❶ 大數據技術及應用
大數據技術及應用
半個世紀以來,隨著計算機技術全面融入社會生活,信息爆炸已經積累到了一個開始引發變革的程度。21世紀是數據信息大發展的時代,移動互聯、社交網路、電子商務等極大拓展了互聯網的邊界和應用范圍,各種數據正在迅速膨脹並變大。互聯網(社交、搜索、電商)、移動互聯網(微博)、物聯網(感測器,智慧地球)、車聯網、GPS、醫學影像、安全監控、金融(銀行、股市、保險)、電信(通話、簡訊)都在瘋狂產生著數據。2011年5 月,在「雲計算相遇大數據」 為主題的EMC World 2011 會議中,EMC 拋出了Big Data概念。正如《紐約時報》2012年2月的一篇專欄中所稱,「大數據」時代已經降臨,在商業、經濟及其他領域中,決策將日益基於數據和分析而作出,而並非基於經驗和直覺。哈佛大學社會學教授加里?金說:「這是一場革命,龐大的數據資源使得各個領域開始了量化進程,無論學術界、商界還是政府,所有領域都將開始這種進程。」
二、什麼是大數據
大數據(Big Data)是指那些超過傳統資料庫系統處理能力的數據。它的數據規模和轉輸速度要求很高,或者其結構不適合原本的資料庫系統。為了獲取大數據中的價值,我們必須選擇另一種方式來處理它。數據中隱藏著有價值的模式和信息,在以往需要相當的時間和成本才能提取這些信息。如沃爾瑪或谷歌這類領先企業都要付高昂的代價才能從大數據中挖掘信息。而當今的各種資源,如硬體、雲架構和開源軟體使得大數據的處理更為方便和廉價。即使是在車庫中創業的公司也可以用較低的價格租用雲服務時間了。對於企業組織來講,大數據的價值體現在兩個方面:分析使用和二次開發。對大數據進行分析能揭示隱藏其中的信息。例如零售業中對門店銷售、地理和社會信息的分析能提升對客戶的理解。對大數據的二次開發則是那些成功的網路公司的長項。例如Facebook通過結合大量用戶信息,定製出高度個性化的用戶體驗,並創造出一種新的廣告模式。這種通過大數據創造出新產品和服務的商業行為並非巧合,谷歌、雅虎、亞馬遜和Facebook它們都是大數據時代的創新者。
(一)大數據的4V特徵
大量化(Volume):企業面臨著數據量的大規模增長。例如,IDC最近的報告預測稱,到2020年,全球數據量將擴大50倍。目前,大數據的規模尚是一個不斷變化的指標,單一數據集的規模範圍從幾十TB到數PB不等。簡而言之,存儲1PB數據將需要兩萬台配備50GB硬碟的個人電腦。此外,各種意想不到的來源都能產生數據。
多樣化(Variety):一個普遍觀點認為,人們使用互聯網搜索是形成數據多樣性的主要原因,這一看法部分正確。然而,數據多樣性的增加主要是由於新型多結構數據,以及包括網路日誌、社交媒體、互聯網搜索、手機通話記錄及感測器網路等數據類型造成。其中,部分感測器安裝在火車、汽車和飛機上,每個感測器都增加了數據的多樣性。
快速化(Velocity):高速描述的是數據被創建和移動的速度。在高速網路時代,通過基於實現軟體性能優化的高速電腦處理器和伺服器,創建實時數據流已成為流行趨勢。企業不僅需要了解如何快速創建數據,還必須知道如何快速處理、分析並返回給用戶,以滿足他們的實時需求。根據IMS Research關於數據創建速度的調查,據預測,到2020年全球將擁有220億部互聯網連接設備。
價值(Value):大量的不相關信息,浪里淘沙卻又彌足珍貴。對未來趨勢與模式的可預測分析,深度復雜分析(機器學習、人工智慧Vs傳統商務智能(咨詢、報告等)
三、大數據時代對生活、工作的影響
大數據,其影響除了經濟方面的,它同時也能在政治、文化等方面產生深遠的影響,大數據可以幫助人們開啟循「數」管理的模式,也是我們當下「大社會」的集中體現,三分技術,七分數據,得數據者得天下。
