① 學習大數據要什麼基礎
大數據開發學習要掌握java、linux、hadoop、storm、flume、hive、Hbase、spark等基礎知識。
學會這兩項基礎後,接下來就需要學習大數據相關的技術了。首先學習Hadoop,需要學習它的HDFS、MapRece和YARN的組件,學會了這些,接下來就按順序學習Zookeeper,Mysql,Sqoop,Hive,Oozie,Hbase,Kafka,Spark。當我們把這些技術都學會了,基本上就能成為一個專業的大數據開發工程師了。
之後再進階提高一下,學習一下python、機器學習、數據分析等知識,能讓自己在今後的工作中更好的配合演算法工程師、數據分析師,讓自己變得更進步更優秀。
② 怎樣進行大數據的入門級學習
記住學到這里可以作為你學大數據的一個節點。
Zookeeper:這是個萬金油,安裝Hadoop的HA的時候就會用到它,以後的Hbase也會用到它。它一般用來存放一些相互協作的信息,這些信息比較小一般不會超過1M,都是使用它的軟體對它有依賴,對於我們個人來講只需要把它安裝正確,讓它正常的run起來就可以了。
Mysql:我們學習完大數據的處理了,接下來學習學習小數據的處理工具mysql資料庫,因為一會裝hive的時候要用到,mysql需要掌握到什麼層度那?你能在Linux上把它安裝好,運行起來,會配置簡單的許可權,修改root的密碼,創建資料庫。這里主要的是學習SQL的語法,因為hive的語法和這個非常相似。
Sqoop:這個是用於把Mysql里的數據導入到Hadoop里的。當然你也可以不用這個,直接把Mysql數據表導出成文件再放到HDFS上也是一樣的,當然生產環境中使用要注意Mysql的壓力。
Hive:這個東西對於會SQL語法的來說就是神器,它能讓你處理大數據變的很簡單,不會再費勁的編寫MapRece程序。有的人說Pig那?它和Pig差不多掌握一個就可以了。
Oozie:既然學會Hive了,我相信你一定需要這個東西,它可以幫你管理你的Hive或者MapRece、Spark腳本,還能檢查你的程序是否執行正確,出錯了給你發報警並能幫你重試程序,最重要的是還能幫你配置任務的依賴關系。我相信你一定會喜歡上它的,不然你看著那一大堆腳本,和密密麻麻的crond是不是有種想屎的感覺。
Hbase:這是Hadoop生態體系中的NOSQL資料庫,他的數據是按照key和value的形式存儲的並且key是唯一的,所以它能用來做數據的排重,它與MYSQL相比能存儲的數據量大很多。所以他常被用於大數據處理完成之後的存儲目的地。
Kafka:這是個比較好用的隊列工具,隊列是干嗎的?排隊買票你知道不?數據多了同樣也需要排隊處理,這樣與你協作的其它同學不會叫起來,你干嗎給我這么多的數據(比如好幾百G的文件)我怎麼處理得過來,你別怪他因為他不是搞大數據的,你可以跟他講我把數據放在隊列里你使用的時候一個個拿,這樣他就不在抱怨了馬上灰流流的去優化他的程序去了,因為處理不過來就是他的事情。而不是你給的問題。當然我們也可以利用這個工具來做線上實時數據的入庫或入HDFS,這時你可以與一個叫Flume的工具配合使用,它是專門用來提供對數據進行簡單處理,並寫到各種數據接受方(比如Kafka)的。
Spark:它是用來彌補基於MapRece處理數據速度上的缺點,它的特點是把數據裝載到內存中計算而不是去讀慢的要死進化還特別慢的硬碟。特別適合做迭代運算,所以演算法流們特別稀飯它。它是用scala編寫的。Java語言或者Scala都可以操作它,因為它們都是用JVM的。
③ 學習大數據需要哪些基礎
