A. 有什麼比較好的大數據入門的書推薦
1. 《大數據分析:點「數」成金》
你現在正坐在一座金礦上,這些金子或被埋於備份,或正藏在你眼前的數據集里,他們是提升公司效益、拓展新的商業關系、制定更直觀決策的秘訣所在,足以使你的企業更上一層樓。你將明白如何利用、分析和駕馭數據來獲得豐厚回報。作者Frank Ohlhorst厚積數十年的技術經驗寫了此書。該書介紹了如何將大數據應用於各行各業,你將了解到如何對數據進行挖掘,怎樣從數據中揭示趨勢並轉化為競爭策略及提取價值的方法。這些更有意思也是更有效的方法能夠提升企業的智能化水平,將有助於企業解決實際問題,提升利潤空間,提高生產率並發現更多的商業機會。
2.《大數據時代》
《大數據時代》是國外大數據系統研究的先河之作,本書作者維克托被譽為」大數據商業應用第一人」,擁有再哈佛大學、牛津大學和新加坡國立大學等多個互聯網研究重鎮任教經歷,早在2010年就在《經濟學人》上發布了長達14頁對大數據應用的前瞻性研究。該書主要講了大數據時代的變革、商業變革和管理變革。《大數據時代》認為大數據的核心就是預測。大數據為人類的生活創造了前所未有的可量化的維度。大數據已經成為了新發明和新服務的源泉,而更多的改變正蓄勢待發。
3.《雲端時代殺手級應用:大數據分析》
《雲端時代殺手級應用:大數據分析》分析了什麼是大數據、大數據大商機、技術與前瞻三個部分。第一個部分介紹大數據分析的概念,以及企業、政府部門可應用的范疇。什麼是大數據分析?與個人與企業有什麼關系?將對全球產業造成什麼樣的沖擊?第二部分完整介紹了大數據在各產業的應用實況,為企業及政府部門提供應用的方向。提供了全球各地的實際應用案例,涵蓋了零售、金融、政府部門、能源、製造、娛樂等各個行業,充分展示了大數據分析產生的效益。第三部分則簡單介紹了大數據分析所需要的技術及未來的發展趨勢,為讀者提供了應用與研究的方向。
4.《大數據》
本書通過講述美國半個多世紀信息開放、技術創新的歷史,以別開生面的經典案例奧巴馬建設」前所未有的開放政府「的雄心、公開財務透明的曲折。《數據質量法》背後隱情,全國醫改法案的波瀾、統一身份證的百年糾結以及雲計算、Facebook和推特等社交媒體等等,為您一一講解數據創新給社會帶來的種種變革和挑戰。
5.《大數據互聯網大規模數據挖掘與分布式處理》。
該書主要講的是海量數集數據挖掘常用的演算法。書中分析了海量數據集數據挖掘常用的演算法,介紹了目前WEB端應用的許多重要話題等。
B. 數據分析入門經典書籍推薦
1、《MySQL必知必會》
推薦理由:
這本書把SQL寫的非常簡單,SQL確實也很簡單,其實pandas就已可以實現很多數據管理的工作,而了解 SQL 的意義在於融入到實際的數據使用的場景。
比如企業的數據,多是以資料庫的形式存儲起來的,那麼如果你需要去調用你需要的那部分數據,那麼 SQL 就是必須的技能。如果你在最開始就想用公司的數據來練習,那麼你可以把這本書漏孫的閱讀放到最前面。
內容解析:
書中應該重點掌握的一些點:
SELECT語句:讓你能夠去提取你需要的那部分數據;
DELETE和UPDATE:知道怎麼實現數據的增、刪、改;
數據過濾:激纖where、and、or、通配符等過濾方式;