「大數據」的影響,增加了對信息管理專家的需求。事實上,大數據的影響並不僅僅限於信息通信產業,而是正在「吞噬」和重構很多傳統行業,廣泛運用數據分析手段管理和優化運營的公司其實質都是一個數據公司。麥當勞、肯德基以及蘋果公司等旗艦專賣店的位置都是建立在數據分析基礎之上的精準選址。而在零售業中,數據分析的技術與手段更是得到廣泛的應用,傳統企業如沃爾瑪通過數據挖掘重塑並優化供應鏈,新崛起的電商如卓越亞馬遜、淘寶等則通過對海量數據的掌握和分析,為用戶提供更加專業化和個性化的服務。
大數據在個人隱私的方面,大量數據經常含有一些詳細的潛在的能夠展示有關我們的信息,逐漸引起了我們對個人隱私的擔憂。一些處理大數據公司需要認真的對待這個問題。例如美國天睿資訊給人留下比較深刻印象的是他的一個科學家提出,我們不應該簡單地服從法律方面的隱私保護問題,這些遠遠不夠的,公司都應該遵從谷歌不作惡的原則,甚至更應該做出更積極的努力。
四、大數據時代的發展方向、趨勢
根據ESM國際電子商情針對2013年大數據應用現狀和趨勢的調查顯示:被調查者最關注的大數據技術中,排在前五位的分別是大數據分析(12.91%)、雲資料庫(11.82%)、Hadoop(11.73%)、內存資料庫(11.64%)以及數據安全(9.21%)。Hadoop已不再是人們心目中僅有的大數據技術,而大數據分析成為最被關注的技術。從中可以看出,人們對大數據的了解已經逐漸深入,關注的技術點也越來越多。既然大數據分析是最被關注的技術趨勢,那麼大數據分析中的哪項功能是最重要的呢?從下圖可以看出,排在前三位的功能分別是實時分析(21.32%)、豐富的挖掘模型(17.97%)和可視化界面(15.91%)。2012年也曾做過類似的調查,當時選擇豐富的挖掘模型(27.22%)比實時分析(19.88%)多7.34%。短短一年時間內,企業對實時分析的需求激增,成就了很多以實時分析為創新技術的大數據廠商。從調查結果可以看出:企業在未來一兩年中有迫切部署大數據的需求,並且已經從一開始的基礎設施建設,逐漸發展為對大數據分析和整體大數據解決方案的需求。與此同時,大數據還面臨人才的缺乏的挑戰,需要企業和高校聯合起來,培養數據領域的復合型人才,幫助企業打贏這場「數據戰」。
五、大數據的應用
(一)行業拓展者,打造大數據行業基石
IBM:IBM大數據提供的服務包括數據分析,文本分析,藍色雲杉(混搭供電合作的網路平台);業務事件處理;IBM Mashup Center的計量,監測,和商業化服務(MMMS)。 IBM的大數據產品組合中的最新系列產品的InfoSphere bigInsights,基於Apache Hadoop。
該產品組合包括:打包的Apache Hadoop的軟體和服務,代號是bigInsights核心,用於開始大數據分析。軟體被稱為bigsheet,軟體目的是幫助從大量數據中輕松、簡單、直觀的提取、批註相關信息為金融,風險管理,媒體和娛樂等行業量身定做的行業解決方案。
微軟:2011年1月與惠普(具體而言是HP資料庫綜合應用部門) 合作目標是開發了一系列能夠提升生產力和提高決策速度的設備。
EMC:EMC 斬獲了紐交所和Nasdaq;大數據解決方案已包括40多個產品。
Oracle:Oracle大數據機與Oracle Exalogic中間件雲伺服器、Oracle Exadata資料庫雲伺服器以及Oracle Exalytics商務智能雲伺服器一起組成了甲骨文最廣泛、高度集成化系統產品組合。
(二)大數據促進了政府職能變革
