導航:首頁 > 網路數據 > powerb對大數據的處理與分析

powerb對大數據的處理與分析

發布時間:2023-04-22 22:32:23

『壹』 大數據分析一般用什麼工具分析

今天就我們用過的幾款大數據分析工具簡單總結一下,與大家分享。

1、Tableau

這個號稱敏捷BI的扛把子,魔力象限常年位於領導者象限,界面清爽、功能確實很強大,實至名歸。將數據拖入相關區域,自動出圖,圖形展示豐富,交互性較好。圖形自定義功能強大,各種圖形參數配置、自定義設置可以靈活設置,具備較強的數據處理和計算能力,可視化分析、互動式分析體驗良好。確實是一款功能強大、全面的數據可視化分析工具。新版本也集成了很多高級分析功能,分析更強大。但是基於圖表、儀錶板、故事報告的邏輯,完成一個復雜的業務匯報,大量的圖表、儀錶板組合很費事。給領導匯報的PPT需要先一個個截圖,然後再放到PPT裡面。作為一個數據分析工具是合格的,但是在企業級這種應用匯報中有點局限。

2、PowerBI

PowerBI是蓋茨大佬推出的工具,我們也興奮的開始試用,確實完全不同於Tableau的操作邏輯,更符合我們普通數據分析小白的需求,操作和Excel、PPT類似,功能模塊劃分清晰,上手真的超級快,圖形豐富度和靈活性也是很不錯。但是說實話,畢竟剛推出,系統BUG很多,可視化分析的功能也比較簡單。雖然有很多復雜的數據處理功能,但是那是需要有對Excel函數深入理解應用的基礎的,所以要支持復雜的業務分析還需要一定基礎。不過版本更新倒是很快,可以等等新版本。

3、Qlik

和Tableau齊名的數據可視化分析工具,QlikView在業界也享有很高的聲譽。不過Qlik Seanse產品系列才在大陸市場有比較大的推廣和應用。真的是一股清流,界面簡潔、流程清晰、操作簡單,交互性較好,真的是一款簡單易用的BI工具。但是不支持深度的數據分析,圖形計算和深度計算功能缺失,不能滿足復雜的業務分析需求。

最後將視線聚焦國內,目前搜索排名和市場宣傳比較好的也很多,永洪BI、帆軟BI、BDP等。不過經過個人感覺整體宣傳大於實際。

4、永洪BI

永洪BI功能方面應該是相對比較完善的,也是拖拽出圖,有點類似Tableau的邏輯,不過功能與Tableau相比還是差的不是一點半點,但是操作難度居然比Tableau還難。預定義的分析功能比較豐富,圖表功能和靈活性較大,但是操作的友好性不足。宣傳擁有高級分析的數據挖掘功能,後來發現就集成了開源的幾個演算法,功能非常簡單。而操作過程中大量的彈出框、難以理解含義的配置項,真的讓人很暈。一個簡單的堆積柱圖,就研究了好久,看幫助、看視頻才搞定。哎,只感嘆功能藏得太深,不想給人用啊。

5、帆軟BI

再說號稱FBI的帆軟BI,帆軟報表很多國人都很熟悉,功能確實很不錯,但是BI工具就真的一般般了。只能簡單出圖,配合報表工具使用,能讓頁面更好看,但是比起其他的可視化分析、BI工具,功能還是比較簡單,分析的能力不足,功能還是比較簡單。帆軟名氣確實很大,號稱行業第一,但是主要在報表層面,而數據可視化分析方面就比較欠缺了。

6、Tempo

另一款工具,全名叫「Tempo大數據分析平台」,宣傳比較少,2017年Gartner報告發布後無意中看到的。是一款BS的工具,申請試用也是費盡了波折啊,永洪是不想讓人用,他直接不想賣的節奏。