數據的匯總和分組、資料庫連接:應對更明搜仿加復雜的數據和相關聯的數據;
子查詢:查詢中的查詢。
2、《深入淺出統計學》
推薦理由:
把這本書放在第一順序,是因為它真的很簡單,非常非常基礎的統計書,適合任何一個沒有基礎的小白,文科生也能看懂,但是能夠讓你對數據分析的一些基本概念有大致的了解。
內容解析:
這本書包括:信息可視化、概率計算、幾何分布、二項分布及泊松分布、正態分布、統計抽樣、置信區 間的構建、假設檢驗、卡方分布、相關與回歸,所有知識點都有練習,讀起來輕松有趣。
另外,書中提到的一些案例,比如提升化妝品銷量、分析星巴克銷量、生產線最優解、網站ABtest、競品分析、薪資預測等等,看起來很簡單,但其實都是工作最常見的一些分析場景。這對數據思維的養成,非常有幫助。
總的來說,這本書很難讓你掌握數據分析技術,但它會大大降低你之後學習的一些阻力,過一遍即可。
C. 大數據新手入門的課程和書籍有什麼推薦
目前大數據的技術體系已經非常龐大了,初學者要根據自己的發展規運備閉劃來制定學習規劃,入門大數據的方式也要結合自己的知識基礎。
對於要進入IT互聯網行業從事大數據開發崗位的同學來說,入門大數據可以先從編程語言開始,接著學習大數據平台知識,然後結合大數據平台來完成場景開發實踐。在編程語言的選擇上,可以重點考慮一下java語言,相對於其他編程語言來說,目前Java崗位的人才需求量相對大一些。
對於要從事演算法崗的同學來說,入門大數據旁裂也可以分成三個階段,第一個階段是編程語言的學習,第二個階段是學習演算法基礎,這個階段需要學習一下統計學、機器學習相關知識,為後續奠定一個滾散基礎,第三個階段是結合場景來開展演算法實踐,這個階段也需要掌握大數據平台的相關知識。
如果僅僅想通過學習大數據技術來提升自己的數據力,本身並沒有從事大數據崗位的想法,那麼入門大數據可以從學習Python語言開始,然後進一步學習基於Python語言來完成數據分析,這個過程同樣要考慮到應用場景的問題,可以跟自己的專業方向相結合。
從整個大數據的技術體系結構來看,大數據技術涉及到數據採集、整理、存儲、分析、呈現、應用和安全等領域,這些領域都可以採用單獨學習的方式,比如既可以從數據採集開始學起,也可以從數據分析開始學起,但是不論從哪個領域開始學起,一定要重視與場景相結合,不能脫離場景來學習大數據技術。
最後,如果有學習大數據相關的問題,可以向我發起咨詢。
D. 市面上大數據的書不少,如果只挑一本,哪本值得推薦
市場上大數據的說不少,但是你要挑一本的話,其實我還是覺得你在網路上選擇一些自己可以公開的數據。因為每個人需要的每個程度的書是不一樣的,你可以選擇購買一些書的電子版本。電子版本反而比書籍會更好一點。
E. 0基礎自學大數據哪裡找視頻教材
零基礎想要學習大數據,講真,真的還是一件困難的事,不過人生就是這樣,只有你越過更大的困難,才知道自己會有更大的收獲。就像現在的大數據行業,人人都說大數據行業好,薪資高,但是你看到過每一個學習大數據的學生為此付出的慘痛經歷嗎?你看到過大數據工程師曾經日夜苦讀、鑽研書籍和教程嗎?付出不一定有回報,但不付出一定不會有回報,想要更大的收獲,先來收下這波大數據書籍和視頻教程吧!
