳輸和數據交換時保證各個存儲點內的用戶隱私數據不被非法泄露和使用是當前大數據背景下信息安全的主要問題。同時,當前的大數據數據量並不是固定的,而是在應用過程中動態增加的,但是,傳統的數據隱私保護技術大多是針對靜態數據的,所以,如何有效地應對大數據動態數據屬性和表現形式的數據隱私保護也是要注重的安全問題。最後,大數據的數據遠比傳統數據復雜,現有的敏感數據的隱私保護是否能夠滿足大數據復雜的數據信息也是應該考慮的安全問題。
(三)大數據傳輸過程中的安全隱患
數據生命周期安全問題。伴隨著大數據傳輸技術和應用的快速發展,在大數據傳輸生命周期的各個階段、各個環節,越來越多的安全隱患逐漸暴露出來。比如,大數據傳輸環節,除了存在泄漏、篡改等風險外,還可能被數據流攻擊者利用,數據在傳播中可能出現逐步失真等。又如,大數據傳輸處理環節,除數據非授權使用和被破壞的風險外,由於大數據傳輸的異構、多源、關聯等特點,即使多個數據集各自脫敏處理,數據集仍然存在因關聯分析而造成個人信息泄漏的風險。
基礎設施安全問題。作為大數據傳輸匯集的主要載體和基礎設施,雲計算為大數據傳輸提供了存儲場所、訪問通道、虛擬化的數據處理空間。因此,雲平台中存儲數據的安全問題也成為阻礙大數據傳輸發展的主要因素。
個人隱私安全問題。在現有隱私保護法規不健全、隱私保護技術不完善的條件下,互聯網上的個人隱私泄露失去管控,微信、微博、QQ等社交軟體掌握著用戶的社會關系,監控系統記錄著人們的聊天、上網、出行記錄,網上支付、購物網站記錄著人們的消費行為。但在大數據傳輸時代,人們面臨的威脅不僅限於個人隱私泄露,還在於基於大數據傳輸對人的狀態和行為的預測。近年來,國內多省社保系統個人信息泄露、12306賬號信息泄露等大數據傳輸安全事件表明,大數據傳輸未被妥善處理會對用戶隱私造成極大的侵害。因此,在大數據傳輸環境下,如何管理好數據,在保證數據使用效益的同時保護個人隱私,是大數據傳輸時代面臨的巨大挑戰之一。
(四)大數據的存儲管理風險
大數據的數據類型和數據結構是傳統數據不能比擬的,在大數據的存儲平台上,數據量是非線性甚至是指數級的速度增長的,各種類型和各種結構的數據進行數據存儲,勢必會引發多種應用進程的並發且頻繁無序的運行,極易造成數據存儲錯位和數據管理混亂,為大數據存儲和後期的處理帶來安全隱患。當前的數據存儲管理系統,能否滿足大數據背景下的海量數據的數據存儲需求,還有待考驗。不過,如果數據管理系統沒有相應的安全機制升級,出現問題後則為時已晚。
E. 大數據在開發中遇到的困難怎麼解決方案
大數據時代下的信息技術日存在的問題:
第一:運營商帶寬能力與對數據洪流的適應能力面臨前所未有的挑戰;
第二:大數據處理和分析的能力遠遠不及理想中水平,數據量的快速增長,對存儲技術提出了挑戰;同時,需要高速信息傳輸能力支持,與低密度有價值數據的快速分析、處理能力。
第三:部分早期的Hadoop項目將面臨挑戰;
第四:大數據環境下通過對用戶數據的深度分析,很容易了解用戶行為和喜好,乃至企業用戶的商業機密,對個人隱私問題必須引起充分重視;
第五:大數據時代的基本特徵,決定其在技術與商業模式上有巨大的創新空間,如何創新已成為大數據時代的一個首要問題;
第六:大數據時代對政府制訂規則與監管部門發揮作用提出了新的挑戰 大數據時代面臨挑戰的應對策略:
1、合理獲取數據
在大數據時代,數據的產生速度飛快而且體量龐大,往往以TB或YB甚至是ZB來衡量。各種機構、個人都在不斷地向外產生和發布結構化與非結構化的復雜數據,並進行數據交換,如人們當前最常用的數據來源渠道——互聯網,每天的數據交換量已極為驚人。
2、存儲隨需而變
美國一家知名的 DVD 租賃企業每年都會邀請一些協同處理演算法的專家對其用戶數據進行分析,從而了解租賃客戶的需求。
3、篩選與分析大數據
充分利用數據「洞察」自己身邊的人或物,在諸多供給方當中精準地匹配自身需求,從而最大限度地滿足自身籲求也是大數據價值的應有之義。
4、理性面對大數據的價值誘惑
