㈠ 大數據挖掘的三個關鍵
大數據挖掘的三個關鍵:首先是大數據,即海量數據,他相當於土地資源、礦產資源,含有豐富的信息、價值,重點在於其來源、領域,不同的採集方式、採集來源含的信息和方向不同,同時他還涉及標准和存儲;其次是思維,即分析數據的思路,包括模式、方向和創新等;第三是技術,即處理數據的技術,是數據處理的手段,包括演算法、算力、建模.每個時期他們的價值不同,大數據發展的初期思維和技術的價值大;發展的中期,三者同等重要;發展的成熟期,數據的價值更大。
㈡ 挖掘大數據蘊含的大價值
挖掘大數據蘊含的大價值
近日通過的《關於促進大數據發展的行動綱要》,標志著大數據在我國的發展與應用已經上升到國家戰略層面。筆者認為,要使《行動綱要》中的內容盡快成為促進大數據發展和推進大數據應用的實際行動,需要從以下3個方面入手。
首先,在政府序列中明確大數據的牽頭責任單位,並要求政府各主管部門制定大數據發展規劃。說到底,大數據主要來源於部門行政記錄數據、企業單位生產經營數據和互聯網上生成的數據。目前,工信部負責信息化建設,網信辦負責互聯網管理,發改委負責發展規劃的制定,統計局擁有大量動態統計數據,諸多政府部門如海關、工商、稅務、質監等部門都擁有基於自身管理記錄產生的數據。因此,這就需要明確一個牽頭單位,負責協調各部門的具體職責與分工,制定和執行統一的發展規劃,把握大數據應用在整體上及各個領域的推進情況;同時,也需要各政府職能部門依據大數據發展與應用大勢,結合本領域的業務特點,制定大數據在本領域的詳細發展與應用規劃。
其次,積極推動相關法律法規的制定與完善,推動和促進數據的開放與國家秘密、個人隱私的保護。也就是說,應在積極開展調研、廣泛徵求各方意見的基礎上,制定完善與大數據發展應用有關的法律法規,兼顧兩個方面的工作。
一方面,要以立法形式要求各級政府部門和大數據企業開放並提供數據。目前,除政府統計部門以官網、微博、微信、年鑒、發布會等形式定期發布詳盡的分組數據外,多數政府職能部門只是適時提供一些綜合及簡單分組數據,各大數據企業也僅僅會發布一些成型的大數據產品。因此,應通過完善立法,要求各政府部門實現信息共享,並定期發布詳盡分組數據;要求大數據企業依法向政府統計部門提供生產經營中形成的基礎數據,包括第三方數據。
另一方面,要通過立法和執法,嚴格保護企業秘密和公民隱私。具體來說,就是要明確保護的內容和范圍,制定違反規定、泄露企業秘密和公民隱私的處罰條款。無論是政府機關還是大數據企業,違反規定都要依法嚴肅查處,通過嚴格執法震懾違法行為。
再次,加快啟動大數據標准體系的研究和對接工作,為推進大數據應用奠定基礎。大數據蘊含著大價值,但無論是政府部門的行政記錄,還是企業單位電子化的生產經營記錄,不同的大數據產品依照的都是本部門或本單位的標准。分類不一致,編碼不一致,口徑范圍不一致,影響著大數據的應用與整合。因此,必須盡快啟動和加強大數據標准體系的研究,由相關部門牽頭,以現行標准為基礎,充分考慮大數據的特點,統一研究並制定大數據代碼標准、分類標准、技術標准。在應用大數據時,特別是對那些可以成為政府統計數據來源第二渠道的大數據,建議在分析出其與統一標准差異的基礎上,實現向統一標準的轉換。
