❶ 大數據的並行計算是意思呢
並行計算(Parallel Computing)是指在具有並行處理能力的計算節點上,將一個計算任務版分解成多個並行子任務,並分權配給不同的處理器,各個處理器之間相互協同,並行地執行子任務,從而達到加速計算速度或提升計算規模的目的。
❷ 大數據是什麼大數據和Hadoop之間有什麼聯系
大數據在近些年來越來越火熱,人們在提到大數據遇到了很多相關概念上的問題,比如雲計算、 Hadoop等等。那麼,大數據是什麼、Hadoop是什麼,大數據和Hadoop有什麼關系呢?
大數據概念早在1980年,著名未來學家阿爾文·托夫勒提出的概念。2009年美國互聯網數據中心證實大數據時代的來臨。隨著谷歌MapRece和 GoogleFile System (GFS)的發布,大數據不再僅用來描述大量的數據,還涵蓋了處理數據的速度。目前定義:大數據(big data),或稱巨量資料,指的是所涉及的資料量規模巨大到無法透過目前主流軟體工具在合理時間內獲取、管理、處理、並整理為幫助企業經營決策。
大數據目前分為四大塊:大數據技術、大數據工程、大數據科學和大數據應用。其中雲計算是屬於大數據技術的范疇,是一種通過Internet以服務 的方式提供動態可伸縮的虛擬化的資源的計算模式。那麼這種計算模式如何實現呢,Hadoop的來臨解決了這個問題,Hadoop是Apache(阿帕切) 的一個開源項目,它是一個對大量數據進行分布式處理的軟體架構,在這個架構下組織的成員HDFS(Hadoop分布式文件系統),MapRece、 Hbase 、Zookeeper(一個針對大型分布式系統的可靠協調系統),hive(基於Hadoop的一個數據倉庫工具)等。
1.雲計算屬於大數據中的大數據技術范疇。
2.雲計算包含大數據。
3.雲和大數據是兩個領域。
雲計算是指利用由大量計算節點構成的可動態調整的虛擬化計算資源,通過並行化和分布式計算技術,實現業務質量的可控的大數據處理的計算技術。而作為雲計算技術中的佼佼者,Hadoop以其低成本和高效率的特性贏得了市場的認可。Hadoop項目名稱來源於創立者Doung Cutting兒子的一個玩具,一頭黃色的大象。
Hadoop項目的目標是建立一個可擴展開源軟體框架,能夠對大數據進行可靠的分布式處理。
Hadoop的框架最核心的設計就是:HDFS和MapRece。HDFS為海量的數據提供了存儲,則MapRece為海量的數據提供了計算。HDFS是一個分布式文件系統,具有低成本、高可靠性性、高吞吐量的特點。MapRece是一個變成模型和軟體框架。
簡單理解,Hadoop是一個開源的大數據分析軟體,或者說編程模式。它是通過分布式的方式處理大數據的,因為開元的原因現在很多的企業或多或少的在運用hadoop的技術來解決一些大數據的問題,在數據倉庫方面hadoop是非常強大的。但在數據集市以及實時的分析展現層面,hadoop也有著明顯的不足,現在一個比較好的解決方案是架設hadoop的數據倉庫而數據集市以及實時分析展現層面使用永洪科技的大數據產品,能夠很好地解決hadoop的分時間長以及其他的問題。
Hadoop大數據技術案例
讓Hadoop和其他大數據技術如此引人注目的部分原因是,他們讓企業找到問題的答案,而在此之前他們甚至不知道問題是什麼。這可能會產生引出新產品的想法,或者幫助確定改善運營效率的方法。不過,也有一些已經明確的大數據用例,無論是互聯網巨頭如谷歌,Facebook和LinkedIn還是更多的傳統企業。它們包括:
情感分析: Hadoop與先進的文本分析工具結合,分析社會化媒體和社交網路發布的非結構化的文本,包括Tweets和Facebook,以確定用戶對特定公司,品牌或產品的情緒。分析既可以專注於宏觀層面的情緒,也可以細分到個人用戶的情緒。
風險建模: 財務公司、銀行等公司使用Hadoop和下一代數據倉庫分析大量交易數據,以確定金融資產的風險,模擬市場行為為潛在的「假設」方案做准備,並根據風險為潛在客戶打分。
欺詐檢測: 金融公司、零售商等使用大數據技術將客戶行為與歷史交易數據結合來檢測欺詐行為。例如,信用卡公司使用大數據技術識別可能的被盜卡的交易行為。
客戶流失分析: 企業使用Hadoop和大數據技術分析客戶行為數據並確定分析模型,該模型指出哪些客戶最有可能流向存在競爭關系的供應商或服務商。企業就能採取最有效的措施挽留欲流失客戶。
用戶體驗分析: 面向消費者的企業使用Hadoop和其他大數據技術將之前單一 客戶互動渠道(如呼叫中心,網上聊天,微博等)數據整合在一起, 以獲得對客戶體驗的完整視圖。這使企業能夠了解客戶交互渠道之間的相互影響,從而優化整個客戶生命周期的用戶體驗。
當然,上述這些都只是大數據用例的舉例。事實上,在所有企業中大數據最引人注目的用例可能尚未被發現。這就是大數據的希望。
❸ 求大數據分析技術
列一大堆沒用的。。。
大數據分析技術兩種理解: 一種是 大數據處理涉及到技術, 一種專是 數據挖掘技術
第一種就屬是數據處理流程: 也就是 數據採集 數據清洗 數據存儲 數據挖掘 結果可視化展示 技術。
第二種就是具體的數據挖掘演算法: 主要是 回歸 分類 關聯規則 聚類 異常檢測 這幾種
看你需要哪種?
