㈠ 生活中的大數據例子
1、洛杉磯警察局和加利福尼亞大學合作利用大數據預測犯罪的發生。
目前位於美國加利福尼亞州的PredPol公司在某種程度上把利用大數據預測犯罪變成了現實。
PredPol 推出的犯罪活動預測軟體主界面是一張城市地圖,看起來與谷歌地圖相似。它會根據某一地區過往的犯罪活動統計數據,藉助特殊演算法,計算出某地發生犯罪的概率、犯罪類型,以及最有可能犯罪的時間段。
它還可以用紅色方框表示需要提高警惕的犯罪「熱點」地區,警方可以通過個人電腦、手機或平板電腦對其進行在線查看。
犯罪預測軟體實際上是從地震預測軟體進化而來的,它能處理大量犯罪數據,尤其是犯罪地點和犯罪時間,然後再聯系已知的犯罪行為,比如竊賊通常傾向於在他們最熟悉的社區犯罪等,最終給出一個較為完善的結果。
每次運算結束後,犯罪預測軟體會給出一張畫出了紅色方框的地圖,這些紅色方框代表盜竊行為可能發生的「熱點」地區,有些時候這些區域能准確地縮小至很小的范圍。
警察局的上司會吩咐屬下,當他們沒在處理報警電話時,就應該花時間在這些高危區域中巡邏,最好是每兩小時巡邏至少15分鍾。這樣做的重點更在於通過在軟體畫出的高危區中高調巡邏而降低犯罪,而非等案子發生後破案。
2、google流感趨勢(Google Flu Trends)利用搜索關鍵詞預測禽流感的散布。
Google流感趨勢(Google Flu Trends,GFT)是Google於2008年推出的一款預測流感的產品。Google認為,某些搜索字詞有助於了解流感疫情。Google流感趨勢會根據匯總的Google搜索數據,近乎實時地對全球當前的流感疫情進行估測。
3、麻省理工學院利用手機定位數據和交通數據建立城市規劃。
目前手機移動網路實現了城鄉空間區域的全覆蓋,城鄉人口中手機終端的持有率和使用率已經達到相當高的比例,手機定位數據契合了城鄉人口空間分布與活動規律的分析需求。
根據手機信號在真實地理空間上的覆蓋情況,將手機用戶時間序列的移動信號數據,映射至現實的地理空間位置,即可完整、客觀地還原出手機用戶的現實活動軌跡,從而挖掘得到人口空間分布與活動聯系特徵信息。
4、梅西百貨的實時定價機制。根據需求和庫存的情況,該公司基於SAS的系統對多達7300萬種貨品進行實時調價。
(1)大數據成功預測案例擴展閱讀
經李克強總理簽批,2015年9月,國務院印發《促進大數據發展行動綱要》(以下簡稱《綱要》),系統部署大數據發展工作。
《綱要》明確,推動大數據發展和應用,在未來5至10年打造精準治理、多方協作的社會治理新模式,建立運行平穩、安全高效的經濟運行新機制,構建以人為本、惠及全民的民生服務新體系,開啟大眾創業、萬眾創新的創新驅動新格局,培育高端智能、新興繁榮的產業發展新生態。
未來,數據科學將成為一門專門的學科,被越來越多的人所認知。各大高校將設立專門的數據科學類專業,也會催生一批與之相關的新的就業崗位。與此同時,基於數據這個基礎平台,也將建立起跨領域的數據共享平台,之後,數據共享將擴展到企業層面,並且成為未來產業的核心一環。
㈡ 有哪些大數據分析案例
如下:
1. 大數據應用案例之:醫療行業
1)Seton Healthcare是採用IBM最新沃森技術醫療保健內容分析預測的首個客戶。該技術允許企業找到大量病人相關的臨床醫療信息,通過大數據處理,更好地分析病人的信息。
在加拿大多倫多的一家醫院,針對早產嬰兒,每秒鍾有超過3000次的數據讀取。通過這些數據分析,醫院能夠提前知道哪些早產兒出現問題並且有針對性地採取措施,避免早產嬰兒夭折。
它讓更多的創業者更方便地開發產品,比如通過社交網路來收集數據的健康類App。也許未來數年後,它們搜集的數據能讓醫生給你的診斷變得更為精確,比方說不是通用的成人每日三次一次一片,而是檢測到你的血液中葯劑已經代謝完成會自動提醒你再次服葯。
2)大數據配合喬布斯癌症治療
喬布斯是世界上第一個對自身所有DNA和腫瘤DNA進行排序的人。為此,他支付了高達幾十萬美元的費用。他得到的不是樣本,而是包括整個基因的數據文檔。醫生按照所有基因按需下葯,最終這種方式幫助喬布斯延長了好幾年的生命。
2. 大數據應用案例之:能源行業
1)智能電網現在歐洲已經做到了終端,也就是所謂的智能電表。在德國,為了鼓勵利用太陽能,會在家庭安裝太陽能,除了賣電給你,當你的太陽能有多餘電的時候還可以買回來。
通過電網收集每隔五分鍾或十分鍾收集一次數據,收集來的這些數據可以用來預測客戶的用電習慣等,從而推斷出在未來2~3個月時間里,整個電網大概需要多少電。有了這個預測後,就可以向發電或者供電企業購買一定數量的電。
因為電有點像期貨一樣,如果提前買就會比較便宜,買現貨就比較貴。通過這個預測後,可以降低采購成本。
2)丹麥的維斯塔斯風能系統(Vestas Wind Systems)運用大數據,系統依靠的是BigInsights軟體和IBM超級計算機,分析出應該在哪裡設置渦輪發電機,事實上這是風能領域的重大挑戰。在一個風電場20多年的運營過程中,准確的定位能幫助工廠實現能源產出的最大化。
為了鎖定最理想的位置,Vestas分析了來自各方面的信息:風力和天氣數據、湍流度、地形圖、公司遍及全球的2.5萬多個受控渦輪機組發回的感測器數據。這樣一套信息處理體系賦予了公司獨特的競爭優勢,幫助其客戶實現投資回報的最大化。
3. 大數據應用案例之:通信行業—通過大數據分析挽回核心客戶
法國電信-Orange集團旗下的波蘭電信公司Telekomunikacja Polska是波蘭最大的語音和寬頻固網供應商,希望有效的途徑來准確預測並解決客戶流失問題。
他們決定進行客戶細分,方法是構建一張「社交圖譜」- 分析客戶數百萬個電話的數據記錄,特別關注 「誰給誰打了電話」以及「打電話的頻率」兩個方面。「社交圖譜」把公司用戶分成幾大類,如:「聯網型」、「橋梁型」、「領導型」以及「跟隨型」。
這樣的關系數據有助電信服務供應商深入洞悉一系列問題,如:哪些人會對可能「棄用」公司服務的客戶產生較大的影響?挽留最有價值客戶的難度有多大?運用這一方法,公司客戶流失預測模型的准確率提升了47%。