重視應用大數據技術,盤活各地雲計算中心資產:把原來大規模投資產業園、物聯網產業園從政績工程,改造成智慧工程;在安防領域,應用大數據技術,提高應急處置能力和安全防範能力;在民生領域,應用大數據技術,提升服務能力和運作效率,以及個性化的服務,比如醫療、衛生、教育等部門;解決在金融,電信領域等中數據分析的問題:一直得到得極大的重視,但受困於存儲能力和計算能力的限制,只局限在交易數型數據的統計分析。一方面大數據的應用促進了政府職能變革,另一方面政府投入將形成示範效應,大大推動大數據的發展。
(三)打造「智慧城市」
美國奧巴馬政府在白宮網站發布《大數據研究和發展倡議》,提出「通過收集、處理龐大而復雜的數據信息,從中獲得知識和洞見,提升能力,加快科學、工程領域的創新步伐,強化美國國土安全,轉變教育和學習模式」 ;中國工程院院士鄔賀銓說道,「智慧城市是使用智能計算技術使得城市的關鍵基礎設施的組成和服務更智能、互聯和有效,隨著智慧城市的建設,社會將步入「大數據」時代。」
(四)未來,改變一切
未來,企業會依靠洞悉數據中的信息更加了解自己,也更加了解客戶。
數據的再利用:由於在信息價值鏈中的特殊位置,有些公司可能會收集到大量的數據,但他們並不急需使用也不擅長再次利用這些數據。例如,行動電話運營商手機用戶的位置信息來傳輸電話信號,這對以他們來說,數據只有狹窄的技術用途。但當它被一些發布個性化位置廣告服務和促銷活動的公司再次利用時,則變得更有價值。
六、機遇和挑戰
大數據賦予了我們洞察未來的能力,但同時諸多領域的問題亟待解決,最重要的是每個人的信息都被互聯網所記錄和保留了下來,並且進行加工和利用,為人所用,而這正是我們所擔憂的信息安全隱患!更多的隱私、安全性問題:我們的隱私被二次利用了。多少密碼和賬號是因為「社交網路」流出去的?
眼下中國互聯網熱門的話題之一就是互聯網實名制問題,我願意相信這是個好事。畢竟我們如果明著亮出自己的身份,互聯網才能對我們的隱私給予更好保護
❷ 大數據的產生與發展現狀研究
摘 要:大數據的產生給未來信息技術帶來新的機遇與挑戰。大數據對數據處理的有效性、實時性提出了更高要求,需要根據大數據的特點對當前數據處理技術實施變革,從而形成更有益於大數據採集、存儲、處理、管理、分析、共享的新興技術。本文從大數據的產生與發展、特徵、主要應用以及大數據所帶來的挑戰等方面進行闡述與分析。
關鍵詞 :大數據 物聯網 信息處理 海量計算
一、大數據的產生與發展現狀
隨著物聯網、雲計算等信息技術的飛速發展,大數據技術(Big Data)也越發進入人們的視線。大數據是用傳統方法或工具很難處理或分析的數據信息。目前,人們對大數據的理解還不夠全面和深入,關於大數據的含義也沒有一個統一的定義。亞馬遜大數據科學家John Rauser認為:大數據是超過任何一台計算機處理能力的龐大數據量。Informatica 的中國區首席顧問但彬指出:大數據是海量數據與復雜類型的數據的結合。而維基網路則把大數據定義成諸多大而復雜的、難以用當前資料庫處理的數據集合。
大數據研究受到國內外學術界和工業界的廣泛關注,已成為當今信息時代全世界討論的熱點。2008年,Nature雜志就推出大數據專刊,計算社區聯盟也在同一年發表了報告《Big data computing; Creating revolutionary breakthroughs in commerce, science and society》,報告闡述了解決大數據問題所需的關鍵技術以及所面臨的挑戰。美國奧x政府於2012年3月在白宮網站發布了《大數據研究和發展倡議》,提出了通過收集、處理海量、復雜的數據信息,從而提升能力,加快科學和工程領域的創新步伐,轉變學習教育模式,強化美國本土的安全」。2011年1月,微軟公司同惠普公司合作開發了一系列能夠提升生產力,同時提高決策速度的設備。此外,歐盟委員會也提出駕駁大數據浪潮的戰略思路,日本發布的《面向 2020 的 ICT綜合戰略》也提出需要構造大量豐富的數據基礎。
