Ⅰ 大數據到底是什麼行業啊,具體是干什麼的啊
大數據是眼下非常時髦的技術名詞,與此同時自然也催生出了一些與大數據處理相關的職業,通過對數據的挖掘分析來影響企業的商業決策。
在國內,大數據的應用才剛剛萌芽,人才市場還不那麼成熟,於是每家公司對大數據工作的要求不盡相同:有的強調資料庫編程、有的突出應用數學和統計學知識、有的則要求有咨詢公司或投行相關的經驗、有些是希望能找到懂得產品和市場的應用型人才。正因為如此,很多公司會針對自己的業務類型和團隊分工,給這群與大數據打交道的人一些新的頭銜和定義:數據挖掘工程師、大數據專家、數據研究員、用戶分析專家等都是經常在國內公司里出現的Title,我們將其統稱為「大數據工程師」。
一、大數據工程師做什麼?
用阿里巴巴集團研究員薛貴榮的話來說,大數據工程師就是一群「玩數據」的人,玩出數據的商業價值,讓數據變成生產力。大數據和傳統數據的最大區別在於,它是在線的、實時的,規模海量且形式不規整,無章法可循,因此「會玩」這些數據的人就很重要。
因此分析歷史、預測未來、優化選擇,這是大數據工程師在「玩數據」時最重要的三大任務。通過這三個工作方向,他們幫助企業做出更好的商業決策。
找出過去事件的特徵
大數據工程師一個很重要的工作,就是通過分析數據來找出過去事件的特徵。
預測未來可能發生的事情
通過引入關鍵因素,大數據工程師可以預測未來的消費趨勢。
找出最優化的結果
根據不同企業的業務性質,大數據工程師可以通過數據分析來達到不同的目的。
二、需要具備的能力
數學及統計學相關的背景
計算機編碼能力
實際開發能力和大規模的數據處理能力是作為大數據工程師的一些必備要素。
對特定應用領域或行業的知識
在某個或多個垂直行業的經歷能為應聘者積累對行業的認知,對於之後成為大數據工程師有很大幫助,因此這也是應聘這個崗位時較有說服力的加分項。
Ⅱ 大數據技術是做什麼的
大數據技術,是指大數據的應用技術,涵蓋各類大數據平台、大數據指數體系等大數據應用技術。大數據是眾多學科與統計學交叉產生的一門新興學科。大數據牽扯的數據挖掘、雲計算一類的,所以是計算機一類的專業。分布比較廣,應用行業較多。大數據(bigdata),IT行業術語,是指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。大數據技術與應用主要圍繞智慧城市、城市交通、醫療、金融、城市規劃等各領域中大數據技術的應用,系統總結了數據科學、大數據技術及其在城市建設各領域中應用的科研技術成果和項目實施經驗。 更多關於大數據技術是做什麼的,進入:https://m.abcgonglue.com/ask/674a851615834524.html?zd查看更多內容
Ⅲ 大數據到底是什麼行業啊,具體是干什麼的啊
大數據工作實際上就是一個數據統計的行業,從各種數據里邊兒進行檢索匯總,從而可以提煉出自己所需要的數據。可以為企業或者單位的發展確定一個方向,提供一個參考的數據值。
Ⅳ 大數據到底是什麼行業啊,具體是干什麼的啊
這不是某個行業,它是一個大數據分析,也就是說不斷的收集數據,然後進行分析,然後對行業的發展有幫助。
Ⅳ 大數據是干什麼的
大數據的意義不僅僅在於生產和掌握龐大的數據信息,更重要的是對有價值的數據進行專業化處理。
人類從來不缺數據,缺的是對數據進行深度價值挖掘與利用。可以說,從人類社會有了文字以來,數據就開始存在了,現在亦是如此。這其中唯一改變的是數據從產生,到記錄,再到使用這整個流程的形式。
在金融行業中,以借貸款為例。在貸款前,貸款借出方會先利用大數據對借款人進行貸前審核,以此來保障貸後的還款率。