以上是小編為大家分享的關於挖掘大數據蘊含的大價值的相關內容,更多信息可以關注環球青藤分享更多干貨
㈢ 大數據時代,企業數據蘊藏著的商業價值
如今大數據早已不再是什麼新鮮詞,它已經被大眾熟悉,可以稱作是移動互聯時代流動的黃金。
據《大數據產業發展前景與投資戰略規劃分析報告》(前瞻產業研究院發布)數據統計顯示,中國大數據產業在2017年達到4700億元的規模,同比增長30%,預計到2020年,中國大數據市場產值將突破萬億。隨著大數據市場的快速發展,企業決策人員越來越重視對大數據的利用,如何藉助大數據讓企業快速成長也成為了人們的關注重點。
大數據挖掘商業價值的方法主要分為四種:
客戶群體細分 ,然後為每個群體量定製特別的服務。
模擬現實環境 ,發掘新的需求同時提高投資的回報率。
加強部門聯系 ,提高整條管理鏈條和產業鏈條的效率。
降低服務成本 ,發現隱藏線索進行產品和服務的創新。
對於企業來說,100條理論確實不如一個成功的標桿有實踐意義,從亞馬遜、Facebook、谷歌、LinkedIn,到騰訊、阿里、網路,都因其擁有大量的用戶注冊和運營信息,成為天然的大數據公司。
如果全球哪家公司從大數據發掘出了最大價值,截至目前,答案可能非亞馬遜莫屬。
亞馬遜也要處理海量數據,這些交易數據的直接價值更大。作為一家「信息公司」(而非國內許多電商自己定位的「零售公司」),亞馬遜不僅從每個用戶的購買行為中獲得信息,還將每個用戶在其網站上的所有行為都記錄下來:頁面停留時間、用戶是否查看評論、每個搜索的關鍵詞、瀏覽的商品等等。這種對數據價值的高度敏感和重視,以及強大的挖掘能力,使得亞馬遜早已遠遠超出了它的傳統運營方式。
亞馬遜CTO Werner Vogels早期在CeBIT上關於大數據的演講,向與會者描述了亞馬遜在大數據時代的商業藍圖。
長期以來,亞馬遜一直通過大數據分析,嘗試定位客戶和和獲取客戶反饋。「在此過程中,你會發現數據越大,結果越好。為什麼有的企業在商業上不斷犯錯?那是因為他們沒有足夠的數據對運營和決策提供支持,」Vogels說, 「一旦進入大數據的世界,企業的手中將握有無限可能。」 從支撐新興技術企業的基礎設施到消費內容的移動設備,亞馬遜的觸角已觸及到更為廣闊的領域。
推薦: 亞馬遜的各個業務環節都離不開「數據驅動」的身影。在亞馬遜上買過東西的朋友可能對它的推薦功能都很熟悉,「買過X商品的人,也同時買過Y商品」的推薦功能看上去很簡單,卻非常有效,同時這些精準推薦結果的得出過程也非常復雜。
預測: 用戶需求預測(Demand Forecasting)是通過歷史數據來預測用戶未來的需求。對於書、手機、家電這些東西——亞馬遜內部叫硬需求(Hard Line)的產品,你可以認為是「標品」(但也不一定)——預測是比較準的,甚至可以預測到相關產品屬性的需求。但是對於服裝這樣軟需求(Soft Line)產品,亞馬遜幹了十多年都沒有辦法預測得很好,因為這類東西受到的干擾因素太多了,比如:用戶的對顏色款式的喜好,穿上去合不合身,愛人朋友喜不喜歡…… 這類東西太易變,買得人多反而會賣不好,所以需要更為復雜的預測模型。
測試: 你會認為亞馬遜網站上的某段頁面文字只是碰巧出現的嗎?其實,亞馬遜會在網站上持續不斷地測試新的設計方案,從而找出轉化率最高的方案。整個網站的布局、字體大小、顏色、按鈕以及其他所有的設計,其實都是在多次審慎測試後的最優結果。