一、大數據書籍推薦:
1、《為數據而生》
書中分別闡述在大數據1.0、大數據2.0和大數據3.0時代下,相對應的數據分析需要做到分析、外化、集成。
2、《智能時代》
這本書作者分七章從不同角度對大數據進行介紹,分別以技術和思維方式的改變為主線,從工業革命這個角度嵌入,順理成章的延伸出大數據與智能化,但是沒有將過多筆墨放在技術的深究上,而是選擇從應用層面體現大數據的理念。大數據應用則會滲透到各行各業,這正是作者的用心之處。
3、《R語言預測實戰》
R語言橫跨了金融、生物、醫學、互聯網等多個領域,主要用於統計、建模及可視化。由於上手快、效率高,備受技術人員青睞。預測是大數據挖掘的主要作用之一,藉助R語言來做大數據預測,可以兼具效率與價值於一身。
3、《數據之巔》
這本書中,從小數據時代到大數據的崛起,作者以宏大的歷史觀、文化觀、大數據觀,給我們描繪了一幅數據科學、智慧文化的全景圖。
4、《Hadoop權威指南》
《Hadoop權威指南(中文版)》從Hadoop的緣起開始,由淺入深,結合理論和實踐,全方位地介紹Hadoop這一高性能處理海量數據集的理想工具。
5、《Hive編程指南》
《Hive編程指南》是一本Apache Hive的編程指南,旨在介紹如何使用Hive的SQL方法HiveQL來匯總、查詢和分析存儲在Hadoop分布式文件系統上的大數據集合。
大數據視頻教程
對於零基礎想學大數據的同學,小編不建議你一上來就接觸大數據,你和大數據的近距離接觸還有一個門檻,那就是編程語言的學習,學習大數據的首要綱領,就是熟練掌握一門編程語言。小編咨詢了千鋒大數據講師,當前大數據所運用的編程語言基本都是java,也會涉及到Python、Scala編程語言,所以先從掌握一門編程語言學起吧!
java全套視頻教程總目錄
python最新基礎視頻教程
進行完大數據編程語言的學習,這時候你就可以真正的接觸大數據技術知識了,我們知道大數據以Hadoop、spark、storm等核心技術組成,自然也會以此為重點突破。
大數據教程:Spark基礎及源碼分析
大數據課程:hadoop生態圈視頻
F. 推薦一本關於大數據,數據分析類似的書籍
1、《Hadoop權威指南》
現在3.1版本剛剛發布,但官方並不推薦在生產環境使用。作為hadoop的入門書籍,從2.x版本開始也不失為良策。
本書從Hadoop的緣起開始,由淺入深,結合理論和實踐,全方位地介紹Hadoop這一高性能處理海量數據集的理想工具。剛剛更新的版本中,相比之前的版本增加了介紹YARN , Parquet , Flume, Crunch , Spark的章節,非常適合於Hadoop 初學者。
2、《Learning Spark》
《Spark 快速大數據分析》是一本為Spark 初學者准備的書,它沒有過多深入實現細節,而是更多關註上層用戶的具體用法。不過,本書絕不僅僅限於Spark 的用法,它對Spark 的核心概念和基本原理也有較為全面的介紹,讓讀者能夠知其然且知其所以然。
3、《Spark機器學習:核心技術與實踐》
以實踐方式助你掌握Spark機器學習技術。本書採用理論與大量實例相結合的方式幫助開發人員掌握使用Spark進行分析和實現機器學習演算法。通過這些示例和Spark在各種企業級系統中的應用,幫助讀者解鎖Spark機器學習演算法的復雜性,通過數據分析產生有價值的數據洞察力。
G. 怎樣進行大數據的入門級學習
記住學到這里可以作為你學大數據的一個節點。
Zookeeper:這是個萬金油,安裝Hadoop的HA的時候就會用到它,以後的Hbase也會用到它。它一般用來存放一些相互協作的信息,這些信息比較小一般不會超過1M,都是使用它的軟體對它有依賴,對於我們個人來講只需要把它安裝正確,讓它正常的run起來就可以了。
Mysql:我們學習完大數據的處理了,接下來學習學習小數據的處理工具mysql資料庫,因為一會裝hive的時候要用到,mysql需要掌握到什麼層度那?你能在linux上把它安裝好,運行起來,會配置簡單的許可權,修改root的密碼,創建資料庫。這里主要的是學習SQL的語法,因為hive的語法和這個非常相似。