第一次試用也是一臉懵逼,不知道該點那!不過抱著破罐子破摔的心態稍微點了幾下之後,操作居然越來越流暢。也是拖拽式操作,數據可視化效果比較豐富,支持很多便捷計算,能滿足常用的業務分析。最最驚喜的是它還支持可視化報告導出PPT,徹底解決了分析結果輸出的問題。深入了解後,才發現他們的核心居然是「數據挖掘」,演算法十分豐富,也是拖拽式操作,我一個文科的分析小白,居然跟著指導和說明做出了一個數據預測的挖掘流,簡直不要太驚喜。掌握了Tempo的基本操作邏輯後,居然發現他的易用性真的很不錯,功能完整性和豐富性也很好。

『貳』 談一談你在powerbi或者powerquery中學到的技能以及怎麼解決實際問題

PowerBI是一個強大的工具,它的大數據處理能力、豐富的可視化對象、便捷的交互體驗正在改變越來越多的人查看數據的方式。

『叄』 如何進行大數據分析及處理

提取有用信息和形成結論。

用適當的統計、分析方法對收集來的大量數據進行分析,將它們加以匯總和理解並消化,以求最大化地開發數據的功能,發揮數據的作用。數據分析為了提取有用信息和形成結論而對數據加以詳細研究和概括總結的過程。

要求在標題欄中註明各個量的名稱、符號、數量級和單位等:根據需要還可以列出除原始數據以外的計算欄目和統計欄目等。從圖線上可以簡便求出實驗需要的某些結果,還可以把某些復雜的函數關系,通過一定的變換用圖形表示出來。

(3)powerb對大數據的處理與分析擴展閱讀:

大數據分析及處理的相關要求規定:

1、以數據流引領技術流、物質流、資金流、人才流,將深刻影響社會分工協作的組織模式,促進生產組織方式的集約和創新。

2、大數據推動社會生產要素的網路化共享、集約化整合、協作化開發和高效化利用,改變了傳統的生產方式和經濟運行機制,可顯著提升經濟運行水平和效率。

3、大數據持續激發商業模式創新,不斷催生新業態,已成為互聯網等新興領域促進業務創新增值、提升企業核心價值的重要驅動力。大數據產業正在成為新的經濟增長點,將對未來信息產業格局產生重要影響。

『肆』 IBM Power全面推動大數據分析發展

IBM日前在2015中國大數據技術大會上分享了其在大數據分析領域的最新成果,闡述了面向大數據分析領域的IT基礎架構的最新戰略。針對企業在認知時代面臨的大數據分析工作負載,IBM堅信要以全新的IT基礎架構作為支持。憑借產品和解決方案的持續革新,IBM致力於助力大數據應用創新,通過打造基於Power的本地生態系統,全面推動本地大數據分析技術的發展。

隨著互聯網和移動互聯網技術的進一步發展,在數據量激增的同時,數據類型也變得更為復雜多樣。如何快速處理這些數據使其產生價值,如何結合結構化與非結構化數據分析進行預測、推理、感知的判斷並採取相應行動,成為企業亟須思考的難題。面對當前挑戰,企業需要能夠處理和分析大量結構化與非結構化數據,具備高可靠性和經濟效益的認知系統。未來,隨著數據量的進一步增長,企業將需要一個具備更強事務處理能力、更靈活調配系統架構的領先IT 基礎架構。

IBM Power一直致力於憑借領先的IT基礎架構,滿足企業的大數據分析需求,幫助企業實現數字化轉型。針對大數據分析與認知工作負載,IBM今年推出了多款Power產品。Power Systems LC伺服器基於OpenPOWER基金會創新成果,針對企業大數據分析工作負載,能夠提供比同等x86伺服器更快的速度及更低的成本,幫助客戶實現便捷、快速的部署。此外,IBM不僅憑借基於POWER8的Linux專屬伺服器幫助用戶發展新興應用,還通過企業級高性能Linux分區伺服器為用戶的關鍵應用提供支持,幫助企業發展新興工作負載、實現業務轉型。