借出方從各個渠道合法收集借款人的標簽信息,如學歷,職業,薪資狀況,歷史借還款情況等(據說一個用戶的標簽維度可以達到7000個)。海量數據被放入反欺詐模型,還款能力模型,身份驗證模型等數個中做訓練,最終得出是否通過本次貸款申請,貸款的額度,貸款人的還款意願等評估信息。
數據生產:
在人類社會的早期,民以食為天,數據的產生大多與商品,食物,土地等掛鉤。舊石器時代的部落人民在樹枝或骨頭上刻下凹痕來記錄日常的交易活動或物品供應。
為了衡量商品長度,中國人發明了尺、里、寸、丈、步、仞等長度單位;為了衡量重量,發明了升、斗,斛等重量單位。
在互聯網時代,數據的生產變得更為容易。美國互聯網數據中心曾指出,互聯網上的數據每年都將增長50%,每兩年便將翻一倍,而目前世界上90%以上的數據是最近幾年才產生的。
每人每天都會產生海量數據,如視頻數據,電商數據,社交數據等等。
Ⅵ 大數據是做什麼的
1.在當今這個時代人們對大數據這個詞並不陌生,都明白在這個互聯網時代會有各種的大數據產生,那麼數據分析就會顯得格外的重要。那什麼是大數據呢,其實呀並不難理解,大數據就是指超過傳統資料庫系統處理能力的數據。生活上,工作上很多方面都會從大數據中得到結論,有很多用其他方法難以得到的信息,通過分析數據,就變得一目瞭然。比如呢,科技公司他們提供的價值的很大一部分來自他們的數據,他們不斷對其進行分析提高效率並開發新產品。可想而知大數據的重要性
2.如果你也想從事大數據這方面的工作,這里介紹一下大數據要學習和掌握的知識與技能:
①java:一門面向對象的計算機編程語言,具有功能強大和簡單易用兩個特徵。
②spark:專為大規模數據處理而設計的快速通用的計算引擎。
③SSM:常作為數據源較簡單的web項目的框架。
④Hadoop:分布式計算和存儲的框架,需要有java語言基礎。
⑤spring cloud:一系列框架的有序集合,他巧妙地簡化了分布式系統基礎設施的開發。
⑤python:一個高層次的結合了解釋性、編譯性、互動性和面向對象的腳本語言。
3.隨著互聯網時代的到來,人們愈發認識到現代科技與計算機技術的重要性,無論是互聯網頭部企業對IT技術的研發應用還是普通企業的發展需要都可以看出IT行業正處於如日中天的發展態勢下,行業競爭同樣十分激烈隨著人工智慧、物聯網的發展、大數據人才急劇增加,所以大數據行業的就業前景一片光明。如果你想要系統學習,你可以考察對比一下開設有相關專業的熱門學校,好的學校擁有根據當下企業需求自主研發課程的能力,建議實地考察對比一下。
祝你學有所成,望採納。
Ⅶ 大數據是做什麼的
問題一:大數據能做什麼 如果說砍樹是一個職業,那你手中的斧頭就是大數據。大數據是一種覆蓋政商等領域的超大型平台,你可以用大數據來瞄準你所關心領域的長短點並很快很准地得出預判,升華概念,你能通過數據預測未來,行業的未來你能掌握了,就能賺錢。
問題二:大數據可以做什麼 用處太多了
首先,精準化定製。
主要是針對供需兩方的,獲取需方的個性化需求,幫助供方定準定位目標,然後依據需求提 *** 品,最終實現供需雙方的最佳匹配。
具體應用舉例,也可以歸納為三類。
一是個性化產品,比如智能化的搜索引擎,搜索同樣的內容,每個人的結果都不同。或者是一些定製化的新聞服務,或者是網游等。
第二種是精準營銷,現在已經比較常見的互聯網營銷,網路的推廣,淘寶的網頁推廣等,或者是基於地理位置的信息推送,當我到達某個地方,會自動推送周邊的消費設施等。
第三種是選址定位,包括零售店面的選址,或者是公共基礎設施的選址。
這些全都是通過對用戶需求的氏鬧大數據分析,然後供方提供相對定製化的服務。