Sqoop:這個是用於把Mysql里的數據導入到Hadoop里的。當然你也可以不用這個,直接把Mysql數據表導出成文件再放到HDFS上也是一樣的,當然生產環境中使用要注意Mysql的壓力。
Hive:這個東西對於會SQL語法的來說就是神器,它能讓你處理大數據變的很簡單,不會再費勁的編寫MapRece程序。有的人說Pig那?它和Pig差不多掌握一個就可以了。
Oozie:既然學會Hive了,我相信你一定需要這個東西,它可以幫你管理你的Hive或者MapRece、Spark腳本,還能檢查你的程序是否執行正確,出錯了給你發報警並能幫你重試程序,最重要的是還能幫你配置任務的依賴關系。我相信你一定會喜歡上它的,不然你看著那一大堆腳本,和密密麻麻的crond是不是有種想屎的感覺。
Hbase:這是Hadoop生態體系中的NOSQL資料庫,他的數據是按照key和value的形式存儲的並且key是唯一的,所以它能用來做數據的排重,它與MYSQL相比能存儲的數據量大很多。所以他常被用於大數據處理完成之後的存儲目的地。
Kafka:這是個比較好用的隊列工具,隊列是干嗎的?排隊買票你知道不?數據多了同樣也需要排隊處理,這樣與你協作的其它同學不會叫起來,你干嗎給我這么多的數據(比如好幾百G的文件)我怎麼處理得過來,你別怪他因為他不是搞大數據的,你可以跟他講我把數據放在隊列里你使用的時候一個個拿,這樣他就不在抱怨了馬上灰流流的去優化他的程序去了,因為處理不過來就是他的事情。而不是你給的問題。當然我們也可以利用這個工具來做線上實時數據的入庫或入HDFS,這時你可以與一個叫Flume的工具配合使用,它是專門用來提供對數據進行簡單處理,並寫到各種數據接受方(比如Kafka)的。
Spark:它是用來彌補基於MapRece處理數據速度上的缺點,它的特點是把數據裝載到內存中計算而不是去讀慢的要死進化還特別慢的硬碟。特別適合做迭代運算,所以演算法流們特別稀飯它。它是用scala編寫的。Java語言或者Scala都可以操作它,因為它們都是用JVM的。
H. 自學數據分析需要看哪些書的
第1本《誰說菜鳥不會數據分析入門篇》
很有趣的數據分析書!基本看過就能明白,以小說的形式講解,很有代入感。包含了數據分析的結構化思維、數據處理技巧、數據展現的技術,很能幫我們提升職場競爭能力。找不到工作的,學好了它,自然沒問題。
第2本《拯救你的Excel數據的分析、處理、展示(動畫版)》
一本用手機看的Excel操作書,大部分例子都配置了二維碼,手機掃掃就能看,基本上可以躺著把書學了。所有數據的分析、處理也都帶了職場範例(有會計、HR、銷售場景),很貼合實際。拯救我們小白的Excel,職場加薪不是夢想!
第3本《Excel圖表之道:如何製作專業有效的商務圖表》
職場大牛的書,教我們做圖表的,好看到不能再好看。可以設計和製作達到雜志級質量的、專業有效的商務圖表。相信平時我們很難做到吧,看了你就知道,也許一切沒那麼難。
第4本《絕了!Excel可以這樣用:數據分析經典案例實戰圖表書》
挺好的一個系列,都是Excle常用的技巧,適合銷售和HR。也是職場故事,很接地氣,帶視頻的,全都是Excel數據分析的常用理念和方法。
第5本《深入淺出數據分析》
深入淺出系列是對新手非常友好的叢書,用生動但啰嗦的語言講解案例。厚厚的一本書翻起來很快。本書涉及的基礎概念比較廣,包含一點統計學知識,學下來對數據分析思維會有一個大概了解。
第6本《MySQL必知必會》
如果真想買書看,可以看這本,適合新手向的學習,看基礎概念和查詢相關的章節即可。網路上大部分MySQL都是偏DBA的。
第7本《深入淺出統計學》
大概是最啰嗦的深入淺出系列,從賣橡皮鴨到賭博機的案例,囊括了常用的統計分析如假設檢驗、概率分布、描述統計、貝葉斯等。
第8本《網站分析實戰》
互聯網不再是網站的天下,但是移動端依舊有Web,我們在朋友圈看到的所有H5活動、第三方內容等,都是依託網頁實現。網站的數據分析依舊有存在空間,網站的數據指標還是能夠指導我們運營!