近年來,我國也積極開展對大數據的研究。2011年10月,工信部確認京滬深杭等 5 城市為「雲計算中心」試點城市。2012年6月,中國計算機學會青年計算機科技論壇也舉辦了「大數據時代,智謀未來」學術報告研討會。大數據及其科學研究方法涉及應用領域很廣,並將與國計民生密切相關的科學決策、金融工程以及知識經濟領域緊緊接合。
二、大數據的特點
目前,企業界和學術界都一致認為,大數據具有4個「V」特徵,即:容量(Volume)、種類(Variety)、速度(Velocity)和至關重要的`價值(Value)。
(1) 容量(Volume)巨大。海量的數據集從TB 級別提升到PB 級別。
(2) 種類(Variety)繁多。大數據數據源有多種,數據格式和種類不同於以前所規定的結構化數據范疇。
(3)價值(Value)密度低。如視頻的例子,在不間斷連續監控的過程中,可能有意義的數據僅有一兩秒。
(4)速度(Velocity)快。包含大量實時、在線數據處理分析的需求1秒鍾定律。
三、大數據應用的領域
大數據產業的發展將推動全球經濟由粗放型向集約型轉變,這將對提升企業整體競爭力和政府監管能力具有意義深遠的影響。
商業作為大數據的重要應用領域。沃爾瑪公司通過對消費者購物行為等一系列非結構化數據的分析,了解不同顧客的購物習慣,公司從所銷售的數據進行分析,從而選出適合在一起搭配出售的商品;淘寶也針對買家開設了大數據平台,為客戶量身打造了一整套完善的網購體驗產品。
大數據在金融業也起到了至關重要的作用。美國Equifax公司利用大數據技術,通過對其的資料庫中與財務有關的記錄海量信息進行索引處理和交叉分享,從而得到客戶的個人信用等級,以推斷出客戶的支付需求與能力。
隨著大數據在醫療與生命科學研究過程中的廣泛應用和不斷擴展。2010年,中國公布的《十二五規劃》指出:要重點建設國家級、省級和地市級三級醫療衛生信息平台,建設電子病歷和電子檔案兩個最為基礎的資料庫。各級醫院也將在醫療信息倉庫、數據中心等領域加大投入,醫療數據信息的存儲將愈加被關注,醫療信息中心的關注焦點也將由傳統的計算領域轉為存儲領域。
除此之外,大數據在製造業領域也有著廣闊的應用。製造業企業積累了廣泛的數據信息,在開展對業務數據進行技術管理的同時,企業需要通過大數據處理技術來幫助決策者從資料庫儲存的海量信息中找到有價值的信息,並且對其進行分析處理,從而增強決策的正確性、規避風險。
四、大數據所面臨的挑戰
大數據技術使人們能夠更好地利用之前不能使用的各個數據類型,找出被忽略的信息,促進企業組織更加高效、智能。但隨著對大數據研究的不斷深入,人們也更加意識到當大數據技術向人們敞開「方便之門」的同時,也帶來了眾多的挑戰:
(1)大數據需要更為專業化的管理技術人才。
(2) 大數據的合理利用需要解決容量大、類別多和時效性高的數據處理問題。
(3)大數據的利用對信息安全提出了更高要求。
(4)大數據的集成與管理問題。
這些挑戰已成為關繫到未來大數據發展的重要因素,同時也成為未來引領大數據發展的推動力。
五、結束語
大數據已經逐步滲透到人們工作生活的諸多領域中,對於大數據的研究也在不斷的深化。本文針對大數據的產生與發展、特徵、主要應用以及大數據所帶來的挑戰等方面進行闡述與分析。大數據的發展還處於初級階段,還有更為廣闊的空間需要人們不斷開拓,如何合理地利用大數據、更加高效地處理大數據來為人們服務仍需要廣大研究者不斷地研究和探索。
參考文獻:
[1]劉智慧,張泉靈.大數據技術研究綜述[J].浙江大學學報,2014,46(6):957- 972.
[2]嚴霄鳳,張德馨.大數據研究[J].計算機技術與發展,2013,23(4):168-172.
[3]劉俊.基於大數據流的Multi-Agent系統模型研究[J].計算機技術與發展, 2007,17(5):166-169.