記錄: 亞馬遜的移動應用讓用戶有一個流暢的無處不在的體驗的同時,也通過收集手機上的數據深入地了解了每個用戶的喜好信息;更值得一提的是Kindle Fire,內嵌的Silk瀏覽器可以將用戶的行為數據一一記錄下來。
以數據為導向的方法並不僅限於以上領域。對於亞馬遜來說,大數據意味著大銷售量。數據顯示出什麼是有效的、什麼是無效的,新的商業投資項目必須要有數據的支撐。 對數據的長期專注讓亞馬遜能夠以更低的售價提供更好的服務。
還有一個很典型的案例,就是幾年伴隨社區營銷火氣來的小紅書。
和其他電商平台不同,小紅書是從社區起家 。2016年初,小紅書將人工運營內容改成了機器分發的形式。通過大數據和人工智慧,將社區中的內容精準匹配給對它感興趣的用戶,從而提升用戶體驗。
如今的小紅書,已經不是簡單的社交分享了,更多的是基於後台的大數據分析和智能推送,最終形成了良好的正向閉環反饋。
通過以上兩個大數據服務案例,我們不難看出數據團隊其實是一個獨立性很強的團隊,因為他們需要完成的事情很多,這其中包含從數據源開始到數據的輸出。對研發而言,他們相當於紀檢委,需要組織協調數據的周轉,實現對數據的監控,同時也要配合研發完成一些數據聚合挖掘累開發。對業務而言,他們相當於研發,因為他們需要輸出報表和相應的產品,所以如何構建一個高效的數據團隊,對很多企業來說一直在探索,感覺隔霧看花,捉摸不清。
一個企業想要自主研發一個數據平台,創建一個數據分析團隊,會是一個很龐大的工程量。企業數據的類型大致可分為三類:
傳統企業數據: 包括CRM systems的消費者數據,傳統的ERP數據,庫存數據以及賬目數據等。
機器和感測器數據: 包括呼叫記錄,智能儀表,工業設備感測器,交易數據等。
社交數據: 包括用戶行為記錄,反饋數據等。如微博、微信這樣的社交媒體平台。
從理論上來看,大部分企業都會從大數據的發展中受益。但由於數據缺乏以及從業人員本身的原因,對於中小型的初創企業來說,獨自開發的成本太高了。而有財力的傳統企業呢,也產生了大量的數據,但是數據源很亂,也沒有統一的存儲方式,更別說研發了。即使招人來做數據分析,也不知道從何下手。該怎麼辦呢?
其實,數據的價值就是從獲取數據,存儲,加工到挖掘分析,最終實現可視化,輔助商業決策。想真正去應用在企業的流程中,多少要依賴於專業的工具或平台,歸雲智能打造的大數據系統解決方案,可以幫助傳統企業完成數據化,智能化的升級改造。幫助企業建立穩定高效的運營機制,推動企業實現降本增效和業務的高速發展。
通過新興的智能技術,企業可以有新的視野,探索更寬廣的商業模式,實現最大的商業價值。產品部署使用方便,中小企業可以使用歸雲智能提供的雲服務,大型企業可以選擇私有化部署到自己的伺服器。 感興趣的總們可以訪問官網: http://www.guiyum.com ,了解詳情。
㈣ 如何通過數據分析挖掘數據價值
【導讀】隨著科技的高速開展,數據在人們生活和決議計劃中所佔的比重越來越大,大數據的熱浪已然覆蓋了整個時代。大數據一直在活躍賦能很多工業,包括金融、醫療、農業、教育等。那麼,如何經過數據剖析發掘數據價值呢?今日就跟隨小編一起來了解下吧!