第9本《深入淺出Python》
還是深入淺出系列,完全適合零基礎的新人。需要注意的是,編程學習不同於其他知識,如果計算機基礎不穩固,在使用中會遇到各類問題。知其然不知其所以然!
第10本《Python學習手冊》
對於擁有編程基礎的人,這本書系無巨細的有些啰嗦,不過對新人,可以避免不必要的坑。把它當作一本工具文檔吧,當遇到不理解的內容隨時翻閱。
第11本《利用Python進行數據分析》
這本書是你學習python不二之選,對著書,著重學習numpy,pandas兩個包!每段代碼都敲打一遍,千萬行的數據清洗基本不會有大問題了。
第12本《R語言實戰》
R語言的入門書籍,從數據讀取到各類統計函數的使用。雖然沒有涉及機器學習,依靠這本書入門R是綽綽有餘了。
第13本《統計學:從數據到結論》
這本書是將R語言和統計學結合的教材,可以利用這本書再復習一遍統計知識。
第14本《深入淺出SQL》
帶你進入SQL語言的心臟地帶,從使用INSERT和SELECT這些基本的查詢語法到使用子查詢(subquery)、連接(join)和事務(transaction)這樣的核心技術來操作資料庫。到讀完《深入淺出SQL》之時,你將不僅能夠理解高效資料庫設計和創建,還能像一個專家那樣查詢、歸一(normalizing)和聯接數據。你將成為數據的真正主人。
第15本《數據挖掘導論》
這本書絕對是一本良心教材,拿到手從第一章開始閱讀,能看多少就看多少。但是要盡量多看點,因為此書你可能要看一輩子的~~
第16本《演算法導論中文版》
本書將嚴謹性和全面性融為一體,深入討論各類演算法,並著力使這些演算法的設計和分析能為各個層次的讀者接受。演算法以英語和偽代碼的形式描述,具備初步程序設計經驗的人就能看懂;說明和解釋力求淺顯易懂,不失深度和數學嚴謹性。
上面的書籍都是PDF版
視頻教材的有:
Python入門教程完整版(懂中文就能學會)資料
Python入門教程完整版(懂中文就能學會)視頻
Mysql從入門到精通全套視頻教程
8天深入理解python教程
大數據Hadoop視頻教程,從入門到精通
Python就業班
Python標准庫(中文版)
數學建模0基礎從入門到精通,全套資源
0基礎Python實戰-四周實現爬蟲系統
麥子學院招牌課程[明星python編程視頻VIP教程][200G](價值9000元)
從零基礎到數據分析師,幫你拿到年薪50萬!
瑋心:xccx158
I. 初學者學習資料庫該看什麼書
1、《資料庫系統概論(第5版)》作者:王珊/薩師煊這本書是資料庫理論知識的經典教材,零基礎入門必看。
2、《資料庫系統概念(原書第6版)》作者:Abraham Silberschatz/Henry F.Korth/S.Sudarshan國外經典資料庫理論書籍,有助於深入理解資料庫知識,從原理和實用的角度入手,涵蓋了資料庫領域諸多知識面。
3、《分布式資料庫系統原理(第3版)》作者:M.Tamer Ozsu/Patrick Valriez這本書主要介紹分布式資料庫管理系統的基本概念、基本理論和設計問題,涵蓋了分布式資料庫系統的設計、實現和管理,有助於深入理解分布式資料庫系統。
4、《資料庫系統實現(第2版)》作者:Hector Garcia-Molina,Jeffrey D.Ullman資料庫內核研發人員的必讀書籍,有助於深入理解資料庫內部實現的原理,包括存儲管理器、查詢處理器和事務管理器等。
關於初學者學習資料庫該看什麼書,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
J. 大數據入門書籍有哪些
當年互聯網瘋狂發展的時候,很多人在觀望和猶豫中錯過了這班順風車(沒有盡早開個淘寶店,腸子都悔青了好幾遍呢)。如今,同樣的橋段上演,大數據時代,堅決不能再無動於衷!