著眼未來趨勢,IBM堅信認知技術與思維是滿足企業發展需要不可或缺的一部分。作為IBM在認知計算領域的卓越代表,沃森(Watson)在大數據處理與分析方面已取得突破性成就,擁有分析海量數據、處理並行復雜數據以及快速判斷和應答響應等卓越能力。基於由IBM Power平台構建的高性能運算基礎架構的支持,IBM正聯合多家合作夥伴,推動沃森的應用。

除了不斷革新Power硬體平台,IBM還通過對本地人才的培養推動大數據應用的創新。今年,IBM已聯手CSDN成功舉辦了8期POWER8極限挑戰賽,吸引了逾萬人次參賽。IBM也成功舉辦了十餘次培訓沙龍,為開發者帶來更多學習和交流的機會。此外,IBM還以不同形式聯合合作夥伴為本地開發者提供基於Power的開源技術創新環境,幫助開發者加速其創新進程。

為提升本地合作夥伴的能力,IBM還與合作夥伴聯手,積極推動本地開源技術生態系統的構建。在IBM「中國合夥人」戰略的引領下,IBM與CSDN等夥伴聯手啟動Linux開源生態系統聯盟,基於IBM多年來為開源領域提供的先進支持,攜手國內ISV、開源技術社區、企業用戶、創投公司等多方力量,共同打造一個基於Power技術的開源技術生態圈。IBM還聯手OpenPOWER基金會成員推出了全新硬體加速ISV支持計劃,為本地ISV免費提供基於RedPOWER伺服器以及賽靈思FPGA的雲端開發及測試環境,幫助ISV提升大數據、雲計算等新興技術研發能力,促進第二代分布式計算的發展。

IBM副總裁、大中華區硬體系統部總經理郭仁聲表示:「認知時代的到來標志著信息技術的發展步入了全新階段,也對企業的IT基礎架構提出了更為嚴苛的要求。為了幫助企業更好地處理、分析數量龐大的結構化和非結構化數據,IBM Power將憑借扎實的硬體基礎和深入的行業洞察,幫助企業構建全新的IT基礎架構,更好地應對當前和未來包括大數據在內的種種挑戰。」

『伍』 如何進行大數據分析及處理

1.可視化分析
大數據分析的使用者有大數據分析專家,同時還有普通用戶,但是他們二者對於大數據分析最基本的要求就是可視化分析,因為可視化分析能夠直觀的呈現大數據特點,同時能夠非常容易被讀者所接受,就如同看圖說話一樣簡單明了。
2. 數據挖掘演算法
大數據分析的理論核心就是數據挖掘演算法,各種數據挖掘的演算法基於不同的數據類型和格式才能更加科學的呈現出數據本身具備的特點,也正是因為這些被全世界統計 學家所公認的各種統計方法(可以稱之為真理)才能深入數據內部,挖掘出公認的價值。另外一個方面也是因為有這些數據挖掘的演算法才能更快速的處理大數據,如果一個演算法得花上好幾年才能得出結論,那大數據的價值也就無從說起了。
3. 預測性分析大數據分析最終要的應用領域之一就是預測性分析,從大數據中挖掘出特點,通過科學的建立模型,之後便可以通過模型帶入新的數據,從而預測未來的數據。
4. 語義引擎
非結構化數據的多元化給數據分析帶來新的挑戰,我們需要一套工具系統的去分析,提煉數據。語義引擎需要設計到有足夠的人工智慧以足以從數據中主動地提取信息。
5.數據質量和數據管理。 大數據分析離不開數據質量和數據管理,高質量的數據和有效的數據管理,無論是在學術研究還是在商業應用領域,都能夠保證分析結果的真實和有價值。
大數據分析的基礎就是以上五個方面,當然更加深入大數據分析的話,還有很多很多更加有特點的、更加深入的、更加專業的大數據分析方法。