無論是在政務范疇仍是商業范疇,依賴於大數據技能的數據剖析總是為行業提供決議計劃支撐。因為大數據是從量變到質變的過程,加之數據被廣泛發掘,決議計劃根據的信息完整性越來越高,根據信息的理性決議計劃要高於以往拍腦袋的盲目決議計劃。
微觀層面中,大數據使得經濟決議計劃部分可以愈加敏銳的掌握經濟走向,並制定實施科學的經濟決議計劃;在微觀層面中,大數據可以進步企業經營決議計劃水平緩效率,推進立異,給企業以及所在的行業范疇帶來價值。
大數據不光要有數據,還要精分跟相應的行業相結合,產生幫助企業實際運營的產品,這樣數據才有價值。若想依託大數據把脈企業經營現狀,猜測行業開展趨勢,就需要不斷對數據源進行有用的挑選、清洗,做到精準剖析,不然得到的成果有可能是南轅北轍,於商業無益。
需要經過數據剖析,對數據來歷進行全方位挑選、清洗,同時打通各行業、各范疇的數據孤島,實現數據的整合、有用剖析,最大化數據剖析成果的精準度。經過對數據收集、傳輸、挑選、清洗、交融、剖析、計算及可視化使用等,高效整合線上線下數據,進行深層次、廣范圍的數據關聯剖析,解決企業全方位數據剖析問題,降低數據剖析本錢,助力企業深度發掘數據價值。
數據剖析的中心作業是人對數據目標的剖析、考慮和解讀,人腦所能承載的數據量是極端有限的。所以,無論是「傳統數據剖析」,仍是「大數據剖析」,均需要將原始數據依照剖析思路進行計算處理,得到概要性的計算成果供人剖析。兩者在這個過程中是相似的,區別僅僅原始數據量巨細所導致處理方式的不同。
以上就是小編今天給大家整理分享關於「如何通過數據分析挖掘數據價值?」的相關內容希望對大家有所幫助。小編認為要想在大數據行業有所建樹,需要考取部分含金量高的數據分析師證書,這樣更有核心競爭力與競爭資本。
㈤ 大數據挖掘主要涉及哪些技術
1、數據科學與大數據技術
本科專業,簡稱數據科學或大數據。
2、大數據技術與應用回
高職院校專業。
相關專業名答稱:大數據管理與應用、大數據採集與應用等。
大數據專業強調交叉學科特點,以大數據分析為核心,以統計學、計算機科學和數學為三大基礎支撐性學科,培養面向多層次應用需求的復合型人才。
㈥ 數據挖掘中數據存儲的重要性
隨著互聯網的蓬勃興起,物聯網,雲計算,大數據,人工智慧在大眾視野出現的越來越頻繁了橘告。
雲計算相當於人的大腦,是物聯網的神經中樞。雲計算是基於互聯網的相關服務的增加、使用和交付模式,通常涉及通過互聯網來提供動態易擴展且經常是虛擬化的資源。
大數據相當於人的大腦從小學到大學記憶和存儲的海量知識,這些知識只有通過消化,吸收、再造才能創造出更大的價值。
人工智慧打個比喻為一個人吸收了人類大量的知識(數據),不斷的深度學習、進化成為一方高人。人工智慧離不開大數據,更是基於雲計算平台完成深度學習進化。
而物聯網是互聯網的應用拓展,類似以前的「互聯網+」,也就是結合互聯網的業務和應用,核心是以用戶體驗為核心的應用創新。
我們主要講一下其中的「大數據」。
大數據的定義
在 2001 年左右,Gartner 就大數據提出了如下定義(目前仍是關於大數據的權威解釋):大數據指高速 (Velocity) 涌現的大量 (Volume) 的多樣化 (Variety) 數據。這一定義表明大數據具有 3V 特性。
簡而言之,大數據指越來越龐大、越來越復雜的數據集,特別是來自全新數據源的數據集,其規模之大令傳統數據處理軟體束手無策,卻能幫助我們解決以往非常棘手的業務難題。
大數據的價值和真實性
在過去幾年裡,大數據的定義又新增加了兩個 "V":價值 (Value) 和 真實性 (Veracity)。
首先,數據固然蘊含著價值,但是如果不通過適當方法將其價值挖掘出來,數據就毫無用處。其次,只有真實、可靠的數據才有意義。
