① 大數據培訓課程介紹,大數據學習課程要學習哪些
《大數據實訓課程資料》網路網盤資源免費下載
鏈接:https://pan..com/s/1RiGvjn2DlL5pPISCG_O0Sw
大數據實訓課程資料|雲計算與虛擬化課程資源|課程實驗指導書綜合版|機器學習與演算法分析課程資源|Spark課程資源|Python課程資源|Hadoop技術課程資源|雲計算課程資料.zip|微課.zip|演算法建模與程序示例.zip|spark課程資源.zip|hadoop課程資源.zip|實驗指導書|教學視頻|教學PPT
② 大數據主要學習什麼呢
大數據來是近五年興起的自行業,發展迅速,大數據需要學習什麼?
大數據需要的語言
Java、Scala、Python和Shell
分布式計算
分布式計算研究的是如何把一個需要非常巨大的計算能力才能解決的問題分成許多小的部分,然後把這些部分分配給許多伺服器進行處理,最後把這些計算結果綜合起來得到最終的結果。
分布式存儲
是將數據分散存儲在多台獨立的設備上。採用的是可擴展的系統結構,利用多台存儲伺服器分擔存儲負荷,利用位置伺服器定位存儲信息,它不但提高了系統的可靠性、可用性和存取效率,還易於擴展。
分布式調度與管理
分布式的集群管理需要有個組件去分配調度資源給各個節點,這個東西叫yarn; 需要有個組件來解決在分布式環境下"鎖"的問題,這個東西叫zookeeper; 需要有個組件來記錄任務的依賴關系並定時調度任務,這個東西叫azkaban。
③ 大數據分析哪個軟體做的好
大數據分析的軟體有很多,其中SQL數據分析、Excel數據分析、SPSS數據分析、SAS數據分析、R數據分析等這些軟體都是挺不錯的。
1、SQL數據分析
SQL對於很多數據分析師,取數是基本功。可以翻一下很多數據分析崗位的招聘啟事,不管實際需不需要,都會把熟練掌握SQL這一條寫上來。SQL並不是這么復雜,要學習的只是取數、中高級查詢、簡單數據清洗等。
4、SAS數據分析
SAS由於其功能強大而且可以編程,很受高級用戶的歡迎,也是最難掌握的軟體之一,多用於企業工作之中。需要編寫SAS程序來處理數據,進行分析。在所有的統計軟體中,SAS有最強大的繪圖工具,由SAS/Graph模塊提供,有著強大的數據管理和同時處理大批數據文件的功能。
5、R數據分析
R是一個開源的分析軟體,也是分析能力不亞於SPSS和Matlab等商業軟體的輕量級(僅指其佔用空間極小,功能卻是重量級的)分析工具。R支持Windows、Linux和Mac OS系統,對於用戶來說非常方便,R和Matlab都是通過命令行來進行操作,這一點和適合有編程背景或喜好的數據分析人員。
④ 大數據常用哪些資料庫
通常資料庫分為關系型資料庫和非關系型資料庫,關系型資料庫的優勢到現在也是無可替代的,比如MySQL、SQL Server、Oracle、DB2、SyBase、Informix、PostgreSQL以及比較小型的Access等等資料庫,這些資料庫支持復雜的SQL操作和事務機制,適合小量數據讀寫場景;但是到了大數據時代,人們更多的數據和物聯網加入的數據已經超出了關系資料庫的承載范圍。
大數據時代初期,隨著數據請求並發量大不斷增大,一般都是採用的集群同步數據的方式處理,就是將資料庫分成了很多的小庫,每個資料庫的數據內容是不變的,都是保存了源資料庫的數據副本,通過同步或者非同步方式保證數據的一致性,每個庫設定特定的讀寫方式,比如主資料庫負責寫操作,從資料庫是負責讀操作,等等根據業務復雜程度以此類推,將業務在物理層面上進行了分離,但是這種方式依舊存在一定的負載壓力的問題,企業數據在不斷的擴增中,後面就採用分庫分表的方式解決,對讀寫負載進行分離,但是這種實現依舊存在不足,且需要不斷進行資料庫伺服器擴容。
NoSQL資料庫大致分為5種類型
1、列族資料庫:BigTable、HBase、Cassandra、Amazon SimpleDB、HadoopDB等,下面簡單介紹幾個
(1)Cassandra:Cassandra是一個列存儲資料庫,支持跨數據中心的數據復制。它的數據模型提供列索引,log-structured修改,支持反規范化,實體化視圖和嵌入超高速緩存。