『陸』 大數據的分析與處理方法解讀

大數據的分析與處理方法解讀
越來越多的應用涉及到大數據,這些大數據的屬性,包括數量,速度,多樣性等等都是呈現了大數據不斷增長的復雜性,所以,大數據的分析方法在大數據領域就顯得尤為重要,可以說是決定最終信息是否有價值的決定性因素。基於此,大數據分析的方法理論有哪些呢?
大數據分析的五個基本方面
(預測性分析能力)
數據挖掘可以讓分析員更好的理解數據,而預測性分析可以讓分析員根據可視化分析和數據挖掘的結果做出一些預測性的判斷。
(數據質量和數據管理)
數據質量和數據管理是一些管理方面的最佳實踐。通過標准化的流程和工具對數據進行處理可以保證一個預先定義好的高質量的分析結果。
AnalyticVisualizations(可視化分析)
不管是對數據分析專家還是普通用戶,數據可視化是數據分析工具最基本的要求。可視化可以直觀的展示數據,讓數據自己說話,讓觀眾聽到結果。
SemanticEngines(語義引擎)
我們知道由於非結構化數據的多樣性帶來了數據分析的新的挑戰,我們需要一系列的工具去解析,提取,分析數據。語義引擎需要被設計成能夠從「文檔」中智能提取信息。
DataMiningAlgorithms(數據挖掘演算法)
可視化是給人看的,數據挖掘就是給機器看的。集群、分割、孤立點分析還有其他的演算法讓我們深入數據內部,挖掘價值。這些演算法不僅要處理大數據的量,也要處理大數據的速度。
假如大數據真的是下一個重要的技術革新的話,我們最好把精力關注在大數據能給我們帶來的好處,而不僅僅是挑戰。
大數據處理
大數據處理數據時代理念的三大轉變:要全體不要抽樣,要效率不要絕對精確,要相關不要因果。具體的大數據處理方法其實有很多,但是根據長時間的實踐,筆者總結了一個基本的大數據處理流程,並且這個流程應該能夠對大家理順大數據的處理有所幫助。整個處理流程可以概括為四步,分別是採集、導入和預處理、統計和分析,以及挖掘。
採集
大數據的採集是指利用多個資料庫來接收發自客戶端的數據,並且用戶可以通過這些資料庫來進行簡單的查詢和處理工作。比如,電商會使用傳統的關系型資料庫MySQL和Oracle等來存儲每一筆事務數據,除此之外,Redis和MongoDB這樣的NoSQL資料庫也常用於數據的採集。
在大數據的採集過程中,其主要特點和挑戰是並發數高,因為同時有可能會有成千上萬的用戶來進行訪問和操作,比如火車票售票網站和淘寶,它們並發的訪問量在峰值時達到上百萬,所以需要在採集端部署大量資料庫才能支撐。並且如何在這些資料庫之間進行負載均衡和分片的確是需要深入的思考和設計。
統計/分析
統計與分析主要利用分布式資料庫,或者分布式計算集群來對存儲於其內的海量數據進行普通的分析和分類匯總等,以滿足大多數常見的分析需求,在這方面,一些實時性需求會用到EMC的GreenPlum、Oracle的Exadata,以及基於MySQL的列式存儲Infobright等,而一些批處理,或者基於半結構化數據的需求可以使用Hadoop。統計與分析這部分的主要特點和挑戰是分析涉及的數據量大,其對系統資源,特別是I/O會有極大的佔用。
導入/預處理
雖然採集端本身會有很多資料庫,但是如果要對這些海量數據進行有效的分析,還是應該將這些來自前端的數據導入到一個集中的大型分布式資料庫,或者分布式存儲集群,並且可以在導入基礎上做一些簡單的清洗和預處理工作。也有一些用戶會在導入時使用來自Twitter的Storm來對數據進行流式計算,來滿足部分業務的實時計算需求。導入與預處理過程的特點和挑戰主要是導入的數據量大,每秒鍾的導入量經常會達到百兆,甚至千兆級別。
挖掘
與前面統計和分析過程不同的是,數據挖掘一般沒有什麼預先設定好的主題,主要是在現有數據上面進行基於各種演算法的計算,從而起到預測的效果,從而實現一些高級別數據分析的需求。比較典型演算法有用於聚類的K-Means、用於統計學習的SVM和用於分類的NaiveBayes,主要使用的工具有Hadoop的Mahout等。該過程的特點和挑戰主要是用於挖掘的演算法很復雜,並且計算涉及的數據量和計算量都很大,還有,常用數據挖掘演算法都以單線程為主。