應用的第二個方向,預測。
預測主要是圍繞目標對象,基於它過去、未來的一些相關因素和數據分析,從而提前做出預警,或者是實時動態的優化。
從具體的應用上,也大概可以分為三類。
一是決策支持類的,小到企業的運營決策,證券投資決策,醫療行業的臨床診療支持,以及電子政務等。
二是風險預警類的,比如疫情預測,日常健康管理的疾病預測,設備設施的運營維護,公共安全,以及金融業的信用風險管理等。
第三種是實時優化類的,比如智能線路規劃,實時定價等。
問題三:什麼是大數據,大數據可以做什麼 大數據,指無法在可承受的時間范圍內用常規軟體工具進行捕捉、管理和處理的數據 *** ,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力來適應海量、高增長率和多樣化的信息資產。
大數據可以對;數據進行收集和存儲,在這基礎上,再進行分析和應用,形成我們的產品和服務,而產品和服務也會產生新的數據,這些新數據會循環進入我們的流程中。
當這整個循環體系成為一個智能化的體系,通過機器可以實現自動化,那也許就會成為一種新的模式,不管是商業的,或者是其他。
問題四:大數據是做什麼的 大數據(Big Data)是指「無法用現有的軟體工具提取、存儲、搜索、共享、分析和處理的海量的、復雜的數據 *** 。」帆配業界通常用4個V(即Volume、Variety、Value、Velocity)來概括大數據的特徵。
數據體量巨大(Volume)。截至目前,人類生產的所有印刷材料的數據量是200PB,而歷史上全人類說過的所有的話的數據量大約是5EB(1EB=210PB)。
數據類型繁多(Variety)。相對於以往便於存儲的以文本為主的結構化數據,非結構化數據越來越多,包括網路日誌、音頻、視頻、圖片、地理位置信息等,這些多類型的數據對數據的處理能力提出了更高要求。
價值密度低(Value)。價值密度的高低與數據總量的大小成反比。如何通過強大的機器演算法更迅速地完成數據的價值「提純」成為目前大數據背景下亟待解決的難題。
處理速度快(Velocity)。大數據區分於傳統數據挖掘的最顯著特徵。根據IDC的「數字宇宙」的報告,預計到2020年,全球數據使用量將達到35.2ZB。
-------------------------------------------
社交網路,讓我們越來越多地從數據中觀察到人類社會的復雜行為模式。社交網路,為大數據提供了信息匯集、分析的第一手資料。從龐雜的數據背後挖掘、分析用戶的行為習慣和喜好,找出更符合用戶「口味」的產品和服務,並結合用戶需求有針對性地調整和優化自身,就是大數據的價值。
所以,建立在上述的概念上我們可以看到大數據的產業變化:
1 大數據飛輪效應所帶來的產業融合和新產業驅動
2 信息獲取方式的完全變化帶來的新式信息聚合
3 信息推送方式的完全變化帶來的新式信息推廣
4 精準營銷
5 第三方支付 ―― 小微信貸,線上眾籌為代表的互聯網金融帶殲轎罩來的全面互聯網金融改革
6 產業垂直整合趨勢以及隨之帶來的產業生態重構
7 企業改革以及企業內部價值鏈重塑,擴大的產業外部邊界
8 *** 及各級機構開放,透明化,以及隨之帶來的集中管控和內部機制調整
9 數據創新帶來的新服務