(2)HBase:Apache Hbase源於Google的Bigtable,是一個開源、分布式、面向列存儲的模型。在Hadoop和HDFS之上提供了像Bigtable一樣的功能。
(3)Amazon SimpleDB:Amazon SimpleDB是一個非關系型數據存儲,它卸下資料庫管理的工作。開發者使用Web服務請求存儲和查詢數據項
(4)Apache Accumulo:Apache Accumulo的有序的、分布式鍵值數據存儲,基於Google的BigTable設計,建立在Apache Hadoop、Zookeeper和Thrift技術之上。
(5)Hypertable:Hypertable是一個開源、可擴展的資料庫,模仿Bigtable,支持分片。
(6)Azure Tables:Windows Azure Table Storage Service為要求大量非結構化數據存儲的應用提供NoSQL性能。表能夠自動擴展到TB級別,能通過REST和Managed API訪問。
2、鍵值資料庫:Redis、SimpleDB、Scalaris、Memcached等,下面簡單介紹幾個
(1)Riak:Riak是一個開源,分布式鍵值資料庫,支持數據復制和容錯。(2)Redis:Redis是一個開源的鍵值存儲。支持主從式復制、事務,Pub/Sub、Lua腳本,還支持給Key添加時限。
(3)Dynamo:Dynamo是一個鍵值分布式數據存儲。它直接由亞馬遜Dynamo資料庫實現;在亞馬遜S3產品中使用。
(4)Oracle NoSQL Database:來自Oracle的鍵值NoSQL資料庫。它支持事務ACID(原子性、一致性、持久性和獨立性)和JSON。
(5)Oracle NoSQL Database:具備數據備份和分布式鍵值存儲系統。
(6)Voldemort:具備數據備份和分布式鍵值存儲系統。
(7)Aerospike:Aerospike資料庫是一個鍵值存儲,支持混合內存架構,通過強一致性和可調一致性保證數據的完整性。
3、文檔資料庫:MongoDB、CouchDB、Perservere、Terrastore、RavenDB等,下面簡單介紹幾個
(1)MongoDB:開源、面向文檔,也是當下最人氣的NoSQL資料庫。
(2)CounchDB:Apache CounchDB是一個使用JSON的文檔資料庫,使用Javascript做MapRece查詢,以及一個使用HTTP的API。
(3)Couchbase:NoSQL文檔資料庫基於JSON模型。
(4)RavenDB:RavenDB是一個基於.NET語言的面向文檔資料庫。
(5)MarkLogic:MarkLogic NoSQL資料庫用來存儲基於XML和以文檔為中心的信息,支持靈活的模式。
4、圖資料庫:Neo4J、InfoGrid、OrientDB、GraphDB,下面簡單介紹幾個
(1)Neo4j:Neo4j是一個圖資料庫;支持ACID事務(原子性、獨立性、持久性和一致性)。
(2)InfiniteGraph:一個圖資料庫用來維持和遍歷對象間的關系,支持分布式數據存儲。
(3)AllegroGraph:AllegroGraph是結合使用了內存和磁碟,提供了高可擴展性,支持SPARQ、RDFS++和Prolog推理。
5、內存數據網格:Hazelcast、Oracle Coherence、Terracotta BigMemorry、GemFire、Infinispan、GridGain、GigaSpaces,下面簡單介紹幾個
(1)Hazelcast:Hazelcast CE是一個開源數據分布平台,它允許開發者在資料庫集群之上共享和分割數據。
(2)Oracle Coherence:Oracle的內存數據網格解決方案提供了常用數據的快速訪問能力,一致性支持事務處理能力和數據的動態劃分。
(3)Terracotta BigMemory:來自Terracotta的分布式內存管理解決方案。這項產品包括一個Ehcache界面、Terracotta管理控制台和BigMemory-Hadoop連接器。