如今,大數據已成為一種資本,全球各個大型技術公司無不基於大數據工作原理,在各種大數據用例中通過持續分析數據提高運營效率,促進新產品研發,他們所創圓慶明造的大部分價值無不來自於他們掌握的數據。
目前,眾多前沿技術突破令數據存儲和計算成本呈指數級下降。相比過去,企業能夠以更低的經濟投入更輕松地存儲更多數據,而憑借經濟、易於訪問的海量大數據,您可以輕松做出更准確、更精準的業務決策。
然而,從大數據工作原理角度來講,大數據價值挖掘是一個完整的探索過程而不僅僅是數據分析,它需要富有洞察力的分析師、業務用戶和管理人員在大數據用例中有針對性地提出有效問題、識別數據模式、提出合理假設並准確開展行為預測。
大數據的歷史
雖然大數據這個概念是最近才提出的,但大型數據集的起源卻可追溯至 1960 - 70 年代。當時數據世界正處於萌芽階段,全球第一批數據中心和首個關系資料庫便是在那個時代出現的。
2005 年左右,人們開始意識到用戶在使用 Facebook、YouTube 以及其他在線服務時生成了海量數據。同一年,專為存儲和分析大型數據集而開發的開源框架 Hadoop 問世,NoSQL 也在同一時期開始慢慢普及開來。
Hadoop 及後來 Spark 等開源框架的問世對於大數據的發展具有重要意義,正是它們降低了數據存儲成本,讓大數據更易於使用。在隨後幾年裡,大數據數量進一步呈爆炸式增長。時至今日,全世界的「用戶」— 不僅有人,還有機器 — 仍在持續生成海量數據。
隨著物聯網 (IoT) 的興起,如今越來越差則多的設備接入了互聯網,它們大量收集客戶的使用模式和產品性能數據,而機器學習的出現也進一步加速了數據量的增長。
然而,盡管已經出現了很長一段時間,人們對大數據的利用才剛剛開始。今天,雲計算進一步釋放了大數據的潛力,通過提供真正的彈性 / 可擴展性,它讓開發人員能夠輕松啟動 Ad Hoc 集群來測試數據子集。
大數據和數據分析的優勢:
1.大數據意味著更多信息,可為您提供更全面的洞察。
2.更全面的洞察意味著更高的可靠性,有助於您開發全新解決方案。
其次,大數據還具有大量、高速、多樣化、密度低四大特性。
大量性:大數據與傳統數據最大的差異在於資料量,資料量遠大於傳統數據,例如抖音數據流、網路點擊流,面對的是海量低密度的數據,大數據的數據量通常高達數十PB。也因為資料量大,無法以傳統的方式儲存處理,因此衍生出大數據這一新興科學。
高速性:大數據與傳統數據最大的不同點,就是生成速度快。由於網際網路興起與資訊設備普及,以用戶突破20億人的臉書為例,如果每個用戶每天發一條消息,就會有20億筆資料。每一個人隨時隨地都可以創造數據,數據生成的速度已非過去可比擬。
多樣性:多樣化是指可用的數據類型眾多,隨著大數據的興起,文本、音頻和視頻等數據類型不斷涌現,它們需要經過額外的預處理操作才能真正提供洞察和支持性元數據。由於形式多元復雜,大數據儲存也需要不同於傳統數據的儲存技術。
密度低:數據價值密度相對較低,隨著互聯網以及物聯網的廣泛應用,信息感知無處不在,信息海量,但價值密度較低。以視頻為例,一小時的視頻,在不間斷的監控過程中,可能有用的數據僅僅只有一兩秒。
大數據的挑戰
1.安全挑戰
盡管大數據由於應用范圍廣泛,已成為各領域的發展趨勢,但數據的公布有時會伴隨使用者隱私的曝光,比如FaceBook資料外泄、Google+個人外泄風波等因數據外泄而引發隱私問題的事件層出不窮。用戶的哪些數據是可以獲取、哪些是不允許讀取,始終存在侵犯用戶隱私的法律風險。
2..技術創新