4、大數據應用案例之:零售業—大數據幫零售企業制定促銷策略
北美零售商百思買在北美的銷售活動非常活躍,產品總數達到3萬多種,產品的價格也隨地區和市場條件而異。由於產品種類繁多,成本變化比較頻繁,一年之中,變化可達四次之多。
結果,每年的調價次數高達12萬次。最讓高管頭疼的是定價促銷策略。公司組成了一個11人的團隊,希望透過分析消費者的購買記錄和相關信息,提高定價的准確度和響應速度。
定價團隊的分析圍繞著三個關鍵維度:
1)數量:團隊需要分析海量信息。他們收集了上千萬的消費者的購買記錄,從客戶不同維度分析,了解客戶對每種產品種類的最高接受能力,從而為產品定出最佳價位。
2)多樣性:團隊除了分析了購買記錄這種結構化的數據外,他們也利用社交媒體發帖這種新型的非結構化數據。由於消費者需要在零售商專頁上點贊或留言以獲得優惠券,團隊利用情感分析公式來分析專頁上消費者的情緒,從而判斷他們對於公司的促銷活動是否滿意,並微調促銷策略。
3)速度:為了實現價值最大化,團隊對數據進行實時或近似實時的處理。他們成功地根據一個消費者既往的麥片購買記錄,為身處超市麥片專櫃的他/她即時發送優惠券,為客戶帶來便利性和驚喜。
透過這一系列的活動,團隊提高了定價的准確度和響應速度,為零售商新增銷售額和利潤數千萬美元。
5、大數據應用案例之:網路營銷行業(SEM)
很多企業在做SEM的過程中,都有這樣的感觸:每年都會花費大量的預算在SEM推廣中,但是因為關鍵詞投入產出無法可視化,常常花了很多錢卻不見具體的回報。
在競爭如此激烈的SEM市場中,企業需要一個高效的數據分析工具來盡可能地幫企業優化SEM推廣,例如BDP,來幫企業節省不必要的支出,提升整體的經營績效。
企業可藉助數據平台提供的網路營銷整合解決方案,打通各個搜索引擎營銷(SEM)、在線客服系統和CRM系統,營銷競價人員無需掌握復雜的編程技術,簡單拖拽即可生成報表,觀察每一個關鍵詞的投入和產出,分析每一個頁面的轉化,有效降低投放成本。
通過BDP實況分析數據,可以快速洞悉對手關鍵詞的投放時段、地域及排名,並對其進行可視化的分析,實時監控自己和競爭對手的投放情況,了解對手的投放策略,支持自定義設置數據更新的時間點、監控頻次和時段,及時調整策略。知已知彼,才能百戰不殆。
6、大數據應用案例之:電商行業
意料之外:胸部最大的是新疆妹子。曾經淘寶平台顯示,中國女性購買最多的文胸尺碼為B罩杯。B罩杯佔比達41.45%,其中又以75B的銷量最好,其次是A罩杯,購買佔比達25.26%,C罩杯只有8.96%。
雖然淘寶數據平台不能代表一切,但是結合現實來看,這個也具有普遍的代表性,只能感慨中國女性普遍size。在文胸顏色中,黑色最為暢銷,黑色絕對是百搭,每個女性必備。
從省市排名,胸部最大的是新疆妹子。這些數據都對於文胸店鋪而言是很好的參考,為店鋪的庫存、定價、款式選擇等策略都有奠定數據基礎。
7、大數據應用案例之:娛樂行業
微軟大數據成功預測奧斯卡21項大獎。2013年,微軟紐約研究院的經濟學家大衛•羅斯柴爾德(David Rothschild)利用大數據成功預測24個奧斯卡獎項中的19個,成為人們津津樂道的話題。
今年羅斯柴爾德再接再厲,成功預測第86屆奧斯卡金像獎頒獎典禮24個獎項中的21個,繼續向人們展示現代科技的神奇魔力。
總的來說,大數據的終極目標並不僅僅是改變競爭環境,而是徹底扭轉整個競爭環境,帶來新機遇,企業需要應勢而變。企業只有認識到這一點,使用合適的數據分析產品、聰明地使用和管理數據,才能在長期競爭中成為終極贏家。
㈢ 目前大數據在哪些行業有案例或者說應用
大數據應用的關鍵,也是其必要條件,就在於"IT"與"經營"的融合,當然,這里的經營的內涵可以非常廣泛,小至一個零售門店的經營,大至一個城市的經營。以下是關於各行各業,不同的組織機構在大數據方面的應用的案例,在此申明,以下案例均來源於網路,本文僅作引用,並在此基礎上作簡單的梳理和分類。
大數據應用案例之:醫療行業
Seton Healthcare是採用IBM最新沃森技術醫療保健內容分析預測的首個客戶。該技術允許企業找到大量病人相關的臨床醫療信息,通過大數據處理,更好地分析病人的信息。
在加拿大多倫多的一家醫院,針對早產嬰兒,每秒鍾有超過3000次的數據讀取。通過這些數據分析,醫院能夠提前知道哪些早產兒出現問題並且有針對性地採取措施,避免早產嬰兒夭折。
它讓更多的創業者更方便地開發產品,比如通過社交網路來收集數據的健康類App。也許未來數年後,它們搜集的數據能讓醫生給你的診斷變得更為精確,比方說不是通用的成人每日三次一次一片,而是檢測到你的血液中葯劑已經代謝完成會自動提醒你再次服葯。
大數據應用案例之:能源行業
智能電網現在歐洲已經做到了終端,也就是所謂的智能電表。在德國,為了鼓勵利用太陽能,會在家庭安裝太陽能,除了賣電給你,當你的太陽能有多餘電的時候還可以買回來。通過電網收集每隔五分鍾或十分鍾收集一次數據,收集來的這些數據可以用來預測客戶的用電習慣等,從而推斷出在未來2~3個月時間里,整個電網大概需要多少電。有了這個預測後,就可以向發電或者供電企業購買一定數量的電。因為電有點像期貨一樣,如果提前買就會比較便宜,買現貨就比較貴。通過這個預測後,可以降低采購成本。
維斯塔斯風力系統,依靠的是BigInsights軟體和IBM超級計算機,然後對氣象數據進行分析,找出安裝風力渦輪機和整個風電場最佳的地點。利用大數據,以往需要數周的分析工作,現在僅需要不足1小時便可完成。
大數據應用案例之:通信行業
XO Communications通過使用IBM SPSS預測分析軟體,減少了將近一半的客戶流失率。XO現在可以預測客戶的行為,發現行為趨勢,並找出存在缺陷的環節,從而幫助公司及時採取措施,保留客戶。此外,IBM新的Netezza網路分析加速器,將通過提供單個端到端網路、服務、客戶分析視圖的可擴展平台,幫助通信企業制定更科學、合理決策。
電信業者透過數以千萬計的客戶資料,能分析出多種使用者行為和趨勢,賣給需要的企業,這是全新的資料經濟。