『柒』 企業如何實現對大數據的處理與分析

企業如何實現對大數據的處理與分析
隨著兩化深度融合的持續推進,全面實現業務管理和生產過程的數字化、自動化和智能化是企業持續保持市場競爭力的關鍵。在這一過程中數據必將成為企業的核心資產,對數據的處理、分析和運用將極大的增強企業的核心競爭力。但長期以來,由於數據分析手段和工具的缺乏,大量的業務數據在系統中層層積壓而得不到利用,不但增加了系統運行和維護的壓力,而且不斷的侵蝕有限的企業資金投入。如今,隨著大數據技術及應用逐漸發展成熟,如何實現對大量數據的處理和分析已經成為企業關注的焦點。
對企業而言,由於長期以來已經積累的海量的數據,哪些數據有分析價值?哪些數據可以暫時不用處理?這些都是部署和實施大數據分析平台之前必須梳理的問題點。以下就企業實施和部署大數據平台,以及如何實現對大量數據的有效運用提供建議。
第一步:採集數據
對企業而言,不論是新實施的系統還是老舊系統,要實施大數據分析平台,就需要先弄明白自己到底需要採集哪些數據。因為考慮到數據的採集難度和成本,大數據分析平台並不是對企業所有的數據都進行採集,而是相關的、有直接或者間接聯系的數據,企業要知道哪些數據是對於戰略性的決策或者一些細節決策有幫助的,分析出來的數據結果是有價值的,這也是考驗一個數據分析員的時刻。比如企業只是想了解產線設備的運行狀態,這時候就只需要對影響產線設備性能的關鍵參數進行採集。再比如,在產品售後服務環節,企業需要了解產品使用狀態、購買群體等信息,這些數據對支撐新產品的研發和市場的預測都有著非常重要的價值。因此,建議企業在進行大數據分析規劃的時候針對一個項目的目標進行精確的分析,比較容易滿足業務的目標。
大數據的採集過程的難點主是並發數高,因為同時有可能會有成千上萬的用戶來進行訪問和操作,比如火車票售票網站和淘寶,它們並發的訪問量在峰值時達到上百萬,所以需要在採集端部署大量資料庫才能支撐。並且如何在這些資料庫之間進行負載均衡和分片也是需要深入的思考問題。
第二步:導入及預處理
數據採集過程只是大數據平台搭建的第一個環節。當確定了哪些數據需要採集之後,下一步就需要對不同來源的數據進行統一處理。比如在智能工廠裡面可能會有視頻監控數據、設備運行數據、物料消耗數據等,這些數據可能是結構化或者非結構化的。這個時候企業需要利用ETL工具將分布的、異構數據源中的數據如關系數據、平面數據文件等抽取到臨時中間層後進行清洗、轉換、集成,將這些來自前端的數據導入到一個集中的大型分布式資料庫或者分布式存儲集群,最後載入到數據倉庫或數據集市中,成為聯機分析處理、數據挖掘的基礎。對於數據源的導入與預處理過程,最大的挑戰主要是導入的數據量大,每秒鍾的導入量經常會達到百兆,甚至千兆級別。
第三步:統計與分析
統計與分析主要利用分布式資料庫,或者分布式計算集群來對存儲於其內的海量數據進行普通的分析和分類匯總等,以滿足大多數常見的分析需求,在這方面,一些實時性需求會用到EMC的GreenPlum、Oracle的Exadata,以及基於MySQL的列式存儲Infobright等,而一些批處理,或者基於半結構化數據的需求可以使用Hadoop。數據的統計分析方法也很多,如假設檢驗、顯著性檢驗、差異分析、相關分析、T檢驗、方差分析、卡方分析、偏相關分析、距離分析、回歸分析、簡單回歸分析、多元回歸分析、逐步回歸、回歸預測與殘差分析、嶺回歸、logistic回歸分析、曲線估計、因子分析、聚類分析、主成分分析、因子分析、快速聚類法與聚類法、判別分析、對應分析、多元對應分析(最優尺度分析)、bootstrap技術等等。在統計與分析這部分,主要特點和挑戰是分析涉及的數據量大,其對系統資源,特別是I/O會有極大的佔用。
第四步:價值挖掘
與前面統計和分析過程不同的是,數據挖掘一般沒有什麼預先設定好的主題,主要是在現有數據上面進行基於各種演算法的計算,從而起到預測的效果,從而實現一些高級別數據分析的需求。比較典型演算法有用於聚類的Kmeans、用於統計學習的SVM和用於分類的NaiveBayes,主要使用的工具有Hadoop的Mahout等。該過程的特點和挑戰主要是用於挖掘的演算法很復雜,並且計算涉及的數據量和計算量都很大,常用數據挖掘演算法都以單線程為主。
總結
為了得到更加精確的結果,在大數據分析的過程要求企業相關的業務規則都是已經確定好的,這些業務規則可以幫助數據分析員評估他們的工作復雜性,對了應對這些數據的復雜性,將數據進行分析得出有價值的結果,才能更好的實施。制定好了相關的業務規則之後,數據分析員需要對這些數據進行分析輸出,因為很多時候,這些數據結果都是為了更好的進行查詢以及用在下一步的決策當中使用,如果項目管理團隊的人員和數據分析員以及相關的業務部門沒有進行很好的溝通,就會導致許多項目需要不斷地重復和重建。最後,由於分析平台會長期使用,但決策層的需求是變化的,隨著企業的發展,會有很多的新的問題出現,數據分析員的數據分析也要及時的進行更新,現在的很多數據分析軟體創新的主要方面也是關於對數據的需求變化部分,可以保持數據分析結果的持續價值。

