⑴ 如何對大數據來源分類
從大數據的來源來看。
主要分為以下幾個大類:
一、國家資料庫。
二、企業數據。
三、機器設備數據。
四、個人數據。
方法/步驟
一、國家資料庫
包含公開的和保密的兩個方面。
公開的如GDP、CPI、固定資產投資等宏觀經濟數據,包括歷年統計年鑒或人口普查的數據,以及地理信息數據、金融數據、房地產數據、醫療統計數據等等。
⑵ 大數據交易模式的分類有哪些有哪些特點
大數據交易模式的分類有以下幾種:
數據開放型:數據提供者將部分或全部數據集向公眾開放,自由獲取並使用。這種模式的特點是數據獲取方便、成本低廉,但缺少精細化數據定製和保護機制。
數據訂閱型:數據提供者向需要數據的客戶提供數據,客戶通過訂閱服務獲得數據。這種模式的特點是數據定製性好,但需要支付一定的數據費用。
數據交易平台型:搭建在線數據交易平台,數據提供者可以在平台上發布數據,而購買方可以選擇合適的數據進行購轎帶讓買使用。這種模式的特點是數據資源豐富,交易效率高,但需要考慮數據質量、價值和安全等問題。
數據眾包型:利用社會化協同的方式,通過廣泛的人群參與,快速獲取大量數據。這種模式的特點是數據收集速度快,成本較低,但數據質量可能不穩定,需要進行數據清洗和篩選。
大數據交易模式的特點包括:數據資源豐富、數據速度快、數據量大、數據格式多樣、數據質量參差不閉局齊、數據安全性要求高、數據應用場景廣泛等。同時,大數據交易需要考慮數據價值定價、數據行猜隱私保護、法律合規性等問題。
⑶ 大數據應用是怎樣分類的呢
現在國內做大數據的公司主要分為兩類:一類是現在已經有獲取大數據能內力的公司,如容騰訊這樣的互聯網巨頭,涵蓋了數據採集,數據存儲,數據分析,數據可視化以及數據安全等領域;另一類則是初創的大數據公司,比如文軍營銷針對市場需求,為市場帶來創新方案並推動技術發展。
⑷ 大數據的新演算法:簡化數據分類
大數據的新演算法:簡化數據分類
如今,大數據時代悄然來臨。專家用「大數據」的表達描述大量信息,比如數十億人在計算機、智能手機以及其他電子設備上分享的照片、音頻、文本等數據。當前這種模式為我們的未來展現了前所未有的願景:比如追蹤流感疫情蔓延,實時監控道路交通,處理緊急自然災害等。對人們而言,想要利用這些龐大的數據,首先必須要了解它們,而在此之前我們需要一種快捷有效自動的方式對數據進行分類。
其中一種最為常用的系統,是一系列稱之為簇分析的統計技術,這種技術能依據數據的「相似性」進行數據分組。來自義大利國際高等研究院(SISSA)的兩位研究者基於簡單且強大的原理設計了一種簇分析方法,被證明可以非常有效地解決一些大數據分析中遇到的主要典型問題。
數據集合可以視為多維空間的雲數據點。這些點呈現不同分配方式:或稀疏地分布在一個區域,或密集地分布在另外一個區域。簇分析就是用來有效地鑒別密集型區域,基於基本的准則將數據分為一定數量的重要子集合,每個子集合對應一種分類。
「以一個面部圖像資料庫為例,」SISSA統計與生物物理系教授Alessandro Laio說,「資料庫可能包含同一個人的多張照片,簇分析可以用來歸類同一人的所有照片。這種類型的分析可用自動臉部識別系統來完成。」
「我們試著設計一種較現有方法更為有效的演算法,來解決簇分析中典型的問題。」Laio繼續補充說。
「我們的方法基於一種新的鑒定簇中心,比如子集合,」另一位研究者Alex Rodriguez解釋道,「試想這樣的情形,在無法訪問地圖中,卻不得不鑒定全球所有的城市時,這無疑是一個艱巨的任務。」Rodriguez進一步解釋道,「因此我們在做一種探索式的識別,嘗試尋找一條簡單的規則或是一種捷徑來達成目標。」