中國移動通過大數據分析,對企業運營的全業務進行針對性的監控、預警、跟蹤。系統在第一時間自動捕捉市場變化,再以最快捷的方式推送給指定負責人,使他在最短時間內獲知市場行情。
NTT docomo把手機位置信息和互聯網上的信息結合起來,為顧客提供附近的餐飲店信息,接近末班車時間時,提供末班車信息服務。
大數據應用案例之:零售業
"我們的某個客戶,是一家領先的專業時裝零售商,通過當地的百貨商店、網路及其郵購目錄業務為客戶提供服務。公司希望向客戶提供差異化服務,如何定位公司的差異化,他們通過從 Twitter 和 Facebook 上收集社交信息,更深入的理解化妝品的營銷模式,隨後他們認識到必須保留兩類有價值的客戶:高消費者和高影響者。希望通過接受免費化妝服務,讓用戶進行口碑宣傳,這是交易數據與交互數據的完美結合,為業務挑戰提供了解決方案。"Informatica的技術幫助這家零售商用社交平台上的數據充實了客戶主數據,使他的業務服務更具有目標性。
零售企業也監控客戶的店內走動情況以及與商品的互動。它們將這些數據與交易記錄相結合來展開分析,從而在銷售哪些商品、如何擺放貨品以及何時調整售價上給出意見,此類方法已經幫助某領先零售企業減少了17%的存貨,同時在保持市場份額的前提下,增加了高利潤率自有品牌商品的比例。
㈣ 什麼是大數據,大數據的典型案例有哪些
隨著大數據時代的到來,大數據早已被逐步的運用在我們生活中的方方面面,那麼除了之前眾所周知的大數據殺熟事件,對於大數據你還了解多少呢?科學運用案例你又知道多少?今天就跟隨千鋒小編一起來看看。
洛杉磯警察局和加利福尼亞大學合作利用大數據預測犯罪的發生。
google流感趨勢(Google Flu Trends)利用搜索關鍵詞預測禽流感的散布。
統計學家內特.西爾弗(Nate Silver)利用大數據預測2012美國選舉結果。
麻省理工學院利用手機定位數據和交通數據建立城市規劃。
梅西百貨的實時定價機制,根據需求和庫存的情況,該公司基於SAS的系統對多達7300萬種貨品進行實時調價。
……
種種的案例實在是太多,或許我們永遠說不完一樣,所以我們就來看一看大數據被科學運用的一個經典案例:
「啤酒與尿布」的故事產生於20世紀90年代的美國沃爾瑪超市中,沃爾瑪的超市管理人員分析銷售數據時發現了一個令人難於理解的現象:在某些特定的情況下,「啤酒」與「尿布」兩件看上去毫無關系的商品會經常出現在同一個購物籃中,這種獨特的銷售現象引起了管理人員的注意,經過後續調查發現,這種現象出現在年輕的父親身上。
如果這個年輕的父親在賣場只能買到兩件商品之一,則他很有可能會放棄購物而到另一家商店,直到可以一次同時買到啤酒與尿布為止。沃爾瑪發現了這一獨特的現象,開始在賣場嘗試將啤酒與尿布擺放在相同的區域,讓年輕的父親可以同時找到這兩件商品,並很快地完成購物;而沃爾瑪超市也可以讓這些客戶一次購買兩件商品、而不是一件,從而獲得了很好的商品銷售收入,這就是「啤酒與尿布」 故事的由來。
當然「啤酒與尿布」的故事必須具有技術方面的支持。1993年美國學者Agrawal提出通過分析購物籃中的商品集合,從而找出商品之間關聯關系的關聯演算法,並根據商品之間的關系,找出客戶的購買行為。艾格拉沃從數學及計算機演算法角度提 出了商品關聯關系的計算方法——Aprior演算法。沃爾瑪從上個世紀 90 年代嘗試將 Aprior 演算法引入到 POS機數據分析中,並獲得了成功,於是產生了「啤酒與尿布」的故事。
其實大數據,其影響除了以上列舉的方面外,它同時也能在經濟、政治、文化等方面產生深遠的影響,大數據可以幫助人們開啟循「數」管理的模式,也是我們當下「大社會」的集中體現,三分技術,七分數據,得數據者得天下。
㈤ 大數據利用的六大現實商業案例
大數據利用的六大現實商業案例_數據分析師考試
大數據正在改變市場的競爭格局。而那些能夠充分利用大數據分析的企業往往能夠更快地向市場提供產品和服務,更好地保持與顧客需求和慾望的一致性。2014年,調研公司Gartner的調查發現,73%的受訪企業在大數據方面進行了投資,或者計劃在接下來的24個月內投資大數據項目;而2013年的這一數據比例則為64%。改善客戶體驗和流程效率被受訪者排在最高的優先順序。
客戶體驗的改善不管是在線上或線下都在發生著的,數據從智能手機、移動應用程序、POS系統和電子商務網站等等渠道進行收集。隨著企業比以往任何時候都能夠收集和分析更多的、且類型豐富的數據信息,企業現如今所進行哪些相關工作,以及為什麼要進行都需要進行數據量化。而且,那是最靈活的調整自己的經營策略,以提高或維持市場份額的手段。在執行過程中,客戶體驗的改善有助於提高客戶的忠誠度和企業營收的增長。另一方面,如果公司選擇無視相關的數據,他們很可能會失去客戶和交易,而將其拱手讓給那些對於數據分析反應更敏捷,更精明的競爭對手。
企業流程的改進繼續專注於提高效率,節約成本,以及提高產品或服務的質量。大數據可以提供比傳統系統更深入的見解,因為其有更多的數據點和數據來源分析作為支撐。
無論企業的目標是為了促進營收增長、或是加快產品服務的上市速度、優化勞動力,或是實現其他操作方面的改進,其核心都在與變得更加積極主動,減少被動反應,這就意味著需要使用預測分析,以縮短學習曲線。
有許多使用大數據來提升和改善企業運營的方法,下面將為大家介紹六個典型的案例。
縮短上市時間
推出新的產品或服務涉及多個生命周期階段,其中一些比另一些更容易加速。在過去的幾十年中,葯品製造商已經使用臨床試驗模擬學習速度,降低成本,並減少了參與試驗患者的不必要的負擔。藉助雲計算和大數據,臨床試驗的模擬可以變得更加有利於製造商和患者。
百時美施貴寶公司(bristol-myers squibb) 通過將其內部託管網格環境擴展到AWS雲,減少了98%的臨床試驗模擬時間。該公司還進一步優化了劑量水平,使得葯物產品更安全,並只需要較少的臨床試驗患者的血液樣本。
由於臨床試驗對於數據是高度敏感的,百時美施貴寶公司建立了一個專門的,加密的VPN隧道鏈接亞馬遜網關,並配置了虛擬私有雲,以便使得其運行環境能夠與公眾客戶進行隔離。