於是,你著急,你迷茫,你很方……除了平時要加班加點的搬磚,牙縫里擠出來的的閑碎時間都貢獻給度娘了,「小白如何學習大數據」,「大數據入門書籍有哪些」……
1:<大數據時代>
這是學習大數據必讀的一本書,也是最系統的關於大數據概念的一本書,由維克托·邁爾-舍恩伯格和肯尼斯·庫克耶編寫,主要介紹了大數據理念和生活工作及思維變革的關系。
它被包括寬頻資本董事長田朔寧、知名IT評論人謝文等專業讀者鑒定為「大數據領域最好的著作沒有之一,一本頂一萬本」。有這么好嗎?看完自己評價吧。這本書對這個大規模產生、分享和應用數據的新的大時代進行了闡述和釐清,作者圍繞「要全體不要抽樣、要效率不要絕對精確、要相關不要因果」三大理念,通過數十個商業和學術案例,剖析了萬事萬物數據化和數據復用挖掘的巨大價值。
2:<爆發>
由巴拉巴西編寫,主要講了在一個歷史故事的連續講述中,了解大數據的概念實質。從大數據的歷史開始,能更深入的了解大數據的發展歷程。
巴拉巴西整本書講述的大數據根本目的,是預測。他甚至有零有整地判斷,人類行為93%是可以預測的。打個比方,千百年前人類無法如今天般准確預測天氣,以致某些大致預測的行為都被認為是「通神」,其實核心在於對天氣數據的海量佔有和分析能力。但假如全人類的所有基礎及行為數據全部被佔有全部能分析呢?比如通過智能終端LBS功能採集全部運動軌跡、通過金融系統採集所有支付記錄、通過SNS採集所有社會關系和通過郵件、文檔、社會視頻監控和自我視頻監測採集所有言行記錄,24小時,每分每秒,一生,全地球70億人,那會如何?
3:<大數據>
由徐子沛編寫,看美國政府在大數據開放上的進程與反復,算是個案。如果能夠基本了解這三本的觀點,出門有底氣,見人腰桿直,不再被忽悠。
全書講述的,是大數據在美國政府管理中的應用,以及美國政府運行方式大數據變革的歷史與斗爭,其實也是故事性的。從奧巴馬上台就頒布《信息公開法案》,到設立第一個美國政府首席信息官開始,講述美國政府與民間在社會數據公開的斗爭史,以及美國社會管理向大數據思維轉變的過程。首先,這算是一個最詳實的案例;其次,這代表的不是某種管理方式變革,深處是對民主運行機制的變革與進步。說好了,這本書用心良苦,遠遠超越科普技術領域;說壞了,其心可誅。有一段,民間斗爭,逼迫奧巴馬公布所有每日白宮全部日程,包括接見了誰、談話的全部內容,這不就是個人大數據全公開在公眾人物上的應用嗎?這可比現在所謂官員公開財產的要求高了幾十倍——這要求政府全部行為、全部數據、全部公開,全體公眾隨時可查——技術和成本上其實已經可以做到或至少努力接近——如果不這么做,不止是落後問題而是真正的其心可誅了。
4:<大數據基礎與應用>
由陳明編寫。看名字就知道,入門級別拯救小白的書。這本書共17章,第1章是對大數據的簡單概述,第2章介紹大數據研究的方法論,第3、8、9、14章介紹大數據的生態環境,第17章介紹數據科學的內容,剩下的章節是本書重點,介紹大數據技術及應用方法。
身處大數據大環境下,身邊的人經常討論資料庫、數據可視化、大數據預處理等等。這些詞聽得多了會讓人產生錯覺——自己已經知道裡面的門道了。但事實上還是個「門外漢」。
舉個例子,沒有人肯在上千人規模的講座上專門花半個小時教你怎樣進行數據清洗。本書專門列了一章,詳細介紹大數據預處理技術,包括數據清洗的實現方式,從步驟到檢驗,都做了用心的闡述。諸如此類,數據挖掘、大數據流式計算、Hadoop、NoSQL等等都從最基礎的點做了詳細介紹。耐心看完這些,再往深處進階就不會那麼吃力了。
5:<一本書讀懂大數據>
進入大數據時代,讓數據開口說話將成為司空見慣的事情,本書將從大數據時代的前因後果講起,全面分析大數據時代的特徵、企業實踐的案例、大數據的發展方向、未來的機遇和挑戰等內容,展現一個客觀立體、自由開放的大數據時代。