大數據需要從底層晶元到基礎軟體再到應用分析軟體等信息產業全產業鏈的支撐,無論是新型計算平台、分布式計算架構,還是大數據處理、分析和呈現方面與國外均存在較大差距,對開源技術和相關生態系統的影響力仍然較弱,總體上難以滿足各行各業大數據應用需求。
3.成本過高
運營商需要處理的數據量巨大,基本都是以PB為單位,處理這些數據需要巨大的投入。
4.實時性
具有實時性的數據才有價值,存儲的數據數據時間越長,數據的價值就越低。在如今這個快節奏的社會,每一天的市場都瞬息萬變,品牌商通過大數據分析用戶的需求,如果得到的用戶數據太過陳舊,參考這些數據來規劃產品的方向,可能會對企業的發展造成毀滅性的打擊。
無論哪個行業,想要在當今的形勢下取得成功,都必須能夠不斷地從數據中挖掘業務價值,因此數據的保護離不開存儲器,當下市面上用於大數據的存儲器主要有固態硬碟,混合硬碟,傳統硬碟。
固態硬碟(SSD),由控制單元和存儲單元,組成。固態硬碟的介面規格、定義、功能和用途與普通硬碟相同,形狀和尺寸也與普通硬碟相同。廣泛應用於軍事、車輛、工業控制、視頻監控、網路監控、網路終端、電力、醫療、航空、導航設備等領域。
優點:讀寫速度快;震動;低功耗。無噪音;工作溫度范圍廣;缺點:容量小;壽命有限;價格高。
混合硬碟是一種由傳統硬碟和快閃記憶體模塊組成的大容量存儲設備。快閃記憶體處理存儲器中最常寫入或恢復的數據。許多公司都在提供不同的技術,他們希望這些技術能在高端系統中流行起來,特別是筆記本電腦和掌上電腦。
與傳統硬碟相比,混合硬碟具有許多優勢:更快的數據存儲和恢復應用程序,如文字處理器;縮短系統啟動時間;降低功耗;減少熱量產生;延長硬碟壽命;筆記本電腦和筆記本電腦電池壽命;降低噪音水平:
傳統硬碟指的是機械硬碟(HDD),電腦最基本的內存,我們常說電腦硬碟C盤,D盤是磁碟分區,屬於硬碟。目前普通硬碟的容量有80G、128g、160g、256g、320g、500g、750g、1TB、2TB等,按容量可分為3.5英寸、2.5英寸、1.8英寸、5400rpm/7200rpm/10000rpm等。
通過物聯網產生、收集海量的數據存儲於雲平台,再通過大數據分析,甚至更高形式的人工智慧為人類的生產活動,生活所需提供更好的服務,這一切所產生的數據承載者——存儲器,在第四次工業革命進化的方向中,存儲行業也將是一顆亮眼的星。
㈦ 大數據挖掘商業價值的方法包括哪些
1、對顧客群體細分,然後對每個群體量體裁衣般的採取獨特的行動。
2、運內用大數據模擬實容境,發掘新的需求和提高投入的回報率。
3、提高大數據成果在各相關部門的分享程度,提高整個管理鏈條和產業鏈條的投入回報率。
4、進行商業模式,產品和服務的創新。
㈧ 大數據挖掘商業價值的方法包括哪些
1、對顧客群體細分,然後對每個群體量體租宴談裁衣般的採取獨特的行動。x0dx0a 2、運用大數據模擬實境,弊碰發掘祥正新的需求和提高投入的回報率。x0dx0a 3、提高大數據成果在各相關部門的分享程度,提高整個管理鏈條和產業鏈條的投入回報率。x0dx0a 4、進行商業模式,產品和服務的創新。
㈨ 大數據價值挖掘的三要素
大數據價值挖掘的三要素
如何充分利用大數據,挖掘大數據的商業價值,從而提升企業的競爭力,已經成為企業關注的一個焦點。
全面解決方案才能奏效
當前,越來越多企業將大數據的分析結果作為其判斷未來發展的依據。同時,傳統的商業預測邏輯正日益被新的大數據預測所取代。但是,我們要謹慎管理大家對大數據的期望值,因為海量數據只有在得到有效治理的前提下才能進一步發展其業務價值。