在遷入雲中之前,科學家們使用一個共享的內部環境,所以運行大約數百個項目需要花費60小時。現在,每個科學家都有一個專門的環境,2000個項目大約在1.2小時內就能夠處理完畢,而且不會引起影響到團隊的其他成員。
遷移到AWS雲之後,百時美施貴寶公司得以能夠減少兒科研究臨床試驗受試者的人數,從60減少到40人,同時還縮短了一年多的學習研究時間。
優化勞動力
一些企業的人力資源部門正在使用人才分析和大數據來降低成本,進而有效管理人力資源相關的問題。大數據幫助他們能夠有效的選擇能夠更好的適應企業的新員工,降低員工離職率,了解技能和現有市場勞動力的輸出狀況,並確定公司前向發展所需要的人才。
施樂公司使用大數據將其呼叫中心的人員流失率降低了20%。要做到這一點,就必須了解是什麼原因導致了員工的離職,並確定如何改善員工的敬業度。
改善財務績效
企業的財務部門已經不僅僅只是進行定期的報告和BI工作了,他們已經在開始利用大數據來降低風險和成本,尋找機會提高預測的准確性。具體地說,他們使用的數據來識別高風險客戶和供應商,以阻止欺詐,找准收入泄漏,並發掘新的或更有效的商業模式。
最近,天氣預測公司The Weather Company與IBM之間的合作將使企業用戶得以更好地管理天氣狀況對於企業績效的影響。據The Weather Company介紹,每年,僅在美國天氣因素就會造成價值五千億美元的經濟影響。
這些氣象數據是來自超過10萬台的氣象感測器和飛機,以及數以百萬計的智能手機、建築和路上奔跑的車輛。這些數據與其他22億個獨特的預測點的數據來源相結合,平均每天進行100多億次的實時天氣預報。例如,零售商可以使用這些數據信息來調整人員配置和供應鏈策略。而能源公司將能夠藉助這些天氣數據信息改善供應和預測需求。保險公司將能夠向其投保人警告惡劣天氣條件,這樣他們就可以減少在冰雹災害天氣發生汽車損壞的可能性。
智能化的銷售
稍微修改一下企業的銷售和營銷策略就可能會對您企業的銷售業績產生深遠的影響,特別是當通過大數據分析之後進行的有規劃的修改。
想像一下,一個為期六周的直郵營銷活動票面收益率的超過了70%。而根據直銷協會的介紹,平均直郵回報率僅為3.7%。而雜貨連鎖店Kroger公司是如何做到的呢?一方面,他們根據客戶個人的購物歷史記錄採用個性化的直接郵寄方式。
Kroger公司的客戶會員卡計劃,被食品行業評為第一。超過90%的客戶使用會員卡購買產品。雖然也有其他因素的共同作用,使得Kroger公司的財務績效如此驕人,但其連續45個季度的持續增長至少部分要歸因於其客戶忠誠計劃。
最大限度地減少設備和資產故障
企業希望避免不必要的業務中斷干擾和客戶的焦慮。現在,感測器已經被嵌入到一切設備,企業可以使用這些數據信息,以確定何時需要對飛機,火車,汽車,及其它電器設備進行維修。理想情況下,當問題已經出現的時候,企業要了解這個問題是什麼原因造成的,以及其如何能得到解決,最好有一個專業的維修隊伍。
Pratt &Whitney公司是美國聯合技術公司(United Technologies Corp.)下屬的一個單位,該公司試圖減少意外的飛機發動機維修。據Airinsight.com介紹,今天的發動機能夠在飛機飛行過程中從多個快照收集約100個參數。相比之下,新一代的引擎能夠收集關於連續飛行的5000個參數。這一過程中產生約2千兆位元組的數據。使用這些數據信息,Pratt &Whitney公司及其合作夥伴IBM得以進行主動的維修。
利用客戶的終身價值
如今的授權客戶比以往任何時候都更加苛刻和善變。企業為了保持或增加市場份額,需要盡可能多地了解自己的客戶,不斷改善自己的產品和服務,並願意調整自己的商業模式,以反映其客戶的實際需求。
美國汽車租賃公司AvisBudget就一直致力於這方面。他們通過實施整合戰略增加了市場份額,並取得了數億美元的額外收入。主動參與確定客戶價值細分,提供分層激勵,提高客戶的忠誠度。該公司的IT合作夥伴CSC公司採用模型預測AvisBudget客戶資料庫的終身價值,並驗證了其使用多通道的營銷活動和相應的分析。
現在的客戶評估數據結合了其他數據,包括客戶的租賃歷史,服務問題,服務地區的人口統計,企業隸屬關系和客戶反饋等等。Avis Budget也收集和分析社交媒體數據。該公司有一個社交媒體專家團隊專門進行品牌營銷。該公司最近還更新了網站,以進一步改善客戶體驗,並且他們正在使用大數據預測區域性的車隊配售和定價服務需求。
以上是小編為大家分享的關於大數據利用的六大現實商業案例的相關內容,更多信息可以關注環球青藤分享更多干貨
㈥ 大數據應用案例有哪些
案例如下:
1、交通大數據暢通出行
交通作為人類行為的重要組成和重要條件之一,對於大數據的感知也是最急迫的。近年來,我國的智能交通已實現了快速發展,許多技術手段都達到了國際領先水平。交通的大數據應用主要在兩個方面,一方面可以利用大數據感測器數據來了解車輛通行密度,合理進行道路規劃包括單行線路規劃。另一方面可以利用大活數據來實現即時信號燈調度,提高已有線路運行能力。
2、教育大數據因材施教
在課堂上,數據不僅可以幫助改善教育教學,在重大教育決策制定和教育改革方面,大數據更有用武之地。利用數據來診斷處在輟學危險期的學生、探索教育開支與學生學習成績提升的關系、探索學生缺課與成績的關系。
3、環保大數據對抗PM2.5
在美國NOAA(國家海洋暨大氣總署)其實早就在使用大數據業務。每天通過衛星、船隻、飛機、浮標、感測器等收集超過35億份觀察數據。收集完畢後,NOAA會匯總大氣數據,海洋數據,以及地質數據,進行直接測定,繪制出復雜的高保真預測模型,將其提供給NWS(國家氣象局)做出氣象預報的參考數據。
大數據特點
1、大容量
例如,IDC最近的報告預測到2020年,世界數據量將擴大50倍.目前,大數據的規模仍然是不斷變化的指標,單一數據集的規模範圍從數十TB到數PB不同.簡單來說,存儲1PB數據需要2萬台配備50GB硬碟的PC.此外,各種意想不到的來源可以產生數據。
2、多樣性
數據多樣性的增加主要是由於網路日誌、社交媒體、網路檢索、手機通話記錄、感測器網路等數據類型。
3、高速