(4)GemFire:Vmware vFabric GemFire是一個分布式數據管理平台,也是一個分布式的數據網格平台,支持內存數據管理、復制、劃分、數據識別路由和連續查詢。
(5)Infinispan:Infinispan是一個基於Java的開源鍵值NoSQL數據存儲,和分布式數據節點平台,支持事務,peer-to-peer 及client/server 架構。
(6)GridGain:分布式、面向對象、基於內存、SQL+NoSQL鍵值資料庫。支持ACID事務。
(7)GigaSpaces:GigaSpaces內存數據網格能夠充當應用的記錄系統,並支持各種各樣的高速緩存場景。
⑤ 大數據培訓課程大綱要學什麼課程
課綱不一樣,看是大數據開發還是大數據分析了,我學的大數據分析可視化,學的版主要權有Python入門、sql、oracle、tableau、帆軟、Informatica、Excel等等
我剛出來半年,視頻錄播可能還不算落後,有視頻可***
⑥ 大數據分析工具有哪些,有什麼特點
數據分析再怎麼說也是一個專業的領域,沒有數學、統計學、資料庫這些知識的支撐,對於我們這些市場、業務的人員來說,難度真的不是一點點。從國外一線大牌到國內宣傳造勢強大的品牌,我們基本試用了一個遍,總結一句話「人人都是數據分析師」這個坑實在太大,所有的數據分析工具無論宣傳怎樣,都有一定的學習成本,尤其是要深入業務實際。今天就我們用過的幾款工具簡單總結一下,與大家分享。
1、Tableau
這個號稱敏捷BI的扛把子,魔力象限常年位於領導者象限,界面清爽、功能確實很強大,實至名歸。將數據拖入相關區域,自動出圖,圖形展示豐富,交互性較好。圖形自定義功能強大,各種圖形參數配置、自定義設置可以靈活設置,具備較強的數據處理和計算能力,可視化分析、互動式分析體驗良好。確實是一款功能強大、全面的數據可視化分析工具。新版本也集成了很多高級分析功能,分析更強大。但是基於圖表、儀錶板、故事報告的邏輯,完成一個復雜的業務匯報,大量的圖表、儀錶板組合很費事。給領導匯報的PPT需要先一個個截圖,然後再放到PPT裡面。作為一個數據分析工具是合格的,但是在企業級這種應用匯報中有點局限。
2、PowerBI
PowerBI是蓋茨大佬推出的工具,我們也興奮的開始試用,確實完全不同於Tableau的操作邏輯,更符合我們普通數據分析小白的需求,操作和Excel、PPT類似,功能模塊劃分清晰,上手真的超級快,圖形豐富度和靈活性也是很不錯。但是說實話,畢竟剛推出,系統BUG很多,可視化分析的功能也比較簡單。雖然有很多復雜的數據處理功能,但是那是需要有對Excel函數深入理解應用的基礎的,所以要支持復雜的業務分析還需要一定基礎。不過版本更新倒是很快,可以等等新版本。
3、Qlik
和Tableau齊名的數據可視化分析工具,QlikView在業界也享有很高的聲譽。不過Qlik Seanse產品系列才在大陸市場有比較大的推廣和應用。真的是一股清流,界面簡潔、流程清晰、操作簡單,交互性較好,真的是一款簡單易用的BI工具。但是不支持深度的數據分析,圖形計算和深度計算功能缺失,不能滿足復雜的業務分析需求。
最後將視線聚焦國內,目前搜索排名和市場宣傳比較好的也很多,永洪BI、帆軟BI、BDP等。不過經過個人感覺整體宣傳大於實際。
4、永洪BI
永洪BI功能方面應該是相對比較完善的,也是拖拽出圖,有點類似Tableau的邏輯,不過功能與Tableau相比還是差的不是一點半點,但是操作難度居然比Tableau還難。預定義的分析功能比較豐富,圖表功能和靈活性較大,但是操作的友好性不足。宣傳擁有高級分析的數據挖掘功能,後來發現就集成了開源的幾個演算法,功能非常簡單。而操作過程中大量的彈出框、難以理解含義的配置項,真的讓人很暈。一個簡單的堆積柱圖,就研究了好久,看幫助、看視頻才搞定。哎,只感嘆功能藏得太深,不想給人用啊。
5、帆軟BI
再說號稱FBI的帆軟BI,帆軟報表很多國人都很熟悉,功能確實很不錯,但是BI工具就真的一般般了。只能簡單出圖,配合報表工具使用,能讓頁面更好看,但是比起其他的可視化分析、BI工具,功能還是比較簡單,分析的能力不足,功能還是比較簡單。帆軟名氣確實很大,號稱行業第一,但是主要在報表層面,而數據可視化分析方面就比較欠缺了。