「為了確定一個地方是否達到城市級別規模,我們可以讓當地居民計數自己的『鄰居』,換句話說,他房子的100米內住了多少人。一旦得到這個數字,我們繼續去確認每一個居民,他們身邊最近的擁有最多鄰居數的居民。藉助這兩組數據結果交叉的部分,就可以推斷每個人所在居住區域人口的稠密程度,以及擁有鄰居數最多的兩家間距。就全球人口而言,通過自動交叉檢測這些數據,我們能識別代表簇狀中心的個體,這些個體就是不同的城市。」 Laio解釋道。
「我們的演算法能夠精確地完成此類計算,也適用於其他場景,」Rodriguez進一步補充說,此演算法表現相當優異。Rodriguez對此有著深刻理解:「借用面部數據檔案Olivetti Face資料庫,我們測試了自己的數學模型,並獲得了滿意的結果。此系統能夠正確地識別大部分個體,從不產生假陽性結果,這意味著在某些情況下,它可能無法識別事物,但絕不會混淆一個個體與另一個個體。與類似的方法相比,我們的演算法能夠有效地剔除異類,要知道這些異類的數據點與其他數據存在較大差異是會損毀分析結果的。」
以上是小編為大家分享的關於大數據的新演算法:簡化數據分類的相關內容,更多信息可以關注環球青藤分享更多干貨
⑸ 大數據分析的具體內容有哪些
大數據分析的具體內容可以分為這幾個步驟,具體如下:
1.數據獲取:需要把握對問題的商業理解,轉化成數據問題來解決,直白點講就是需要哪些數據,從哪些角度來分析,界陵大皮定問題後,再進行數據採集。這樣,就需要數據分析師具備結構化的邏輯思維。
2.數據處理:仿世數據的處理需要掌握有效率的工具,例如:Excel基礎、常用函數和公式、數據透視表、VBA程序開發等式必備的;其次是Oracle和SQL sever。這是企業大數據分析不可缺少的技能;還有Hadoop之類的分布式資料庫,也應該掌握。
3.分析數據:分析數據需要各類統計分析模型,如關聯規則、聚類、分類、預測模型等等。SPSS、SAS、Python、R等工具,多多益善。達內教育大數據雲計算尺差課程體系,內容較全,技術深,涉及JavaEE架構級技術,分布式高並發技術,雲計算架構技術,雲計算技術,雲計算架構技術等。
4.數據呈現:可視化工具,有開源的Tableau可用,也有一些商業BI軟體,根據實際情況掌握即可。
想了解更多有關大數據分析的詳情,推薦咨詢達內教育。達內教育已從事19年IT技術培訓,累計培養100萬學員,並且獨創TTS8.0教學系統,1v1督學,跟蹤式學習,有疑問隨時溝通;自主研發的26大課程體系更是緊跟企業需求,企業級項目,課程穿插大廠真實項目講解,對標企業人才標准,制定專業學習計劃,囊括主流熱點技術,助力學員更好的提高。感興趣的話點擊此處,免費學習一下
⑹ 數據採集|教育大數據的來源、分類及結構模型
一、 教育大數據的來源
教育是一個超復雜的系統,涉及 教學、管理、教研、服務 等諸多業務。與金融系統具有清晰、規范、一致化的業務流程所不同的是,不同地區、不同學校的教育業務雖然具有一定的共性,但差異性也很突出,而業務的差異性直接導致教育數據來源更加多元、數據採集更加復雜。
教育大數據產生於 各種教育實踐活動 ,既包括校園環境下的教學活動、管理活動、科研活動以及校園生活,也包括家庭、社區、博物館、圖書館等非正式環境下的學習活動;既包括線上的教育教學活動,也包括線下的教育教學活動。
教育大數據的核心數據源頭是「人」和「叢擾物」——「人」包括學生、教師、管理者和家長,「物」包括信息系統校園網站、伺服器、多媒體設備等各種教育裝備。
依據來源和范圍的不同,可以將教育大數據分為個體教育大數據、課程教育大數據、班級教育大數據、學校教育大數據、區域教育大數據、國家教育大數據等六種 。
二、 教育大數據的分類
教育數據有多重分類方式。
從數據產生的業務來源來看,包括 教學類數據、管理類數據、科研類數據 以及服務類數據。
從數據產生的技術場景來看冊鄭念,包括 感知數據 、業務數據和互聯網數據等類型。