高速描述的是數據創建和移動的速度.在高速網路時代,通過實現軟體性能優化的高速計算機處理器和伺服器,創建實時數據流已成為流行趨勢.企業不僅要知道如何快速創建數據,還要知道如何快速處理、分析和返回用戶,以滿足他們的實時需求。
㈦ 大數據那些神奇或哭笑不得的案例
大數據那些神奇或哭笑不得的案例
互聯網時代每天都有巨量的數據產生,信息技術也隨之飛速發展。大數據已經滲透進我們生活的方方面面,其實我們也時時刻刻在接觸這些大數據帶給我們的服務。接下來我們看看那些大數據挖掘出來的一些神奇或哭笑不得的案例。
1啤酒+尿布(神方案)
全球零售業巨頭沃爾瑪在對消費者購物行為分析時發現,男性顧客在購買嬰兒尿片時,常常會順便搭配幾瓶啤酒來犒勞自己,於是嘗試推出了將啤酒和尿布擺在一起的促銷手段。沒想到這個舉措居然使尿布和啤酒的銷量都大幅增加了。如今,「啤酒+尿布」的數據分析成果早已成了大數據技術應用的經典案例,被人津津樂道。
2數據新聞讓英國撤出伊拉克
2010年10月23日《衛報》利用維基解密的數據做了一篇「數據新聞」。將伊拉克戰爭中所有的人員傷亡情況均標注於地圖之上。地圖上一個紅點便代表一次死傷事件,滑鼠點擊紅點後彈出的窗口則有詳細的說明:傷亡人數、時間,造成傷亡的具體原因。密布的紅點多達39萬,顯得格外觸目驚心。一經刊出立即引起朝野震動,推動英國最終做出撤出駐伊拉克軍隊的決定。
3C罩杯都在新疆
淘寶數據平台顯示,購買最多的文胸尺碼為B罩杯。B罩杯佔比達41.45%,其中又以75B的銷量最好。其次是A罩杯,購買佔比達25.26%,C罩杯只有8.96%。在文胸顏色中,黑色最為暢銷。以省市排名,胸部最大的是新疆妹子。
4QQ圈把前女友介紹給未婚妻
2012年3月騰訊推出QQ圈子,按共同好友的連鎖反應攤開用戶的人際關系網,把用戶的前女友推薦給未婚妻,把同學同事朋友圈子分門別類,利用大數據處理能力給人帶來「震撼」。
5首款「魔鏡」預知市場走向
在現在,「魔鏡」可以通過數據的整合分析可視化不僅可以得出誰是世界上最美的女人,還能通過價量關系得出市場的走向。在不久前,「魔鏡」幫助中石等企業分析數據,將數據可視化,使企業科學的判斷、決策,節約成本,合理配置資源,提高了收益。
6Google數字模型預測流感
2009年,Google通過分析5000萬條美國人最頻繁檢索的詞彙,將之和美國疾病中心在2003年到2008年間季節性流感傳播時期的數據進行比較,並建立一個特定的數學模型。最終google成功預測了2009冬季流感的傳播甚至可以具體到特定的地區和州。
7數據文檔幫喬布斯延長生命
喬布斯是世界上第一個對自身所有DNA和腫瘤DNA進行排序的人。為此,他支付了高達幾十萬美元的費用。他得到的不是樣本,而是包括整個基因的數據文檔。醫生按照所有基因按需下葯,最終這種方式幫助喬布斯延長了好幾年的生命。
8大數據讓奧巴馬連任成功
2012年11月奧巴馬大選連任成功的勝利果實也被歸功於大數據,因為他的競選團隊進行了大規模與深入的數據挖掘。時代雜志更是斷言,依靠直覺與經驗進行決策的優勢急劇下降,在政治領域,大數據的時代已經到來;各色媒體、論壇、專家鋪天蓋地的宣傳讓人們對大數據時代的來臨興奮不已,無數公司和創業者都紛紛跳進了這個狂歡隊伍。
9大數據成功預測21項大獎
2013年,微軟紐約研究院的經濟學家大衛?羅斯柴爾德(David Rothschild)利用大數據成功預測24個奧斯卡獎項中的19個,成為人們津津樂道的話題。今年羅斯柴爾德再接再厲,成功預測第86屆奧斯卡金像獎頒獎典禮24個獎項中的21個,繼續向人們展示現代科技的神奇魔力。
10購物數據預測高中生懷孕
明尼蘇達州一家塔吉特門店被客戶投訴,一位中年男子指控塔吉特將嬰兒產品優惠券寄給他的女兒——一個高中生。但沒多久他卻來電道歉,因為女兒經他逼問後坦承自己真的懷孕了。塔吉特百貨就是靠著分析用戶所有的購物數據,然後通過相關關系分析得出事情的真實狀況。
人類已進入大數據時代,國際數據公司的研究結果表明,近幾年全球產生的數據量高達數個ZB。基於這樣一個大數據的概念,我們會在各行各業,比如醫療行業,將迎來深度的行業變革,甚至顛覆性的變革。
以上是小編為大家分享的關於大數據那些神奇或哭笑不得的案例的相關內容,更多信息可以關注環球青藤分享更多干貨
㈧ 大數據技術有在工業領域的成功應用案例嗎
. 深圳市兒童醫院成功部署IBM集成平台與商業智能分析系統
IBM利用其行業領先的大數據與分析技術,支持深圳市兒童醫院搭建信息集成平台,整合原有分散在多系統中的海量數據,實現各部門的信息共享;同時通過商業智能分析對集成數據進行深入挖掘,為醫院各部門人員的科學決策提供全面的輔助,提升醫院的服務水平和管理能力。
2. Informatica幫助紫金農商銀行深挖數據價值
紫金農商銀行ODS數據倉庫項目建設使用Informatica產品完成數據的載入、清洗、轉換工作顯得尤為簡單,圖形化、流程化設計使維護人員能夠快速、順暢的操作,即使數據源結構發生變化,也不會像以前必須修改大量的程序代碼,只需要在PowerCenter中配置一下即可。
3. 華為大數據一體機服務於北大重點實驗室
經過大量的前期調查,比較和分析准備工作,北大重點實驗室選擇了華為基於高性能伺服器RH5885 V2的HANA數據處理平台。HANA提供的對大量實時業務數據進行快速查詢和分析以及實時數據計算等功能,在很大程度上得益於華為RH5885 V2伺服器的高可靠、高性能和高可用性的支撐。
4. IBM攜手漢端科技為飛鶴乳業打造全產業鏈可追溯體系
IBM、漢端科技與中國飛鶴乳業聯合宣布,通過利用IBM業界領先的全面大數據與分析能力,和漢端科技在商業智能領域豐富的行業經驗,飛鶴乳業實現了產品的可追溯與食品安全的數字化管理,完成了系統數字化、透明化、服務化的升級。
5. 浪潮大數據平台大大提升了濟南的警務工作能力
浪潮在幫助濟南公安局在搭建雲數據中心的基礎上構建了大數據平台,以開展行為軌跡分析、社會關系分析、生物特徵識別、音視頻識別、銀行電信詐騙行為分析、輿情分析等多種大數據研判手段的應用,為指揮決策、各警種情報分析、研判提供支持,做到圍繞治安焦點能夠快速精確定位、及時全面掌握信息、科學指揮調度警力和社會安保力量迅速解決問題。