『捌』 如何進行大數據分析及處理

探碼科技大數據分析及處理過程


聚雲化雨的處理方式

『玖』 powerbi在大數據審計中應用的優點

powerbi在大數據審計中應用的優點有:
1、可快速處理大早薯喊數據,實現審計數據分析全覆蓋,由於PowerBI採用新的算手嘩法和數據存儲方式,其處理數據量的多少只取決於計算機內存的大小,並且運算速度快,使得審計人員可以對大數據進行全面分析,彌補審計抽樣的缺憾。
2、可快速實現數據可視化,應用PowerBI可快速實現數據的可視化,從視覺上直觀地呈現數據分析結果,並實現數、表間的聯動。
3、建立的分析工具可重復使用,使用PowerBI對數據進行分析後會形成pbix文件,這個文件可作為以後對此類問題進行數據分析的工具。在分析新的相同類型數據時,審計人員只需在pbix文件中替換相同格式的數據源,刷新即可得到分析結果,極大地提高了工作效率陸野。

閱讀全文

與powerb對大數據的處理與分析相關的資料

熱點內容
統計db2資料庫表的大小寫 瀏覽:382
project2003使用教程 瀏覽:819
編程什麼水平才能在猿急送上接單 瀏覽:356
電信卡免費流量的app有哪些 瀏覽:176
桂林市地形cad文件 瀏覽:536
為什麼網路突然全部消失 瀏覽:373
iphone怎樣安裝軟體 瀏覽:189
租婚車去哪個網站 瀏覽:519
linux批量修改文件許可權 瀏覽:911
初學者學習編程語言從什麼開始學 瀏覽:662
招商銀行信用卡買蘋果 瀏覽:200
streamsh頭文件在那邊找 瀏覽:395
蘋果7p怎麼看激活日期 瀏覽:600
汽車編程是什麼工作 瀏覽:152
電腦顯示找不到文件無法刪除 瀏覽:164
叉叉模擬器下載的文件在哪 瀏覽:764
網路攝像頭中up是什麼意思 瀏覽:152
除了晉江還有什麼網站有好文 瀏覽:771
蘋果ipaimini系統更新密碼 瀏覽:123
linux下如何debug 瀏覽:65

友情鏈接