6、Tempo
另一款工具,全名叫「Tempo大數據分析平台」,宣傳比較少,2017年Gartner報告發布後無意中看到的。是一款BS的工具,申請試用也是費盡了波折啊,永洪是不想讓人用,他直接不想賣的節奏。
第一次試用也是一臉懵逼,不知道該點那!不過抱著破罐子破摔的心態稍微點了幾下之後,操作居然越來越流暢。也是拖拽式操作,數據可視化效果比較豐富,支持很多便捷計算,能滿足常用的業務分析。最最驚喜的是它還支持可視化報告導出PPT,徹底解決了分析結果輸出的問題。深入了解後,才發現他們的核心居然是「數據挖掘」,演算法十分豐富,也是拖拽式操作,我一個文科的分析小白,居然跟著指導和說明做出了一個數據預測的挖掘流,簡直不要太驚喜。掌握了Tempo的基本操作邏輯後,居然發現他的易用性真的很不錯,功能完整性和豐富性也很好。不過沒有宣傳也是有原因的,系統整體配套的介紹、操作說明的完善性上還有待提升。
⑦ 請描述下大數據三大平台hadoop,storm,spark的區別和應用場景
Hadoop 當前大數據管理標准之一,運用在當前很多商業應用系統。可以輕松地集成結專構屬化、半結構化甚至非結構化數據集還是離線處理,批處理比較多,用的比較廣的是hive
Storm 用於處理高速、大型數據流的分布式實時計算系統。為Hadoop添加了可靠的實時數據處理功能
spark基於內存的,吞吐量比storm大一點。而且spark集成的sparkSQL,MLlib,Graph貌似比較方便 !
⑧ 大數據開發怎麼學習
Java
大家都知道Java的方向有JavaSE、JavaEE、JavaME,學習大數據要學習那個方向呢?只需要學習Java的標准版JavaSE就可以了,像Servlet、JSP、Tomcat、Struts、Spring、Hibernate,Mybatis都是JavaEE方向的技術在大數據技術里用到的並不多,只需要了解就可以了,當然Java怎麼連接資料庫還是要知道的,像JDBC一定要掌握一下。
Linux
因為大數據相關軟體都是在Linux上運行的,所以Linux要學習的扎實一些,學好Linux對你快速掌握大數據相關技術會有很大的幫助,能讓你更好的理解hadoop、hive、hbase、spark等大數據軟體的運行環境和網路環境配置,能少踩很多坑,學會shell就能看懂腳本這樣能更容易理解和配置大數據集群。
Hadoop
這是現在流行的大數據處理平台幾乎已經成為大數據的代名詞,所以這個是必學的。Hadoop裡麵包括幾個組件HDFS、MapRece和YARN,HDFS是存儲數據的地方就像我們電腦的硬碟一樣文件都存儲在這個上面,MapRece是對數據進行處理計算的,它有個特點就是不管多大的數據只要給它時間它就能把數據跑完,但是時間可能不是很快所以它叫數據的批處理。
YARN
是體現Hadoop平台概念的重要組件有了它大數據生態體系的其它軟體就能在hadoop上運行了,這樣就能更好的利用HDFS大存儲的優勢和節省更多的資源比如我們就不用再單獨建一個spark的集群了,讓它直接跑在現有的hadoop yarn上面就可以了。
Zookeeper
這是個萬金油,安裝Hadoop的HA的時候就會用到它,以後的Hbase也會用到它。它一般用來存放一些相互協作的信息,這些信息比較小一般不會超過1M,都是使用它的軟體對它有依賴,對於我們個人來講只需要把它安裝正確,讓它正常的run起來就可以了。
Mysql
我們學習完大數據的處理了,接下來學習學習小數據的處理工具mysql資料庫,因為一會裝hive的時候要用到,mysql需要掌握到什麼層度那?你能在Linux上把它安裝好,運行起來,會配置簡單的許可權,修改root的密碼,創建資料庫。這里主要的是學習SQL的語法,因為hive的語法和這個非常相似。
Sqoop
這個是用於把Mysql里的數據導入到Hadoop里的。當然你也可以不用這個,直接把Mysql數據表導出成文件再放到HDFS上也是一樣的,當然生產環境中使用要注意Mysql的壓力。Hive這個東西對於會SQL語法的來說就是神器,它能讓你處理大數據變的很簡單,不會再費勁的編寫MapRece程序。有的人說Pig那?它和Pig差不多掌握一個就可以了。