6. 英特爾攜杭州誠道科技構建智能交通
面對大數據挑戰,杭州市和杭州誠道科技有限公司緊密合作,部署了基於英特爾大數據解決方案的誠道重點車輛動態監管系統,通過集中的數據中心將全市卡口、電子警察、視頻監控、流量檢測設備、信號機、誘導設備等有效地連接起來,從交通案件偵破能力、交通警察對機動車輛的監管能力到利用關聯車輛的數據分析能力,都得到了極大提升。
7. 步步高集團借Oracle Exadata 大大提高了IT投資回報率
步步高集團採用 Oracle Exadata資料庫雲伺服器搭建信息化平台,憑借Oracle Exadata資料庫雲伺服器的高擴展性、安全性和冗餘性,步步高集團得以在該基礎架構上運行一系列Oracle零售行業以及Oracle的應用軟體。此外,基於Oracle Exadata的步步高IT新架構比傳統架構擁有更好的性價比,最大限度地增加了IT的投資回報率。
8. 華為Anti-DDoS助阿里巴巴檢測DDoS變革
阿里巴巴現網多個數據中心出口都部署了華為的Anti-DDoS解決方案,平均每天防護的DDoS攻擊次數超過100次,每年達數萬次,峰值防護的DDoS攻擊流量超過100Gbps。如今,DDoS攻擊在阿里巴巴安全工程師眼裡已經習以為常,由華為Anti-DDoS方案自動調度進行清洗防護即可。「雙11」期間,華為Anti-DDoS方案一如既往地成功防護了多輪DDoS攻擊事件,有力保障了阿里巴巴網路交易的順暢平穩。
9. 華為大數據方案在福建移動的應用
為進一步提升外呼成功率,從2014年初開始,福建移動聯合華為公司開展基於大數據的精準營銷工作,採用大數據分析的方法選擇外呼目標價值用戶。基於大數據分析方法和傳統外呼方法分別提供20萬目標客戶清單,在前台無感知下進行對比驗證,確保對比效果不受人為因素影響,經過外呼驗證,基於大數據分析方法較傳統方法外呼成功率提升50%以上,有效支撐了福建移動4G用戶發展戰略。
10. 北京市人民政府「12345」便民電話中心選擇Oracle Exadata 實現便攜服務
為了進一步提升部門的調度能力、辦理水平和群眾滿意度,北京市人民政府「12345」便民電話中心選擇Oracle Exadata資料庫雲伺服器,升級成為北京市非緊急救助服務綜合受理調度平台,通過Oracle Exadata Database Machine支撐起新平台的資料庫訪問需求。升級後的平台能夠整合全市的便民呼叫服務,支撐來自群眾的各類訴求、求助、批評和建議,並可為公眾提供方便、快捷的公共信息服務,真正成為全市的輿情中心、信息匯集中心和城市名片。
11. 民生銀行借IBM BigInsights應對金融業的大數據挑戰
IBM BigInsights大數據解決方案和企業級NoSQL資料庫SequoiaDB合作,為民生銀行搭建低成本、高性能、高可靠且水平擴張的數據平台,幫助民生銀行通過大數據分析應對金融業的大數據挑戰,完善交易流水查詢分析系統,產業鏈金融管理系統,以及私人銀行產品貨架管理系統。
12. 中信銀行信用卡實施EMC Greenplum 數據倉庫解決方案
中信銀行信用卡中心選擇實施EMC Greenplum 數據倉庫解決方案。Greenplum 數據倉庫解決方案為中信銀行信用卡中心提供了統一的客戶視圖,藉助客戶統一視圖,中信銀行信用卡中心可以更清楚地了解其客戶價值體系,從而能夠為客戶提供更有針對性和相關性的營銷活動。基於數據倉庫,中信銀行信用卡中心現在可以從交易、服務、風險、權益等多個層面分析數據。通過提供全面的客戶數據,營銷團隊可以對客戶按照低、中、高價值來進行分類,根據銀行整體經營策略積極地提供相應的個性化服務。
13. 惠普助力雅昌集團掘金大數據
成立於1993年的雅昌集團首創「傳統印刷+IT技術+文化藝術」的商業模式,形成環環相扣的文化產業鏈,為藝術市場提供全面、綜合的一站式服務。基於企業內容數據管理體系,惠普為雅昌搭建了從數據採集、處理、管理到應用的全過程處理流程,使雅昌可以快速利用所需數據,縮短新品上線時間,快速響應市場變化。
14. 德國足球隊採用SAP大數據方案迎戰世界盃
德國足協和SAP公司通過聯合創新引入SAP Match Insights解決方案,該方案基於SAP HANA平台運行處理海量數據,可以為球員和教練提供一個簡明的用戶界面,幫助雙方開展互動性更強的對話,分析球隊訓練、備戰和比賽情況,從而提升球員和球隊的成績。
15. 1號店借Oracle Exadata改善終端客戶體驗
1號店採用Oracle Exadata資料庫雲伺服器成功優化統一整合的數據平台,滿足了不斷增長的業務處理需求,並進一步改善了終端客戶體驗。經過Oracle Exadata整合後的新平台採用混合負載互備架構,將平均處理性能提升7倍,既可以支持目前規劃業務量的業務處理,還能夠隨著業務量的增長進行在線升級、擴容,滿足處理能力和數據量的增長需求。軟、硬體集成設計的Oracle Exadata 協助解決了1號店的I/O瓶頸問題,實現了比傳統架構更高的性能和可擴展性。同時,基於Exadata的1號店IT新架構比傳統架構擁有更好的性價比,最大限度地發揮了IT投資回報率。
16. 大數據在青島銀行:提升銀行交易性能、簡化運營和管理
利用IBM大數據專家PureData,青島銀行能夠高效集成業務數據,簡化運維。PureData for Transactions作為青島銀行重要業務處理系統,能夠在一個系統中整合超過幾十個資料庫,同時提供良好的性能、可用性和可擴展性支持實現廣泛的業務目標,例如地域擴張,突發的業務交易高峰,新櫃面、流程銀行等大規模的業務上線等。
17. Informatica方案幫助南京兒童醫院實現信息互通共享
南京市兒童醫院目前已建成包括HIS、LIS、PACS、電子病歷EMR、醫生工作站、移動護理、病案、財務管理、庫房管理和手術麻醉等幾十個應用系統,這些異構系統間數據調用分散,不能集中統一標准化管理。通過採用Informatica ETL工具構建數據倉庫系統,並基於數據倉庫建設醫院數據調用公共資源中心庫,南京市兒童醫院實現了實時的數據交互和信息共享,干凈、標準的數據為跨應用系統數據關聯分析打下扎實基礎。