從數據結構化程度來看,包括 結構化數據、半結構化數據和非結構化數據 。結構化數據適合用二維表存儲。
從數據產生的環節來看,包括 過程性數據和結果性數據州困 。過程性數據是活動過程中採集到的、難以量化的數據(如課堂互動、在線作業、網路搜索等);結果性數據則常表現為某種可量化的結果(如成績、等級、數量等)。
國家採集的數據主要以管理類、結構化和結果性的數據為主,重點關注宏觀層面教育發展整體狀況。到大數據時代,教育數據的全面採集和深度挖掘分析變得越來越重要。教育數據採集的重心將向非結構化、過程性的數據轉變。
三、教育數據的結構模型
整體來說,教育大數據可以分為四層,由內到外分別是基礎層、狀態層、資源層和行為層。
基礎層:也就是我們國家最最基礎的數據,是高度保密的數據; 包括教育部2012年發布的七個教育管理信息系列標准中提到的所有數據,如學校管理信息、行政管理信息和教育統計信息等;
狀態層,各種裝備、環境與業務的運行狀態的數據; 必然設備的耗能、故障、運行時間、校園空氣質量、教室光照和教學進度等;
資源層,最上層是關於教育領域的用戶行為數據。 比如PPT課件、微課、教學視頻、圖片、游戲、教學軟體、帖子、問題和試題試卷等;
行為層:存儲擴大教育相關用戶(教師、學生、教研員和教育管理者等)的行為數據, 比如學生的學習行為數據、教師的教學行為數據、教研員的教學指導行為數據以及管理員的系統維護行為數據等。
不同層次的數據應該有不同的採集方式和教育數據應用的場景。
關於教育大數據的冰山模型,目前我們更多的是採集一些顯性化的、結構性的數據,而存在冰山之下的是更多的非結構化的,而且真正為教育產生最大價值的數據是在冰山之下的。
參考文獻:
教育大數據的來源與採集技術 邢蓓蓓
⑺ 大數據開發常見的9種數據分析
數據分則缺析是從數據中提取有價值信息的過程,過程中需要對數據進行各種處理和歸類,只有掌握了正確的數據分類方法和數據處理模式,才能起到事半功倍的效果,以下是沙河北大青鳥介紹的數據分析員必備的9種數據分析思維模式:
1.分類
分類是一種基本的數據胡斗分析方式,數據根據其特點,可將數據對象劃分為不同的部分和類型,再進一步分析,能夠進一步挖掘事物的本質。
2.回歸
回歸是一種運用廣泛的統計分析方法,可以通過規定因變數和自變數來確定變數之間的因果關系,建立回歸模型,並根據實測數據來求解模型的各參數,然後評價回歸模型是否能夠很好的擬合實測數據,如果能夠很好的擬合,則可以根據自變數作進一步預測。
3.聚類
聚類是根據數據的內在性質將數據分成一些聚合類,每一聚合類中的元素盡可能具有相同的特性,不同聚合類之間的特性差別盡可能大的一種分類方式,其與分類分析不同,所劃分的類是未知的,因此,聚類分析也稱為無指導或無監督的學習。
數據聚類是對於靜態數據分析的一門技術,在許多領域受到廣泛應用,包括機器學習,數據挖掘,模式識別,圖像分析以及生物信息。
4.相似匹配
相似匹配是通過一定的方法,來計算兩個數據的相似程度,相似程度通常會用一個是百分比來衡量。相似匹配演算法被用在很多不同的計算場景,如數據清洗、用戶輸入糾錯、推薦統計、剽竊檢測系統、自動評分系統、網頁搜索和DNA序列匹配等領域。
5.頻繁項集
頻繁項集是指事例中頻繁出現的項的集合,如啤酒和尿不濕,Apriori演算法是一種挖掘關聯規則的頻繁項集演算法,其核心思想是通過候選集生成和情節的向下封閉檢測兩個階段來挖掘頻繁項集,目前已被廣泛的應用在商業、網路安全等領域。
6.統計描述
統計描述是根據數據的特點,用一定的統計指標和指標體系,表明數據所反饋的信息,是對數據分析的基礎處理工作,主要方法包括:平均指標和變異指標的計算、資料分布形態的圖形表現等。
7.鏈接預測