❸ 大數據未來將現三大發展趨勢
大數據未來將現三大發展趨勢
隨著移動互聯網、物聯網等的迅速發展,新數據源不斷出現,而中國數據總量的不斷增長,使大數據成為一種重要資源,有利於推動零售、旅遊、醫療、金融、電信、政府公共服務各個領域的業務創新。
大數據轉變企業商業模式
來自於線下大數據市場(IT企業的大數據應用及大數據平台業務市場)中IT巨頭和單一大數據業務的廠商開始行動,優化產品和服務路線圖;線上大數據市場(互聯網用戶數據市場,以及以互聯網金融為主的線上金融市場)的成熟度逐漸提高,以金融和零售為核心的線上大數據應用走向成熟,市場體量進一步擴大。企業著力培育數據資產,積極探討數據變現,行業大數據多集聚、少融合。
大數據產業鏈整體布局完整,但局部環節競爭程度差異化明顯。數據採集環節,綜合型大數據源市場處於結構化整合階段,垂直型大數據源市場處於布局階段;數據存儲和數據挖掘環節市場結構穩定,國際巨頭壟斷,寡頭格局已經形成,國內企業短期內很難超越;數據應用環節是國內企業的機會,但技術仍不成熟。
各環節產業鏈正在影響企業商業模式的轉變。模式一:利用存儲能力進行運營,滿足企業和個人面臨海量信息存儲的需求;模式二:對數據進行挖掘分析後預測相關主體的行為,以開展業務;模式三:直接進行信息租售或提供信息租售平台;模式四:IT服務提供商提供大數據空間出租模式,通過出租一個虛擬空間,從簡單的文件存儲,逐步擴展到數據聚合平台;模式五:針對企業需求,為運營某一環節或某一業務問題提供解決方案,實施單點技術,例如向零售商提供大數據分析技術,獲得營銷點子;模式六:針對企業系統需求,提供整體解決方案;模式七:BDaaS (Big data as a service),數據應用即服務的模式,通過雲服務提供在線大數據技術或者解決方案。
根據易觀智庫2014年中國大數據市場行業投資結構數據顯示,金融、通信、零售為前三大行業,投資佔比分別為16.0%、15.6%和13.9%。政府、醫療、旅遊投資比例分別為12.7%、9.0%和4.1%。六大行業累計佔比71.3%。其他行業包括教育、製造、能源、媒體、互聯網等,累計佔比28.7%。大數據產業集群逐漸形成,即針對企業而言,以雲端大數據集聚為前提條件,以行業雲服務為平台,共享企業間核心競爭力。
大數據市場三大趨勢漸顯
大數據市場未來將呈現以下發展趨勢:
其一,數據生態系統復合化程度加強。大數據的世界不只是一個單一的、巨大的計算機網路,而是一個由大量活動構件與多元參與者元素所構成的生態系統,終端設備提供商、基礎設施提供商、網路服務提供商、網路接入服務提供商、數據服務使能者、數據服務提供商、觸點服務、數據服務零售商等等一系列的參與者共同構建的生態系統。而今,這樣一套數據生態系統的基本雛形已然形成,接下來的發展將趨向於系統內部角色的細分,也就是市場的細分;系統機制的調整,也就是商業模式的創新;系統結構的調整,也就是競爭環境的調整等等,從而使得數據生態系統復合化程度逐漸增強。
其二,數據管理成為核心競爭力,直接影響財務表現。當「數據資產是企業核心資產」的概念深入人心之後,企業對於數據管理便有了更清晰的界定,將數據管理作為企業核心競爭力,持續發展,戰略性規劃與運用數據資產,成為企業數據管理的核心。數據資產管理效率與主營業務收入增長率、銷售收入增長率顯著正相關;此外,對於具有互聯網思維的企業而言,數據資產競爭力所佔比重為36.8%,數據資產的管理效果將直接影響企業的財務表現。
其三,產業核心要素的掌控者主導數據生態體系。數據生態體系中的核心環節是產業的核心要素,例如電商的支付、物流、信息(信用)。掌握產業核心要素環節的企業若順勢而為,把握大數據時代的機遇,將企業自身的核心競爭力優勢進一步釋放,運用互聯網思維,通過產業核心要素的大數據掌控數據生態的主要生態鏈,從而最終實現在數字經濟時代的再一次騰飛。