問題五:大數據是什麼?大數據可以做什麼?大數據實際做了什麼?大數據要怎麼做 大數據(big data),或稱巨量資料,指的是所涉及的資料量規模巨大到無法通過目前主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。 大數據分析的標配是商業智能(BI)軟體,傳統數據分析的繁雜之處主要體現在兩個方面,一是技術人員需要花費大量時間准備數據;二是業務人員基於數據偶得的一些分析需求實現過程復雜。 FineBI的Data Service模塊,特有的分析設計模式和指標影響因素智能分析模塊,能夠幫助用戶解決傳統BI數據准備時間長,偶得數據分析過程復雜等問題,讓技術人員准備數據時無需任何代碼和復雜的設置過程,讓非IT人員能夠輕松自在得進行分析。
問題六:大數據可以做什麼 可以用幾個關鍵詞對大數據做一個界定。
首先,「規模大」,這種規模可以從兩個維度來衡量,一是從時間序列累積大量的數據,二是在深度上更加細化的數據。
其次,「多樣化」,可以是不同的數據格式,如文字、圖片、視頻等,可以是不同的數據類別,如人口數據,經濟數據等,還可以有不同的數據來源,如互聯網、感測器等。
第三,「動態化」。數據是不停地變化的,可以隨著時間快速增加大量數據,也可以是在空間上不斷移動變化的數據。
這三個關鍵詞對大數據從形象上做了界定。
但還需要一個關鍵能力,就是「處理速度快」。如果這么大規模、多樣化又動態變化的數據有了,但需要很長的時間去處理分析,那不叫大數據。從另一個角度,要實現這些數據快速處理,靠人工肯定是沒辦法實現的,因此,需要藉助於機器實現。
最終,我們藉助機器,通過對這些數據進行快速的處理分析,獲取想要的信息或者應用的整套體系,才能稱為大數據。
問題七:大數據公司具體做什麼? 主要業務包括數據採集,數據存儲,數據分析,數據可視化以及數據安全等,這些是依託已有數據的基礎上展開的業務模式,其他大數據公司是依靠大數據工具,對市場需求,為市場帶來創新方案並推動技 術發展。這類公司里天雲大數據在市場應用里更加廣泛
問題八:大數據應用到底是做什麼的? 對於「大數據」,研究機構Gartner給出了這樣的定義。「大數據」是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。 *** 的定義,大數據是指無法在可承受的時間范圍內用常規軟體工具進行捕捉、管理和處理的數據 *** 。
從技術上看,大數據與雲計算的關系就像一枚硬幣的正反面一樣密不可分。大數據必然無法用單台的計算機進行處理,必須採用分布式架構。它的特色在於對海量數據進行分布式數據挖掘,但它必須依託雲計算的分布式處理、分布式資料庫和雲存儲、虛擬化技術。隨著雲時代的來臨,大數據也吸引了越來越多的關注。
大數據技術的戰略意義不在於掌握龐大的數據信息,而在於對這些含有意義的數據進行專業化處理。換言之,如果把大數據比作一種產業,那麼這種產業實現盈利的關鍵,在於提高對數據的「加工能力」,通過「加工」實現數據的「增值」。
問題九:在未來大數據能做什麼? 是的,通過網路進行收集數據,將採集到的數據進行加工處理、分析,前提是 要通信的,大數據是指 一個 當今現代化的一個流行化概念名詞,二三十年前就有人提出來了,特指 海量信息,可以永久性存儲在伺服器中,誰採集到的數據,誰管理,數據是在變化的,隨著人類的活動,國內 掀起一場互聯網金融,每個行業 都有自己 獨特的 數據 分類信息,進行數據挖掘,有用的數據 撈取出來 ,那麼它就是有意義 的
問題十:大數據營銷具體是什麼呢? 大數據營銷是基於多平台的大量數據,依託大數據技術的基礎上,應用於互聯網廣告行業的營銷方式。陽眾互動認為大數據營銷真正的核心在於讓網路廣告在合適的時間,通過合適的載體,以合適的方式,投給合適的人,說到底就是以自身掌握的數據或者說信息對客戶進行精準的定位,以最好、最快的滿足目標群體的需求。