鏈接預測是一種預測數據之間本應存有的關系的一種方孫做辯法,鏈接預測可分為基於節點屬性的預測和基於網路結構的預測,基於節點之間屬性的鏈接預測包括分析節點資審的屬性和節點之間屬性的關系等信息,利用節點信息知識集和節點相似度等方法得到節點之間隱藏的關系。與基於節點屬性的鏈接預測相比,網路結構數據更容易獲得。復雜網路領域一個主要的觀點表明,網路中的個體的特質沒有個體間的關系重要。因此基於網路結構的鏈接預測受到越來越多的關注。
8.數據壓縮
數據壓縮是指在不丟失有用信息的前提下,縮減數據量以減少存儲空間,提高其傳輸、存儲和處理效率,或按照一定的演算法對數據進行重新組織,減少數據的冗餘和存儲的空間的一種技術方法。數據壓縮分為有損壓縮和無損壓縮。
9.因果分析
因果分析法是利用事物發展變化的因果關系來進行預測的方法,運用因果分析法進行市場預測,主要是採用回歸分析方法,除此之外,計算經濟模型和投人產出分析等方法也較為常用。
⑻ 大數據有哪些類型
1、結構化數據
可以以固定格式存儲,訪問和處理的數據稱為“結構化數據”。由於此數據採用類似的格式,因此企業可以通過執行分析來獲得最大的收益。還發明了各種先進技術來從結構化數據中提取數據驅動的決策。但是,由於結構化數據的創建已經達到Zettabytes標記,因此世界正朝著這樣一個程度發展。
2、非結構化數據
任何以未知形式或結構出現的數據都屬於非結構化數據。處理非結構化數據並對其進行分析以獲取數據驅動的答案是一項艱巨的任務,因為它們來自不同類別,將它們放在一起只會使情況變得更糟。包含簡單文本文件,圖像,視頻等的組合的異構數據源是非結構化數據的示例。
3、半結構化數據
半結構化數據中同時具有結構化和非結構化數據。我們可以看到半結構化數據是形式化的結構,但實際上它不是在關系DBMS中用表定義來定義的。Web應用程序數據是半結構化數據的示例。它具有非結構化數據,例如日誌文件,事務歷史記錄文件等。OLTP系統旨在與結構化數據一起工作,其中數據存儲在關系中。
⑼ 大數據經典演算法解析(1)一C4.5演算法
姓名:崔升 學號:14020120005
【嵌牛導讀】:
C4.5作為一種經典的處理大數據的演算法,是我們在學習互聯網大數據時不得不去了解的一種常用演算法
【嵌牛鼻子】:經典大數據演算法之C4.5簡單介紹
【嵌牛提問】:C4.5是一種怎麼的演算法,其決策機制靠什麼實現?
【嵌牛正文】:
決策樹模型:
決策樹是一種通過對特徵屬性的分類對樣本進行分類的樹形結構,包括有向邊與三類節點:
根節點(root node),表示第一個特徵屬性,只有出邊沒有入邊;
內部節點(internal node),表示特徵屬性,有一條入邊至少兩條出邊
葉子節點(leaf node),表示類別,只有一條入邊沒有出邊。
上圖給出了(二叉)決策樹的示例。決策樹具有以下特點:
對於二叉決策樹而言,可以看作是if-then規則集合,由決策樹的根節點到葉子節點對應於一條分類規則;
分類規則是 互斥並且完備 的,所謂 互斥 即每一條樣本記錄不會同時匹配上兩條分類規則,所謂 完備 即每條樣本記錄都在決策樹中都能匹配上一條規則。
分類的本質是對特徵空間的劃分,如下圖所示,
決策樹學習:
決策樹學習的本質是從訓練數據集中歸納出一組分類規則[2]。但隨著分裂屬性次序的不同,所得到的決策樹也會不同。如何得到一棵決策樹既對訓練數據有較好的擬合,又對未知數據有很好的預測呢?
首先,我們要解決兩個問題:
如何選擇較優的特徵屬性進行分裂?每一次特徵屬性的分裂,相當於對訓練數據集進行再劃分,對應於一次決策樹的生長。ID3演算法定義了目標函數來進行特徵選擇。
什麼時候應該停止分裂?有兩種自然情況應該停止分裂,一是該節點對應的所有樣本記錄均屬於同一類別,二是該節點對應的所有樣本的特徵屬性值均相等。但除此之外,是不是還應該其他情況停止分裂呢?