Oozie
既然學會Hive了,我相信你一定需要這個東西,它可以幫你管理你的Hive或者MapRece、Spark腳本,還能檢查你的程序是否執行正確,出錯了給你發報警並能幫你重試程序,最重要的是還能幫你配置任務的依賴關系。
Hbase
這是Hadoop生態體系中的NOSQL資料庫,他的數據是按照key和value的形式存儲的並且key是唯一的,所以它能用來做數據的排重,它與MYSQL相比能存儲的數據量大很多。所以他常被用於大數據處理完成之後的存儲目的地。
Kafka
這是個比較好用的隊列工具當然我們也可以利用這個工具來做線上實時數據的入庫或入HDFS,這時你可以與一個叫Flume的工具配合使用,它是專門用來提供對數據進行簡單處理,並寫到各種數據接受方(比如Kafka)的。
Spark
它是用來彌補基於MapRece處理數據速度上的缺點,它的特點是把數據裝載到內存中計算而不是去讀慢的要死進化還特別慢的硬碟。特別適合做迭代運算,所以演算法流們特別稀飯它。它是用scala編寫的。Java語言或者Scala都可以操作它,因為它們都是用JVM的。
⑨ 大數據的四種主要計算模式
大數據灶沖的四種主要計算模式分別是:
1. 批處理模式(Batch Processing):批處理模式是指將大批量的數據集作為一個整體進行處理,通常採用離線方式處理。批處理模式主要應用於數據倉庫、數據挖掘、商業智能等領域。
2. 流式處理模式(Stream Processing):流式處理模式是指將數據流實時處理,處理完一個數據後再處理下一個數據。流式處理模式主要應用於實時監控、實時分析、實時推薦等領域。
3. 互動式查詢模式(Interactive Query):互動式查詢模式是指通過對數據進行互動式查詢和分析,實現對數據的快速響應和實時分析,主要應用於數據探索、數據可視化等領域。隱罩殲
4. 圖計算模式(Graph Processing):圖計算模式是指將數據抽象為圖,通過圖演算法實現對數據的分析和計算,主要應用於社交網路悶昌分析、搜索引擎優化、網路安全等領域。
這四種計算模式在大數據處理中各有優劣,應根據不同的場景和需求進行選擇。
⑩ 大數據的四種主要計算模式包括
大數據的四種主要計算模式包括:批處理模式、流處理模式、互動式處理模式、圖處理模式。
1、批處理模式(Batch Processing):將大量數據分成若干小批次進行處理簡隱隱,通常是非實時的、離線的方式進行計算,用途包括離線數據分析、離線數據挖掘等。
2、流處理模式(Stream Processing):針對數據源的實時性要求更高,實時計算每個事件(Event)或者一組事件的處理結果,能夠進行非常低延遲的計算和響應,用途包括實時監控、實時推薦等。
3、互動式處理模式(Interactive Processing):這種模式的特點是快速響應交互請求,在數據中進行查詢、分組、排序等等,處理的時間通常在數秒內,用途包括復雜報表生成、數據可視化、數據探索等。
4、圖處理模式(Graph Processing):針對數據之間的關系進行計算,通常以圖的形式表示數據之間的聯系,能夠解決一些復雜的問攜遲題,如社交網路分析、路徑規劃、推薦系統等。
這四種計算模式通常都需要在大規模分布式計算框架中實現,如Hadoop、Spark、Storm、Flink等,以應對大數據量的處理需求。
大數據技術主要涉及以下方面的學科
1、數學和統計學:大數據處理離不開高等數學、線性代數、概率論和數理統計等數學和統計學的基礎。
2、攔廳計算機科學:大數據分析和處理需要有扎實的計算機編程基礎,掌握各種編程語言和開發工具,並熟悉分布式系統和資料庫等技術。
3、數據挖掘:數據挖掘是從大量數據中發現隱藏的關系、規律和趨勢的過程,需要深入理解各種數據挖掘演算法和技術。
4、人工智慧:人工智慧技術中的機器學習、深度學習等方法也常常用於大數據分析和處理,並能夠為大數據提供更深入、更高級的分析。
5、網路和通信:現代大數據技術需要支持海量數據的傳輸和處理,因此還需要掌握網路和通信技術,如雲計算、分布式存儲和通信協議等。
總之,大數據技術是涉及多個學科領域的綜合性學科,需要廣泛的知識面和深入的專業技能,未來有很大的發展空間和挑戰。