最廣為人知的大數據定義是Gartner給出的大數據的3V特性:巨大的數據量(Volume)、數據的快速處理(Velocity)、多變的數據結構和類型(Variety)。根據這一定義,大家首先想到的是IT系統中一直難以處理卻又不容忽視的非結構化數據。也就是說,大數據不僅要處理好交易型數據的分析,還把社交媒體、電子商務、決策支持等信息都融入進來。現在,分布式處理技術Hadoop和NoSQL已經能對非結構化數據進行存儲、處理、分析和挖掘,但未能為滿足客戶的大數據需求提供一個全面的解決方案。
事實上,普遍意義上的大數據范圍更加廣泛,任何涉及海量數據及多數據源的復雜計算,均屬大數據范疇,而不僅局限於非結構化數據。因此,諸如電信運營商所擁有的巨量用戶的各類詳細數據、手機開關機信息、手機在網注冊信息、手機通話計費信息、手機上網詳細日誌信息、用戶漫遊信息、用戶訂閱服務信息和用戶基礎服務信息等,均可劃歸為大數據。
與幾年前興起的雲計算相比,大數據實現其業務價值所要走的路或許更為長遠。但是企業用戶已經迫不及待,越來越多企業高層傾向於將大數據分析結果作為其商業決策的重要依據。在這種背景下,我們必須找到一種全面的大數據解決方案,不僅要解決非結構化數據的處理問題,還要將功能擴展到海量數據的存儲、大數據的分布式採集和交換、海量數據的實時快速訪問、統計分析與挖掘和商務智能分析等。
典型的大數據解決方案應該是具有多種能力的平台化解決方案,這些能力包括結構化數據的存儲、計算、分析和挖掘,多結構化數據的存儲、加工和處理,以及大數據的商務智能分析。這種解決方案在技術應具有以下四個特性:軟硬集成化的大數據處理、全結構化數據處理的能力、大規模內存計算的能力、超高網路速度的訪問。
軟硬體集成是必然選擇
我們認為,大數據解決方案的關鍵在於如何處理好大規模數據計算。過去,傳統的前端資料庫伺服器、後端大存儲的架構難以有效存儲大規模數據並保持高性能數據處理。這時候,我們讓軟體和硬體更有效地集成起來進行更緊密的協作。也就是說,我們需要軟硬一體化的專門設備來應對大數據的挑戰。
一直以來,甲骨文公司在傳統的關系型資料庫領域佔有絕對優勢,但並未因此固步自封。面對大數據熱潮,甲骨文公司根據用戶的需求不斷推陳出新,將在數據領域的優勢從傳統的關系型資料庫擴展到全面的大數據解決方案,成為業界首個通過全面的、軟硬體集成的產品來滿足企業關鍵大數據需求的公司。
甲骨文公司以軟硬體集成的方式提供大數據的捕獲、組織、分析和決策的所有能力,為企業提供完整的集成化大數據解決方案,其中的核心產品包括Oracle大數據機、Exalytics商務智能雲伺服器和OracleExadata資料庫雲伺服器。
Oracle大數據機用於多結構化大數據處理,旨在簡化大數據項目的實施與管理,其數據加工結果可以通過超高帶寬的InfiniBand網路連接到OracleExadata資料庫雲伺服器中。OracleExadata可提供高效數據存儲和計算能力,配備超大容量的內存和快速快閃記憶體,配合特有的軟硬體優化技術,可對大數據進行高效的加工、分析和挖掘。同時,甲骨文公司在OracleExadata以及資料庫軟體層面提供了非常高效和便捷的高級數據分析軟體,使數據能夠更快、更高效地得到分析、挖掘和處理。
通過Oracle大數據機快速獲得、組織大數據之後,企業還要根據對大數據全面、實時的分析結果做出科學的業務決策。OracleExalytics商務智能雲伺服器能以前所未有的速度運行數據分析應用,為客戶提供實時、快速的可視分析。同樣,它通過InfiniBand網路連接到OracleExadata上進行數據載入和讀取,讓大數據直接在內存中快速計算,滿足大數據時代對數據分析展現的快速響應需求。OracleExalytics實現了新型分析應用,可用於異構IT環境,能存取和分析來自任何Oracle或非Oracle的關系型數據、OLAP或非結構化數據源的數據。