第一:計算機基礎知識。計算機基礎知識涉及到三大塊內容,包括操作系統、編程語言和計算機網路,其中操作系統要重點學習一下Linux操作系統,編程語言可以選擇Java或者Python。如果要從事大數據開發,應該重點關注一下Java語言,而如果要從事大數據分析,可以重點關注一下Python語言。計算機網路知識對於大數據從業者來說也比較重要,要了解基本的網路通信過程,涉及到網路通信層次結構和安全的相關內容。
第二:資料庫知識。資料庫知識是學習大數據相關技術的重要基礎,大數據的技術體系有兩大基礎,一部分是分布式存儲,另一部分是分布式計算,所以存儲對於大數據技術體系有重要的意義。初學者可以從Sql語言開始學起,掌握關系型資料庫知識對於學習大數據存儲依然有比較重要的意義。另外,在大數據時代,關系型資料庫依然有大量的應用場景。
第三:數學和統計學知識。從學科的角度來看,大數據涉及到三大學科基礎,分別是數學、統計學和計算機,所以數學和統計學知識對於大數據從業者還是比較重要的。從大數據崗位的要求來看,大數據分析崗位(演算法)對於數學和統計學知識的要求程度比較高,大數據開發和大數據運維則稍微差一些,所以對於數學基礎比較薄弱的初學者來說,可以考慮向大數據開發和大數據運維方向發展。
④ 學大數據需要什麼基礎
說到大數據,肯定少不了分析軟體,這應該是大數據工作的根基,但市面上很多各種分析軟體,如果不是過來人,真的很難找到適合自己或符合企業要求的。小編通過各大企業對大數據相關行業的崗位要求,總結了以下幾點:
(1)SQL資料庫的基本操作,會基本的數據管理
(2)會用Excel/SQL做基本的數據分析和展示
(3)會用腳本語言進行數據分析,Python or R
(4)有獲取外部數據的能力,如爬蟲
(5)會基本的數據可視化技能,能撰寫數據報告
(6)熟悉常用的數據挖掘演算法:回歸分析、決策樹、隨機森林、支持向量機等
對於學習大數據,總體來說,先學基礎,再學理論,最後是工具。基本上,每一門語言的學習都是要按照這個順序來的。
1、學習數據分析基礎知識,包括概率論、數理統計。基礎這種東西還是要掌握好的啊,基礎都還沒扎實,知識大廈是很容易倒的哈。
2、你的目標行業的相關理論知識。比如金融類的,要學習證券、銀行、財務等各種知識,不然到了公司就一臉懵逼啦。
3、學習數據分析工具,軟體結合案列的實際應用,關於數據分析主流軟體有(從上手度從易到難):Excel,SPSS,stata,R,Python,SAS等。
4、學會怎樣操作這些軟體,然後是利用軟體從數據的清洗開始一步步進行處理,分析,最後輸出結果,檢驗及解讀數據。
當然,學習數學與應用數學、統計學、計算機科學與技術等理工科專業的人確實比文科生有著客觀的優勢,但能力大於專業,興趣才會決定你走得有多遠。畢竟數據分析不像編程那樣,需要你天天敲代碼,要學習好多的編程語言,數據分析更注重的是你的實操和業務能力。如今的軟體學習都是非常簡單便捷的,我們真正需要提升的是自己的邏輯思維能力,以及敏銳的洞察能力,還得有良好的溝通表述能力。這些都是和自身的努力有關,而不是單純憑借理工科背景就可以啃得下來的。相反這些能力更加傾向於文科生,畢竟好奇心、創造力也是一個人不可或缺的。
⑤ 學習大數據需要掌握哪些基礎
學習大數據需要掌握以下基礎:
數據結構和演算法:學習大數據需要具備扎實的數據結構和演算法基礎,包括數組、鏈表、棧、隊列、樹、圖等數據結構,以及排序、查找、圖演算法等常用演算法。
資料庫和圓搏SQL:熟悉常用資料庫和SQL語言的使用,包括MySQL、Oracle、SQL Server等關系型資料庫,以及NoSQL資料庫(如MongoDB、Redis)的使用。
編程語言:需要掌握至少一門編程語言,如Java、Python、C++等。特別是Python語言在大數據領域的應用越來越廣泛。
Linux操作系統和Shell腳本:大數據處理通常在分布式環境下進行,需要熟悉Linux操作系統的使用和Shell腳本的編寫,以便於在Linux環境下進行數據處理和分析。