18. 東吳大學採用達索系統EXALEAD啟動大數據應用暨產學合作
台灣東吳大學採用達索系統EXALEAD大數據智能應用開發解決方案,全方位地整合校務信息,積極開發校務經營發展的各項應用。此外還將啟動三方產學合作計劃,協助建立校內大數據相關課程、人才培訓和實習機制,使學生自入學就開始不斷提升其未來職場所需的關鍵競爭力,學用合一,實現學校、學生、企業三贏。
19. 網路大腦PK人腦 大數據押高考作文題
為了幫助考生更好地備考,網路高考作文預測通過對過去八年高考作文題及作文範文、海量年度搜索風雲熱詞、歷年新聞熱點等原始數據與實時更新的「活數據」進行深度挖掘分析,以「概率主題模型」模擬人腦思考,反向推導出作文主題及關聯詞彙,為考生預測出2014年高考作文的六大命題方向。
20. IBM助力同仁醫院構築強大的分析體系
同仁醫院通過與IBM合作,同仁醫院建立起了強大的分析能力和體系,包括對臨床、運營、科研、考核等信息的分析,實現智慧的醫院管理與考核;同時也能看到醫療設備的平均故障間隔周期,從而降低了設備的故障率、平均維修時間。這一切都讓工作效率穩步提升,也緩解了病人看病難的問題,提高了患者就醫滿意度。
21. 微軟助上海市浦東新區衛生局更加智能化
作為上海市公共衛生的主導部門,浦東新區衛生局在微軟SQL Server 2012的幫助之下,積極利用大數據,推動衛生醫療信息化走上新的高度:公共衛生部門可通過覆蓋區域的居民健康檔案和電子病歷資料庫,快速檢測傳染病,進行全面的疫情監測,並通過集成疾病監測和響應程序,快速進行響應。與此同時,得益於非結構化數據的分析能力的日益加強,大數據分析技術也使得臨床決策支持系統更智能。
22. 湖南電信通過分析掌握電信市場動向、針對性定製營銷計劃
利用IBM大數據專家PureData,湖南電信實現了通過分析掌握市場整體經營情況、快速制定市場策略以及加強客戶經理營銷維系的高效執行。PureData for Analytics作為湖南電信本地數據集市建設工程重要組成部分,高效整合了湖南電信旗下各本地網數據,為進一步分析創造先機。
23. 攜程借SQL Server增強了數據採集和掌控
作為國內領先的綜合性旅行服務公司,攜程計算機技術有限公司曾面臨分支機構、服務城市和員工數量的增長所帶來的運營數據分散和數據集成難的 IT 問題。藉助微軟SQL Server 2012 商業智能解決方案,攜程增強了其對所有下屬分支機構的數據採集和掌控,大大減少了計劃性停機時間以及非計劃性停機的時間,靈活的部署選項也可以根據攜程的需要實現從伺服器到雲的擴展。
24. 上海公共研發平台部署Oracle Exadata應對擴展需求
上海公共研發平台部署Oracle Exadata資料庫雲伺服器,以應對其系統和應用的擴展需求。Oracle Exadata融合了一系列同類最佳的預配置的伺服器、網路、存儲和軟體,能為數據倉庫和在線事務處理應用程序提供超強性能。上海公共研發平台運行Oracle Exadata期間相對穩定,CPU佔用率控制在5%以內,極大改善了用戶應用體驗。同時,Exadata平台的可擴展性極好的滿足了上海公共研發平台的系統需求,目前整個公共研發平台的20多個應用系統已經全部遷移到Exadata上,應用部署量增長1倍,且運行十分穩定。
25. 360手機衛士10KB解決iPhone騷擾
360手機衛士通過對海量數據的運算和精準匹配下發,將一組大小僅為10KB的數據即1000個騷擾號碼同步到用戶手機上,打造個性化的騷擾號碼資料庫,此外,每天更新的騷擾號碼庫數據,會依據標記趨勢調整騷擾號碼庫中各類數據比例,即每一位360手機衛士用戶手機中的1000個騷擾號碼都是動態的,隨地域、身份以及騷擾趨勢的變化而變化。
26. 神州數碼助張家港市更「智慧」
在張家港實踐的城市案例中,市民登錄這款「神州數碼」研發的市民公共信息服務平台後,市民只要憑借自己的身份證和密碼,即可通過該系統平台進行240餘項「在線預審」服務、130餘項「網上辦事」服務等,還可通過手機及時查看辦事狀態。相比於以前來說,市民辦事的時間最少可以節省一半以上。
27. IBM助中網組委會構建安全和敏捷的內聯網
IBM專門為中網設計了具有實時大數據分析功能的MatchTracker(賽事追蹤系統),可以為球迷提供數據呈現、計分等功能。 MatchTracker基於IBM SlamTracker分析技術,使球迷能夠利用歷史和實時性數據,洞悉比分之後的態勢和策略。此外,IBM還為中網組委會構建了安全和敏捷的內聯網。
28. Cortana基於微軟Bing大數據預測世界盃
微軟為Cortana增加了世界盃預測的功能,基於微軟Bing大數據,並綜合考慮世界盃各支球隊的過往比賽結果、比賽時間、天氣情況、主場優勢以及其他因素,使用大量的博彩市場公開數據、民意調查、社交媒體以及其它在線數據,利用大數據分析來判斷每場比賽的結果。
29. 中科曙光助同濟大學科研領域再創新高
為了滿足爆炸式增長的用戶和數據量,同濟大學攜手中科曙光,在全面整合雲計算平台和現有資產的基礎上,採用 DS800-F20存儲系統、Gridview集群管理系統,以及Hadoop分布式計算平台構建出了業內領先的大數據柔性處理平台,使得同濟大學在信息學科及其交叉學科研究領域邁上一個新台階。
30. 華為助農行完成海量數據分布式處理的需求
華為向農行提供了良好的計算平台,基於華為RH2288 V2伺服器的分布式並行計算集群進行測試,以及還提供了快速響應客戶需求的研發能力,以及業界最快捷的售後服務。農行的測試結果表明,華為解決方案完全滿足農行對海量數據進行分布式處理的要求。
㈨ 簡述身邊大數據成功案例並且用了哪些大數據的數據達到什麼效果
隨著大數據時代的到來,大數據早已被逐步的運用在我們生活中的方方面面,那麼除了之前眾所周知的大數據殺熟事件,對於大數據你還了解多少呢?科學運用案例你又知道多少?今天就跟隨千鋒小編一起來看看。