2. 決策樹演算法
特徵選擇
特徵選擇指選擇最大化所定義目標函數的特徵。下面給出如下三種特徵(Gender, Car Type, Customer ID)分裂的例子:
圖中有兩類類別(C0, C1),C0: 6是對C0類別的計數。直觀上,應選擇Car Type特徵進行分裂,因為其類別的分布概率具有更大的傾斜程度,類別不確定程度更小。
為了衡量類別分布概率的傾斜程度,定義決策樹節點tt的不純度(impurity),其滿足:不純度越小,則類別的分布概率越傾斜;下面給出不純度的的三種度量:
其中,p(ck|t)p(ck|t)表示對於決策樹節點tt類別ckck的概率。這三種不純度的度量是等價的,在等概率分布是達到最大值。
為了判斷分裂前後節點不純度的變化情況,目標函數定義為信息增益(information gain):
I(⋅)I(⋅)對應於決策樹節點的不純度,parentparent表示分裂前的父節點,NN表示父節點所包含的樣本記錄數,aiai表示父節點分裂後的某子節點,N(ai)N(ai)為其計數,nn為分裂後的子節點數。
特別地,ID3演算法選取 熵值 作為不純度I(⋅)I(⋅)的度量,則
cc指父節點對應所有樣本記錄的類別;AA表示選擇的特徵屬性,即aiai的集合。那麼,決策樹學習中的信息增益ΔΔ等價於訓練數據集中 類與特徵的互信息 ,表示由於得知特徵AA的信息訓練數據集cc不確定性減少的程度。
在特徵分裂後,有些子節點的記錄數可能偏少,以至於影響分類結果。為了解決這個問題,CART演算法提出了只進行特徵的二元分裂,即決策樹是一棵二叉樹;C4.5演算法改進分裂目標函數,用信息增益比(information gain ratio)來選擇特徵:
因而,特徵選擇的過程等同於計算每個特徵的信息增益,選擇最大信息增益的特徵進行分裂。此即回答前面所提出的第一個問題(選擇較優特徵)。ID3演算法設定一閾值,當最大信息增益小於閾值時,認為沒有找到有較優分類能力的特徵,沒有往下繼續分裂的必要。根據最大表決原則,將最多計數的類別作為此葉子節點。即回答前面所提出的第二個問題(停止分裂條件)。
決策樹生成:
ID3演算法的核心是根據信息增益最大的准則,遞歸地構造決策樹;演算法流程如下:
如果節點滿足停止分裂條件(所有記錄屬同一類別 or 最大信息增益小於閾值),將其置為葉子節點;
選擇信息增益最大的特徵進行分裂;
重復步驟1-2,直至分類完成。
C4.5演算法流程與ID3相類似,只不過將信息增益改為 信息增益比 。
3. 決策樹剪枝
過擬合
生成的決策樹對訓練數據會有很好的分類效果,卻可能對未知數據的預測不準確,即決策樹模型發生過擬合(overfitting)——訓練誤差(training error)很小、泛化誤差(generalization error,亦可看作為test error)較大。下圖給出訓練誤差、測試誤差(test error)隨決策樹節點數的變化情況:
可以觀察到,當節點數較小時,訓練誤差與測試誤差均較大,即發生了欠擬合(underfitting)。當節點數較大時,訓練誤差較小,測試誤差卻很大,即發生了過擬合。只有當節點數適中是,訓練誤差居中,測試誤差較小;對訓練數據有較好的擬合,同時對未知數據有很好的分類准確率。
發生過擬合的根本原因是分類模型過於復雜,可能的原因如下:
訓練數據集中有噪音樣本點,對訓練數據擬合的同時也對噪音進行擬合,從而影響了分類的效果;
決策樹的葉子節點中缺乏有分類價值的樣本記錄,也就是說此葉子節點應被剪掉。
剪枝策略
為了解決過擬合,C4.5通過剪枝以減少模型的復雜度。[2]中提出一種簡單剪枝策略,通過極小化決策樹的整體損失函數(loss function)或代價函數(cost function)來實現,決策樹TT的損失函數為:
其中,C(T)C(T)表示決策樹的訓練誤差,αα為調節參數,|T||T|為模型的復雜度。當模型越復雜時,訓練的誤差就越小。上述定義的損失正好做了兩者之間的權衡。
如果剪枝後損失函數減少了,即說明這是有效剪枝。具體剪枝演算法可以由動態規劃等來實現。
4. 參考資料
[1] Pang-Ning Tan, Michael Steinbach, Vipin Kumar, Introction to Data Mining .
[2] 李航,《統計學習方法》.
[3] Naren Ramakrishnan, The Top Ten Algorithms in Data Mining.
⑽ 大數據的類型
大數據要分析的數據類型主要有四大類:
1.交易數據(TRANSACTION DATA)
大數據平台能夠獲取時間跨度更大、更海量的結構化交易數據,這樣就可以對更廣泛的交易數據類型進行分析,不僅僅包括POS或電子商務購物數據,還包括行為交易數據,例如Web伺服器記錄的互聯網點擊流數據日誌。
2.人為數據(HUMAN-GENERATED DATA)
非結構數據廣泛存在於電子郵件、文檔、圖片、音頻、視頻,以及通過博客、維基,尤其是社交媒體產生的數據流。這些數據為使用文本分析功能進行分析提供了豐富的數據源泉。
3.移動數據(MOBILE DATA)
能夠上網的智能手機和平板越來越普遍。這些移動設備上的App都能夠追蹤和溝通無數事件,從App內的交易數據(如搜索產品的記錄事件)到個人信息資料或狀態報告事件(如地點變更即報告一個新的地理編碼)。
4.機器和感測器數據(MACHINE AND SENSOR DATA)