統計學和機器學習:大數據分析離不開統計學和機器學習的基礎,需要掌握相關的理橘絕祥論知識和應用技能。
大數據技術和工具:掌握常用的大數據技術和工具,如Hadoop、Spark、Hive、Pig、Kafka、Flink等,了解它們的原理和使用方法。
數據可視化和報表分析:掌握數據可視化和報表分析的基礎知識和技能,能夠通過圖表和報表展示數據分析的結果,使得分析結果更加直觀、清晰。
總之,學習大數據需要掌握多方宏滾面的基礎知識和技能,這些基礎將為大數據的處理和分析提供堅實的基礎,並為日後的學習和發展奠定基礎。
⑥ 大數據專業需要學習什麼樣的知識
大數據專業也是計算機專業的一個重要的分類,你在學習專業知識的時候像是數據結構或者是資料庫或者是演算法,這一類的基礎,學好了再學習幾門編程語言就差不多。
⑦ 學習大數據需要哪些基礎
未來在大數據領域最具有價值的有兩種人:一種是擁有大伍做數據思維的人,這樣的人可以將大數據的潛在價值轉化為實際利益。另一種在大數據領域具有創新能力的人,能夠開發沒被大數據覆蓋的領域。南邵北大青鳥認為對大數據感興趣的人適合學習大數據,在未來大數據這塊肥沃的土壤上會有非常大的發展。
學習大數據需要哪些基礎?
第一:具有計算機編程能力。大數據技術是建立在互聯網的基礎上。具有編程能力有很大的加分。
第二:具備一定的數學能力,計算機需要強大的邏輯思維,而數學是邏輯的基礎,有一定的數學基礎對於了解相關原理是非常重要的。
第三:具備一定的英語基礎,因為大數據知識以英文為主,各種代碼等都是以英文的形式表現出來的。拿橘瞎所以具備一定的英語能力是很重要的。
第四:能夠用流暢的文字表達出來。大數據的最終目的並不是得到一大堆數字,最重要的是對這些數字的分析。
第五:具有理性客觀的思維,對於分析數據,學習消空相關知識都有很大優勢。
業界內普遍認可的北大青鳥大數據,已經畢業的學員有入職阿里、網路、微軟等很多知名企業,薪資平均在15k左右,北大青鳥大數據提供的大數據服務包括:大數據技術培訓、企業大數據項目方案、大數據項目實施等等,幫助你順利進入大數據行業。
⑧ 大數據需要學習哪些內容
大數抄據(big data),指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。大數據的5V特點(IBM提出):Volume(大量)、Velocity(高速)、Variety(多樣)、Value(低價值密度)、Veracity(真實性),平台有hadoop
⑨ 大數據需要學哪些內容
大數據技術專業屬於交叉學科:以統計學、數學、計算機為三大支撐性學科;生物、醫學、環境科學、經濟學、社會學、管理學為應用拓展性學科。大數據專業還需學習數據採集、分析、處理軟體,學習數學建模軟體及計算機編程語言等課程。
大數據專業學什麼課程
1、Java語言基礎課程
JAVA作為編程語言,使用是很廣泛的,大數據開發主要是基於JAVA,作為大數據應用的開發語言很合適。Java語言基礎包括Java開發介紹、Java語言基礎、Eclipse開發工具等課程。
2、HTML、CSS與Java課程
網站頁面布局、HTML5+CSS3基礎、jQuery應用、Ajax非同步交互等課程。
3、Linux系統和Hadoop生態體系課程
大數據的開發的框架是搭建在Linux系統上面的,所以要熟悉Linux開發環境。而Hadoop是一個大數據的基礎架構,它能搭建大型數據倉庫,PB級別數據的存儲、處理、分析、統計等業務。還需要了解數據遷移工具Sqoop、Flume分布式日誌框架等課程。
4、分布式計算框架和SparkStrom生態體系課程
有一定的基礎之後,需要學習Spark大數據處理技術、Mlib機器學習、GraphX圖計算以及Strom技術架構基礎和原理等知識。Spark在性能還是在方案的統一性方面都有著極大的優越性,可以對大數據進行綜合處理:實時數據流處理、批處理和互動式查詢等課程。