毫無疑問,大數據時代將是商業智能「大顯身手」的時代。企業利用發達的數據挖掘技術正日益精準地揣摩著消費者心態,並運用各種手段對其「循循善誘」 。
5、雲計算和大數據相輔相成
為了滿足大數據的需求,商務智能軟體必須改變。
F. 大數據存在哪些問題
數據存儲問題:隨著技術不斷發展,數據量從TB上升至PB,EB量級,如果還用傳統內的數據存儲方式容,必將給大數據分析造成諸多不便,這就需要藉助數據的動態處理技術,即隨著數據的規律性變更和顯示需求,對數據進行非定期的處理。同時,數量極大的數據不能直接使用傳統的結構化資料庫進行存儲,人們需要探索一種適合大數據的數據儲存模式,也是當下應該著力解決的一大難題。
分析資源調度問題:大數據產生的時間點,數據量都是很難計算的,這就是大數據的一大特點,不確定性。所以我們需要確立一種動態響應機制,對有限的計算、存儲資源進行合理的配置及調度。另外,如何以最小的成本獲得最理想的分析結果也是一個需要考慮的問題。
專業的分析工具:在發展數據分析技術的同時,傳統的軟體工具不再適用。目前人類科技尚不成熟,距離開發出能夠滿足大數據分析需求的通用軟體還有一定距離。如若不能對這些問題做出處理,在不久的將來大數據的發展就會進入瓶頸,甚至有可能出現一段時間的滯留期,難以持續起到促進經濟發展的作用。
G. 大數據分析會遇到哪些問題
1.很難獲得用戶操作行為完整日誌
現階段數據剖析以統計為主,如用戶量、使用時間點時長和使用頻率等。一是需求辨認用戶,二是記錄行為簡單引起程序運轉速度,三是開發本錢較高。
2.產品缺少中心方針
這需求剖析人員滿足的了解產品。產品有了中心方針,拆分用戶操作使命和目的,剖析才會有目的,不然拿到一堆數據不知如何下手。比方講輸入法的中心方針設為每分鍾輸入頻率,順著這個方針能夠剖析出哪些因素正向影響(如按鍵簡單點擊)和反向影響(如模糊音、誤點擊和點擊退格鍵的次數)中心方針。
3.短期內或許難以發揮作用
數據剖析需求不斷的試錯,很難在短期內證明方法的有效性,或許難以獲得其他人物的支撐。
4.將剖析轉化為有指導意義的結論或許設計
看過某使用的近四十個設置項的使用比例,修改皮膚使用率較高,而單個選項使用率不到0.1%,依次數據能夠調整設置項的層級聯系,重要的選項放置到一級著重顯現,低於5%的能夠放置二三級。
5.清晰用戶操作目的
功能關於用戶而言,使用率不是越高越好。添加達到的方針的途徑,用戶考慮本錢添加,操作次數會添加,比方查找。在使用中使用查找或許闡明用戶沒有通過瀏覽找到想要的內容,假如用戶查找熱門內容,闡明使用展示信息的方法出現問題。
6.考慮到運營需求
之前做過的工具型使用,設計的中心方針是進步操作效率,削減點擊次數、等待時間和手指位移等,最快的時間完成操作。而一些瀏覽型產品用戶的目的並不清晰,大致有瀏覽、查詢、對比和確認方針等四類用戶行為,需求兼容用戶方針不清晰情況下操作,引導用戶選擇的一起還要在過程中展示更多的內容,刺激用戶點擊。
關於大數據分析會遇到哪些問題,青藤小編就和您分享到這里了。如果你對大數據工程有濃厚的興趣,希望這篇文章能夠對你有所幫助。如果您還想了解更多數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
H. 大數據發展遇到的困境
大數據的理念已經被追捧多年,但是還遠未達到人們想像的完全實用的程度。大數據的發展受阻主要表現在以下幾個方面:
1.數據基礎的缺失
大數據發展的前提條件是要有豐富的數據源,對於製造業,IT行業數據化程度比較高,雖然缺少資源共享和信息交換,但至少可以在公司內部探索和嘗試。
但對於教育,醫療行業數據化程度還是遠遠落後於大數據時代的需求。單從患者的角度考慮,自己在各個醫院的病例和居家檢測的醫學數據。如果將這些數據利用起來,就會遇到數據源不算,數據格式不統一,隱私問題等等。
2.數據孤島之踵
不同的數據源獨立存在,不能夠互相共享,形成了一個個數據孤島。
政府部門缺乏數據開放的動力,由於其掌握的數據有一定的敏感性而趨於保守態度。比如稅務部門的個人納稅信息會涉及到個人隱私,公安部門的監控信息更是涉及到個人的人身安全問題。