Oracle大數據機、OracleExalytics商務智能雲伺服器和OracleExadata資料庫雲伺服器一起,組成了甲骨文最廣泛、高度集成化系統產品組合,為企業提供了一個端到端的大數據解決方案,滿足企業對大數據治理的所有需求。
堅持開放的戰略
從當前的情況來看,在大數據應用領域,僅靠一家廠商的產品難以解決所有問題。因此對於大數據解決方案供應商來說,採用開放的策略是必然選擇。甲骨文公司堅持全面、開放、集成的產品策略。這一策略在大數據領域同樣適用。
這首先體現在大數據戰略在技術上支持Hadoop和開源軟體。除了集成化產品,甲骨文公司還擁有一系列領先技術,以幫助用戶全面應對大數據應用的挑戰,其中包括OracleNoSQL資料庫,以及針對Hadoop架構的系列產品。
OracleNoSQL資料庫專門為管理海量數據而設計,可以幫助企業存取非結構化數據,並可橫向擴展至數百個高可用性節點。同時,該產品能夠提供可預測的吞吐量和延遲時間,而且更加容易安裝、配置和管理,支持廣泛的工作負載。
而專門針對Hadoop架構的產品,能夠幫助企業應對在組織和提取大數據方面所面臨的挑戰,包括Oracle數據集成Hadoop應用適配器、OracleHadoop裝載器以及OracleSQL Connector等。
此外,OracleR Enterprise實現了R開源統計環境與Oracle資料庫11g的集成,為進行更進一步的數據分析提供了一個企業就緒的、深度集成的環境。
值得一提的是,除對產品和解決方案不斷投入,甲骨文公司還致力於和合作夥伴合作開發大數據解決方案。目前,幾乎所有的甲骨文合作夥伴都在關注和測試大數據解決方案。甲骨文公司正積極尋找更多本地合作夥伴,為客戶提供更加定製化的產品和解決方案。
總而言之,大數據已經和雲計算、社交化、移動化一起,成為現階段驅動企業IT模式變革的重要因素。Oracle大數據解決方案可以橫跨IT架構的所有層面,與其他產品進行創新集成,並憑借卓越的可靠性、可擴展性和可管理性,為企業的IT發展,甚至業務發展提供理想的IT基礎支持。
㈩ 大數據挖掘方法有哪些
謝邀。
大數據挖掘的方法:
神經網路方法
神經網路由於本身良好的魯棒性、自組織自適應性、並行處理、分布存儲和高度容錯等特性非常適合解決數據挖掘的問題,因此近年來越來越受到人們的關注。
遺傳演算法
遺傳演算法是一種基於生物自然選擇與遺傳機理的隨機搜索演算法,是一種仿生全局優化方法。遺傳演算法具有的隱含並行性、易於和其它模型結合等性質使得它在數據挖掘中被加以應用。
決策樹方法
決策樹是一種常用於預測模型的演算法,它通過將大量數據有目的分類,從中找到一些有價值的,潛在的信息。它的主要優點是描述簡單,分類速度快,特別適合大規模的數據處理。
粗集方法
粗集理論是一種研究不精確、不確定知識的數學工具。粗集方法有幾個優點:不需要給出額外信息;簡化輸入信息的表達空間;演算法簡單,易於操作。粗集處理的對象是類似二維關系表的信息表。
覆蓋正例排斥反例方法
它是利用覆蓋所有正例、排斥所有反例的思想來尋找規則。首先在正例集合中任選一個種子,到反例集合中逐個比較。與欄位取值構成的選擇子相容則捨去,相反則保留。按此思想循環所有正例種子,將得到正例的規則(選擇子的合取式)。
統計分析方法
在資料庫欄位項之間存在兩種關系:函數關系和相關關系,對它們的分析可採用統計學方法,即利用統計學原理對資料庫中的信息進行分析。可進行常用統計、回歸分析、相關分析、差異分析等。
模糊集方法
即利用模糊集合理論對實際問題進行模糊評判、模糊決策、模糊模式識別和模糊聚類分析。系統的復雜性越高,模糊性越強,一般模糊集合理論是用隸屬度來刻畫模糊事物的亦此亦彼性的。