5.其他課程
數據收集課程:分布式消息隊列Kafka、非關系型數據收集系統Flume、關系型數據收集工具Sqoop與Canel;
大數據技術課程:Spark、Storm、Hadoop、Flink等;
數據存儲課程:分布式文件系統及分布式資料庫、數據存儲格式;
資源管理和服務協調課程:YARN、ZooKeeper。
學大數據要具備什麼能力
1、學大數據要具有計算機編程功能。大數據技術建立在互聯網上,所以擁有編程技巧有很大的好處。
2、學大數據要具有一定的數學能力是非常關鍵的,學習計配悉檔算機需要非常強大的邏輯思維能力,但是數學是邏輯能力的基礎,對數學課程知識的了解是非常關鍵的。
3、學習大數據需要有一定的英語課程基礎,因為大數據知識主要是英文培亂陸舉,各種代碼用英文表達。因此,擁有一定的英語能力是非常重要的。
4、學大數據語言能力是非常重要的,無論學習什麼都需要用流暢的文字表達出來。大數據的最終目標不是獲得大量數據,而是將這些數字進行准確的分析出來。
5、學習大數據還需要具備理性和客觀的思維,這樣對於分析數據和學習相關課程知識具有很大的優勢。
⑩ 學習大數據應該掌握哪些知識
大數據專業需要學:數學分析、高等代數、普通物理數學與信息科學概論、數據結構、數據科學導論、程序設計導論、程序設計實踐、離散數學、概率與統計、演算法分析與設計、數據計算智能、資料庫系統概論、計算機系統基礎、並行體系結構與編程、非結構化大數據分析等。
大數據專業學什麼課程
數據科學與大數據技術專業是通過對基礎知識、理論及技術的研究,掌握學、統計、計算機等學科基礎知識,數據建模、高效分析與處理,統計學推斷的基本理論、基本方法和基本技能。具備良好的外語能力,培養出德、智、體、美、勞全面發展的技術型和全能型的優質人才。
數據科學與大數據技術的主要課程包括數學分析、高等代數、普通物理數學與信息科學概論、數據結構、數據科學導論、程序設計導論、程序設計實踐、離散數學、概率與統計、演算法分析與設計、數據計算智能、資料庫系統概論、計算機系統基礎爛拿宴、並行體系結構與編程、非結構化大數據分析,部分高校的特色會有所差異。
通識類知識
通識類知識包括人文社會科學類、數學和自然科學類兩部分。人文社會科學類知識包括經濟、環境、法律、倫理等基本內容;數學和自然科學類知識包括高等工程數學、概率論與數理統計、離散結構、力學、電磁學、光學與現代物理的基本內容。
學科基礎知識
學科基礎知識被視為專業類基礎知識,培養學生計算思維、程序設計與實現、演算法分析與設計、系統能力等專業基本能力,能夠解決實際問題。建議教學內容覆蓋以下知識領域的核心內容:程序設計、數據結構、計算機組成操作系統、計算機網路、信息管理,包括核心概念、基本原理以及相關的基本技術和方法,並讓學生了解學科發展歷史和現狀。
專業知識
課程須覆蓋相應知識領域的核心內容,並培養學生將所學的知識運用於復雜系統的能力,能夠設計、實現、部署、運行或者維護基於計算原理的系統。數學分析、高等代數、普通物理數學與信息科學概論、數據結構、數據科學導論、程序設計導論、程序設計實踐。必修課:離散數學、概率與統計、演算法分析與設計、數據計算智能、資料庫系敏轎統概論、計算機系統基礎、並行體系結構與編程、非結構化大數據分析。
大數據的就業前景怎麼樣
大數據行業就業前景很好,學過大數據之後可以從事的工作很多,比如研發工程師、產品經理、人力資源、市場營銷、數據分析等,這些都是許多互聯網公司需要的職位,而且研發工程師的需求也很大,數據分析很少。
大數據人才就業前飢銀景好還體現在薪酬水平高,大數據是目前薪酬高的行業之一,目前大數據人才已成為市場的稀缺資源,發展前景好,薪酬水平也水漲船高。