5:<集體智慧編程>
入門,淺顯易懂,裡面每一章都是一個案例,但是很方便,有具體的代碼,用來入門最好。
6:<社交網路的數據挖掘>
專門做社交網路的數據挖掘,案例很豐富,有代碼。
7:<數據可視化之美>
致力於介紹各種可視化方案。
8:<鮮活的數據>
比較簡單的可視化,不過內容豐富,有代碼。
9:<數據挖掘導論完整版>
看完上述的書,對大數據產生很大的興趣,已經初步入門了,現在開始理論方面的學習,數據挖掘入門教程,個人覺得寫的很好,目前正在研究這本書,努力。。。
10:<統計學習方法>
這本書比較深,剛開始看的就是這一本,不過太深,看到一半,准備在導論看完之後,在看這本書提升一下自己。
11:<鳥哥私房菜—基礎篇>
作為一個計算機專業Linux那是必學的,而且Hadoop是建立在Linux基礎上的,不求多麼的精通,但是基礎的操作要學會。
如果是沒有任何編程語言基礎的想入行大數據的話,是必須要學習java基礎的,雖然大數據支持很多開發語言,但是企業用的最多的還是java,接下來學習數據結構,關系型資料庫,linux系統操作,有了基礎之後,在進入大數據學習,可以給小白學習的體系。
第一階段
COREJAVA(加**的需重點熟練掌握,其他掌握)
Java基礎**
數據類型
運算符、循環
演算法
順序結構程序設計
程序結構
數組及多維數組
面向對象**
構造方法、控制符、封裝
繼承**
多態**
抽象類、介面**
常用類
集合Collection、list**
HashSet、TreeSet、Collection
集合類Map**
異常
File
文件/流**
數據流和對象流**
線程(理解即可)
網路通信(理解即可)
第二階段
數據結構
關系型資料庫
Linux系統操作
Linux操作系統概述
安裝Linux操作系統
圖形界面操作基礎
Linux字元界面基礎
字元界面操作進階
用戶、組群和許可權管理
文件系統管理
軟體包管理與系統備份
Linux網路配置
(主要掌握Linux操作系統的理論基礎和伺服器配置實踐知識,同時通過大量實驗,著重培養學生的動手能力。使學生了解Linux操作系統在行業中的重要地位和廣泛的使用范圍。在學習Linux的基礎上,加深對伺服器操作系統的認識和實踐配置能力。加深對計算機網路基礎知識的理解,並在實踐中加以應用。掌握Linux操作系統的安裝、命令行操作、用戶管理、磁碟管理、文件系統管理、軟體包管理、進程管理、系統監測和系統故障排除。掌握Linux操作系統的網路配置、DNS、DHCP、HTTP、FTP、SMTP和POP3服務的配置與管理。為更深一步學習其它網路操作系統和軟體系統開發奠定堅實的基礎。與此同時,如果大家有時間把javaweb及框架學習一番,會讓你的大數據學習更自由一些)
重點掌握:
常見演算法
資料庫表設計
SQL語句
Linux常見命令
第三階段
Hadoop階段
離線分析階段
實時計算階段
重點掌握:
Hadoop基礎
HDFS
MapRece
分布式集群
Hive
Hbase
Sqoop
Pig
Storm實時數據處理平台
Spark平台
若之前沒有項目經驗或JAVA基礎,掌握了第一階段進入企業,不足以立即上手做項目,企業需再花時間與成本培養;
第二階段掌握扎實以後,進入企業就可以跟著做項目了,跟著一大幫人做項目倒也不用太擔心自己能不能應付的來,當然薪資不能有太高的要求;
前兩個階段都服務於第三階段的學習,除了熟練掌握這些知識以外,重點需要找些相應的項目去做,不管項目大小做過與沒有相差很多的哦!掌握扎實後可直接面對企業就業,薪資待遇較高!