洛杉磯警察局和加利福尼亞大學合作利用大數據預測犯罪的發生。
google流感趨勢(Google Flu Trends)利用搜索關鍵詞預測禽流感的散布。
統計學家內特.西爾弗(Nate Silver)利用大數據預測2012美國選舉結果。
麻省理工學院利用手機定位數據和交通數據建立城市規劃。
梅西百貨的實時定價機制,根據需求和庫存的情況,該公司基於SAS的系統對多達7300萬種貨品進行實時調價。
……
種種的案例實在是太多,或許我們永遠說不完一樣,所以我們就來看一看大數據被科學運用的一個經典案例:
「啤酒與尿布」的故事產生於20世紀90年代的美國沃爾瑪超市中,沃爾瑪的超市管理人員分析銷售數據時發現了一個令人難於理解的現象:在某些特定的情況下,「啤酒」與「尿布」兩件看上去毫無關系的商品會經常出現在同一個購物籃中,這種獨特的銷售現象引起了管理人員的注意,經過後續調查發現,這種現象出現在年輕的父親身上。
如果這個年輕的父親在賣場只能買到兩件商品之一,則他很有可能會放棄購物而到另一家商店,直到可以一次同時買到啤酒與尿布為止。沃爾瑪發現了這一獨特的現象,開始在賣場嘗試將啤酒與尿布擺放在相同的區域,讓年輕的父親可以同時找到這兩件商品,並很快地完成購物;而沃爾瑪超市也可以讓這些客戶一次購買兩件商品、而不是一件,從而獲得了很好的商品銷售收入,這就是「啤酒與尿布」 故事的由來。
當然「啤酒與尿布」的故事必須具有技術方面的支持。1993年美國學者Agrawal提出通過分析購物籃中的商品集合,從而找出商品之間關聯關系的關聯演算法,並根據商品之間的關系,找出客戶的購買行為。艾格拉沃從數學及計算機演算法角度提 出了商品關聯關系的計算方法——Aprior演算法。沃爾瑪從上個世紀 90 年代嘗試將 Aprior 演算法引入到 POS機數據分析中,並獲得了成功,於是產生了「啤酒與尿布」的故事。
其實大數據,其影響除了以上列舉的方面外,它同時也能在經濟、政治、文化等方面產生深遠的影響,大數據可以幫助人們開啟循「數」管理的模式,也是我們當下「大社會」的集中體現,三分技術,七分數據,得數據者得天下。
㈩ 醫療行業大數據應用的三個案例
醫療行業大數據應用的三個案例
文章從華大基因推出腫瘤基因檢測服務、大數據預測早產兒病情、廣東省人民醫院利用大數據調配床位3個醫療行業大數據應用案例中,以應用背景、數據源、圖說場景、實現途徑、應用效果5個視角去看待大數據在醫療的應用狀況。
案例一:華大基因推出腫瘤基因檢測服務
應用背景:
伴隨著生物技術、大數據技術的發展,個體基因檢測治療疾病已經成為現實。其中,最廣為人知的是美國好萊塢女星安吉麗娜?朱莉,在 2013 年經過檢測她發現自身攜帶致癌基因——BRCA1 基因,為防止罹患卵巢癌,於 2015 年切除了卵巢和輸卵管。目前,國內外已經有多家基因檢測機構,如我國的華大基因、貝瑞和康、 美國的 23andMe、 Illumina 公司等。華大基因一直致力於腫瘤基因組學研究,已經研究 20 多類癌症。近日,華大基因推出了自主研究的腫瘤基因檢測服務,採用了高通量測序手段對來自腫瘤病人的癌組織進行相關基因分析,對肺癌、乳腺癌、胃癌等多種常見高發癌症進行早期、無創傷檢測。
數據源:
檢測數據:患者血清、口腔黏膜數據、基因測序等。
其它數據:體檢數據、電子病歷、遺傳記錄、患者調查、地理區域以及生活條件等。
圖說場景:
實現路徑:
首先採取患者樣本,通過測序得到基因序列,接著採用大數據技術與原始基因比對,鎖定突變基因,通過分析做出正確的診斷,進而全面、系統、准確地解讀腫瘤葯物與突變基因的關系,同時根據患者的個體差異性,輔助醫生選擇合適的治療葯物,制定個體化的治療方案,實現「 同病異治」 或「 異病同治」 ,從而延長患者的生存時間。
應用效果:
癌症診斷和預測。腫瘤醫院的病人中有 60%至 80%剛到醫院時就已經進入中晚期,癌症早期的篩查可以幫助患者有針對性的改善生活習慣或者採取個體化的輔助治療,有益於身體健康;同時將癌症扼殺在搖籃里,從而降低日後巨大的醫葯開支和生活困擾。助力個性化醫療。結合生物大數據,挖掘疾病分子機制最終可以做到更好的篩查,更好的臨床指導以及更好用葯的過程。
案例二:大數據預測早產兒病情
應用背景:
安大略理工大學的卡羅琳·麥格雷戈( Carolyn McGregor)博士和一支研究隊伍與 IBM 一起和很多醫院合作,用一個軟體來監測處理即時的病人信息,然後把它用於早產兒的病情診斷。
數據源:
個人體征數據:心率、呼吸、體溫、血壓和血氧含量。
其它數據:孕婦產檢數據、電子病歷、遺傳數據等。
實現路徑:
系統會監控 16 個不同地方的數據,比如心率、呼吸、體溫、血壓和血氧含量,這些數據可以達到每秒鍾 1260 個數據點之多。在明顯感染症狀出現的 24 小時之前,系統就能監測到早產兒細微的身體變化發出的感染信號,及早預測控制早產兒的病情,從而提高新生兒的出生率。
應用效果:
預測病情。早產兒的穩定不是病情好轉的標志,只有通過海量的數據並且找出隱含的相關性才能發現提早知道病情,醫生就能夠提早治療,也能更早地知道某種療法是否有效,這一切都有利於病人的康復。
案例三:廣東省人民醫院利用大數據調配床位
應用背景:
起因於國外醫院的經驗以及廣東省人民醫院各專業科室差異很大的病床使用率。長期以來,優勢專業病源充足,病人候床情況嚴重,排隊入院,相反有些專業空床情況明顯,病床使用率僅 65%左右。為此管理層打出了模糊臨床二級分科、跨科收治病人、集中床位調配權的一套「 組合拳」 。
數據源:
患者數據:掛號數據、電子病歷、患者基本數據等。
醫院數據:各科室床位使用情況、診療活動、平均住院費用、平均住院周期等。
實現路徑:
對跨科收治病人之後的科與科之間的工作量、收入、支出、分攤成本等指標進行合理的劃分,強化了入院處的集中床位調配權,解決病人入院排隊情況,使醫院更好地履行了社會責任,同時也給增加了醫院的效益。
應用效果:
提高病床使用率。病床使用率由 87%提高到 92%,優勢專業候床排隊現象明顯減少。
支持決策判斷。優勢專科與弱勢專科的病人在地域構成比、平均住院費用等標上存在顯著差異,支持決策判斷。