各大企業不會隨便開放自身有價值的數據,因為它有巨大的商業價值,也關繫到企業的生死存亡。比如搜索引擎,谷歌的搜尋效果比其他的好,其實他們的技術差別不大。真正的差異是谷歌的數據量大,能夠找到最佳的搜索策略。而其他的搜索引擎則相反,從而造成惡性循環。
即使沒有商業競爭,企業也會盡量獨占數據。比如航空公司的航班晚點,他不會提前通知,而會出於商業利益選擇在乘客登記結束後廣播通知。
3.難以突破創新的瓶頸
對於相應行業數據壟斷的大企業,利用自身壟斷地位阻礙創新使壟斷地位更加堅固。搜索引擎就是一個很好的案例,還有某互聯網公司利用資源優勢模仿競爭對手的創新產品,並且擠垮對手。
4.個人隱私
個人信息越來越多的被別人掌握,我們既不能阻止,也不知道會產生怎樣的後果。一方面,我們的虛擬世界和實際生活軌跡可以通過大數據洞察一切,預測我們的行為。另一方面,作為數據的主人,卻不知道數據如何被記錄,流向哪裡,被誰利用,這個過程我們一無所知。
大數據的發展需要解決個人隱私問題。一方面不能被無限制的使用,每個人都有對個人隱私有知情權,拒絕的權利。另一方面需要將個人隱私數據找到安全,可靠的方法共享,這樣大數據才能夠發展。
5.其他方面
數據的泛濫,盲目的崇拜等
I. 大數據存在哪些安全問題
一、分布式體系
大數據解決方案將數據和操作分布在許多體繫上,以便更快地進行處理和分析。這種分布式體系能夠平衡負載,並避免發生單點故障。然而,這樣的體系很容易遭到安全要挾,黑客只需進犯一個點就能夠滲透到整個網路。
二、數據拜訪
大數據體系需要拜訪操控來限制對敏感數據的拜訪,不然,任何用戶都能夠拜訪秘要數據,有些用戶可能將其用於惡意意圖。此外,網路犯罪分子能夠侵入與大數據體系相連的體系,以盜取敏感數據。
三、不正確的數據
網路犯罪分子能夠通過操作存儲的數據來影響大數據體系的准確性。為此,網路罪犯分子能夠創建虛假數據,並將這些數據提供給大數據體系,例如,醫療機構能夠使用大數據體系來研究患者的病歷,而黑客能夠修改此數據以生成不正確的確診結果。
四、侵犯隱私權
大數據體系通常包括秘要數據,這是許多人非常關懷的問題。這樣的大數據隱私要挾已經被全球的專家們評論過了。此外,網路犯罪分子經常進犯大數據體系,以損壞敏感數據。此類數據泄露已成為頭條新聞,致使數百萬人的敏感數據被盜。
五、雲安全不足
大數據體系收集的數據通常存儲在雲中,這可能是一個潛在的安全要挾。網路罪犯分子已經損壞了許多聞名公司的雲數據。如果存儲的數據沒有加密,而且沒有適當的數據安全性,就會出現這些問題。
關於大數據存在哪些安全問題,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章能夠對你有所幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
J. 阿里大數據營銷存在哪些問題
問題有如下幾點:
1、數據存在失真情況。數據的失真主要體現在兩個方面:一方面,消費者在注冊時可能會輸入虛假的個人信息或者是一人使用多個賬戶、使用他人賬戶等,其在網路操作過程中產生的數據信息本身就不真實,另一方面,由於網路技術的發展和消費者的個性化需求促使阿里巴巴每隔一段時間就要進行網站維護與更新,在這個過程中,會有不少用戶因為不熟悉新的界面而進行錯誤的操作,這些錯誤的操作信息也被阿里巴巴記錄,造成資料庫中真假信息混雜,嚴重影響了大數據的質量。
2、消費者的個人權益難以保障。直至目前,阿里巴巴仍沒有提出有效預防用戶信息泄露的方法或是用戶信息泄露之後的維護方法。
3、大數據營銷效果易出現兩極化。用戶在使用淘寶的過程中會將自己的手機號碼、郵箱等聯系方式提供給阿里巴巴,為了擴大經營,阿里巴巴會進一步分析資料庫中的客戶需求,針對不同的客戶,通過簡訊、郵件等形式向客戶推銷產品,這在某些方面增加了客戶,然而大多情況下這些信息會被消費者無視,更有甚者,會引起消費者的反感,因此,大數據營銷的效果如何,仍存在極大的不確定性,效果難以預料。