❹ 大數據技術是什麼
大數據技升轎術是指大數據的應用技術,涵蓋各類大數據平台、大數據指數體系等大數據應用技術。大數據是指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合。是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。
大數據技術能夠處理比較大的數據量。其次,能對不同類型的數據進行處理。大數據技術不僅僅對一些大量的、簡單的數據能夠進行處理,通能夠處理一些復雜的數據,例如,文本數據、聲音數據以及圖像數據等等。
另外,大數據技術的應用具有密度低和價值大的效果。一些零散的,各種類型的數據,如果不能在短時間內分析出來信息所表達的含義,那麼可以利用大數據分析技術,將信息中潛藏的價值挖掘出來,以便於工作研究或者其他用途的使用,便於政務的便捷化和深層次化。
大數據技術有哪些
跨粒度計算(In-DatabaseComputing)
Z-Suite支持各種常見的匯總,還支持幾乎全部的專業統計函數。得益於跨粒度計算技術,Z-Suite數據分析引擎將找尋出最優化的計算方案,繼而把所有開銷較大的、昂貴的計算都移動到數據存儲的地方直接計算,我們稱之為庫內計算(In-Database)。這一技術大大減少了數據移動,降低了通訊負擔,保證了高性能數據分析。
並行計算(MPP Computing)
Z-Suite是基於MPP架構的商業智能平台,她能夠把計算分布到多個計算節點,再在指定節點將計算結果匯總輸出。Z-Suite能夠充分利用各種計算和存儲資源,不管是伺服器還是普通的PC,她對網路條件也沒有嚴苛的要求。作為橫向擴展的大數據平台,Z-Suite能夠充分發揮各個節點的計算能力,輕松實現針對TB/PB級數據分析的秒級響應。
列存儲 (Column-Based)
Z-Suite是列存儲的。基於列存儲的數據集市,不讀取無關數據,能降低讀寫開銷,同時提高I/O 的效率,從而大大提高查詢性能。另外,列存儲能夠更好地壓縮數據,一般壓縮比在5 -10倍之間,這樣一來,數據佔有空間降低到傳統存儲的1/5到1/10 。良好的數據壓縮技術,節省了存儲設備和內存的開銷,卻大大了提升計算性能。
內存計算
得益於列存儲技術和並行計算技術,Z-Suite能夠大大壓縮數據,並同時利用多個節點的計算能力和內存容量。一般地,內存訪問速度比磁碟訪問速度要快幾百倍甚至上千倍。通過內存計算,CPU直接從內存而非磁碟上讀取數據並對數據進行計算。內存計算是對傳統數據處理方式的一種加速,是實現大數據分析的關穗笑備鍵應用猜毀技術。
❺ 怎麼理解大數據中的節點
資料庫節點:
單節點就是資料庫軟體安裝在一台伺服器上。
雙節點就是資料庫軟體安裝在兩台伺服器上,可能是為高可用,或者負載均衡來考慮的,比如oracle 的RAC,一般就是雙節點。
多節點就是資料庫軟體安裝在多台伺服器上,這樣形成更大的集群,其中每一台安裝有資料庫軟體的伺服器就叫一個節點。
比較一下網路節點的概念,就清楚了:
每一台連上網路的計算機都是一個網路節點 。
整個網路就是由這許許多多的網路節點組成的。