大數據應用推動各行業發展
進一步通過數據驅動經營和營銷,各零售企業會以會員為核心進行管理優化,通過以人為中心的數據驅動,實現決策優化及精準營銷。行業會探索越來越多的大數據營銷新模式,各類零售企業會積極嘗試新機會,如微店等,尋找消費者偏好的新潮流。不斷豐富外部數據源,在企業自身線下數據採集能力不斷提高的同時,與更豐富的外部數據源合作將快速提升營銷的精準度,包括權威市場研究機構、領先互聯網巨頭等。
旅遊大數據的應用,是盡快建立數據統一化標准,建立統一數據交換標准,區域旅遊數據一體化,全國旅遊數據一體化。實現大數據的三屏統一(旅遊監管大屏、景區公告大屏、遊客手機屏)。
通過利用醫療服務的EHRs數據、醫院與醫保的結算與費用數據、醫學研究的學術、社會、政府數據、醫療廠商的醫葯、醫械、臨床實驗數據、居民的行為與健康管理數據、政府的人口與公共衛生數據、公共社會經濟生活中網路產生的數據等方面,為醫療行業的葯品研發、疾病治療、公共衛生管理、居民健康管理、健康危險因素分析提供精準數據支撐。
在傳統金融運作模式下,金融機構評估消費者的信用狀況、消費能力、消費意願的能力不強,導致部分金融領域產品服務定價過高,部分領域成為剩餘市場,這與實際的金融要求還存在一定差距。大數據將有助於推動金融和銀行產業中的數據聚合,基於產業整體數據挖掘價值,推動產業的發展,推動業務模式的創新。金融業大數據目前應用的主要價值在於金融風險管理、消費智能、智能運營等。
電信企業從傳統數據時代走向大數據時代。由於電信企業生產運營所需,自身生產管理系統已經具備海量以客戶為中心組織的統一的視圖數據資源。大數據可為電信業提升網路服務質量,增強管道智能化;更加精準的洞察客戶需求,增強市場競爭力;升級行業信息化解決方案,提升客戶價值;提供數據安全服務,在大數據市場建立差異化競爭優勢。
大數據不僅是一種海量的數據狀態及其相應的數據處理技術,更是一種思維方式,一項重要的基礎設施,一個影響整個國家和社會運行的基礎性社會制度。它是治理交通擁堵、霧霾、看病難、食品安全等「城市病」的利器,更將為政府打開了解社情民意的政策窗口,打造平台的政府、服務導向的政府、開放的政府,即智慧政府。其應用價值是:加強統籌規劃,優化大數據形成機制;加強數據收集和信息感知,提高智慧城市感知水平;推進大數據應用,提高經濟社會智慧化水平。
以上是小編為大家分享的關於大數據未來將現三大發展趨勢的相關內容,更多信息可以關注環球青藤分享更多干貨
❹ 中國人民大學舉辦數據科學與工程學術報告會
中國人民大學重點實驗室舉辦數據科學與工程學術報告會,此次報告會的目的是為了更好地了解工業界的實際需求以及平台的使用情況,加強同行之間的學術交流,促進中國人民大學計算機學科的發展,來自滴滴大數據與數據挖掘研究院的李佩博士、蘇州大學的李直旭副教授、劉冠峰副教授和劉安副教授四位青年學者受邀作報告。
中國人民大學信息學院下設經濟信息管理系、計算機科學與技術系、數學系,以及數據工程與知識工程研究所、管理科學與工程研究所,其中數據工程與知識工程研究所是教育部重點實驗室。
李佩博士結合過去自己在LinkedIN公司的工作經驗,給我們介紹了LinkedIN公司的大數據譽罩系統PYMK及其相關的生態系統。同時,也對當前流行的大數據處理平台Hadoop、Spark及各自的生態圈作了一個系統的介紹。此外,他還介紹了滴滴出行在大數據技術面臨的機遇與挑戰。最後,李佩博士結合自己在英屬哥倫比亞大學的讀博經歷,向在校生推薦了大數據與機器學習領域必讀的經典教材,並對他們未來的擇業提出了一些中肯的建議。
李直旭副教授報告的題目是「藉助Web大數據來處理數據質量問題」。李直旭副教授從六個維度( 錯誤數據、不一致性、丟失數據、過時數據、不適用、不確定性)介紹了數據質量問題普遍存在的一個基本事實,並簡要地綜述了圍繞每一個維度處理數據質量問題的相關工作。結合其近年來的相關工作,以關系數據為依託,李直旭副教授分別介紹了如何藉助Web中的大數據來進行記錄連接(record linkage)和記錄的補全工作。
劉冠峰副教授報告的題目是「社交網路與信任」。劉冠峰副教授首先介紹了社交網路及基於讓芹社交網路的各類應用,並著重指出社交網路中參與人之間的信任關系是整個社交網路各類應用的基礎。基於此前提,劉冠峰副教授對其發表在ICDE『2015(資料庫A類會議)上就如何快速有效地挖掘出符合參與人之間預設信任關系的方法進行了詳細的闡述。
劉安副教授系統地介紹了加密軌跡數據上的相似性計算問題。除了闡述了加密軌跡數據上的相似性計算面臨的挑戰,其還詳細地介紹了如何通過重寫三個操作符(歐氏距離計算、最大最小選擇、條件執行),來實現加密軌跡數據上的相似性計算,並從理論上證明了該方法的安全性和可靠性。
以最近開源的大數據處理系統Greenplum為背景,Greenplum系統開發團隊的劉奎恩博士即興分享了其在大數據時代進行資料庫開源的背景與意義。
除了在校師生,中國人民大學舉辦的本次報告還吸引了來自工業界和學術界(包括CCF大數據協會、中科院、EMC/Pivotal公司、網路、先鋒創投等)的相關人士近50人前來參會,大家提問踴躍,本次報告得到圓滿的成功。
李佩博士:2010年碩士畢業於中國人民大學信息學院資料庫與智能信息檢索實驗室,2014年底博士畢業於英屬哥倫比亞大學計算機系數據管理與挖掘實驗室。2013年6月到8月以及2015年初到9月,工作於美國加州山景城LinkedIn公司SNA(搜索、網路與分析)部門,擔任關系推薦系統工程師,在大數據管理與挖掘第一線從事研發工作。2015年10月至今,在滴滴出行研究院負責數據挖掘項目。在知名國際期刊和學術慶滑鬧會議上(包括KDD、ICDE等A類國際會議)發表論文近20篇,是數據挖掘知名會議SDM』10的最佳論文獲得者。
李直旭副教授:2002-2009年就讀於中國人民大學信息學院攻讀計算機學士和相關證書。2013年畢業於澳大利亞昆士蘭大學獲計算機科學博士學位。2013-2014年就職於沙特阿卜杜拉國王科技大學(KAUST)做博士後研究員,並於2014年入職蘇州大學計算機科學與技術學院。目前主要從事數據質量,大數據應用,數據挖掘與信息抽取等領域的研究工作。曾參與國內外多項科研基金項目的研發工作。在IEEE TKDE, EDBT, CIKM, WWWJ等頂級國際期刊與知名國際會議上發表論文30餘篇。
劉冠峰副教授:2013年畢業於澳大利亞 Macquarie 大學,獲得計算機博士學位。 博士論文獲得當年澳大利亞最佳博士論文提名。2013年1月至2013年8月就職於Macquarie 大學 (Research Fellow) 和 悉尼科技大學 (Visiting Research Fellow),並於2013年9月入職蘇州大學。目前主要從事可信計算、社交網路信息挖掘、圖資料庫等領域的研究工作。曾參與多項澳洲科研基金項目研究。在ICDE、AAAI、TSC、FGCS、WWWJ、ICWS,等重要國際期刊與知名國際會議上發表論文20餘篇。
劉安副教授:2009年獲得中國科學技術大學和香港城市大學聯合培養博士學位,2009年至2013年在香港城大-中國科大聯合高等研究中心擔任Senior Research Associate,2013年底加入蘇州大學。研究方向主要集中在數據管理與分析方面,包括時空資料庫,數據安全與隱私,雲計算與服務計算等。在國際期刊和學術會議上(包括IEEE Trans., CCF推薦的A/B類國際會議)發表論文50多篇。
考研政策不清晰?同等學力在職申碩有困惑?院校專業不好選?點擊底部官網,有專業老師為你答疑解惑,211/985名校研究生碩士/博士開放網申報名中:https://www.87dh.com/yjs2/