導航:首頁 > 網路數據 > 商業大數據產品

商業大數據產品

發布時間:2023-04-13 02:22:59

『壹』 大數據產品有哪些

問題一:目前大數據產品有哪些? 大數據產品的分類在狹義的范疇里,從使用用戶來看,可以是企業內部用戶,外部企業客戶,外部個人客戶等。從產品發展形態來看,從最初的報表型(如靜態報表、DashBoard、即席查詢),到多維分析型(OLAP等工具型數據產品),到定製服務型數據產品,再到智能型數據產品等。
普通報表型數據產品過於蒼白、可視化能力有限,而多維分析型數據產品更適合於專業的數據分析師而不是業務或運營人員,使用局限性也越來越大,所為未來的趨勢可能是定製服務式和智能式的數據產品。舉個例子,像企業級的大數據產品商業智能正是此趨勢下的衍生品,發展數年,像國外的SAP,IBM,Oracle廠商,國內的FineBI等都是代表。

問題二:國內真正的大數據分析產品有哪些 大數據產品是有很多的,例如微信的大數據平台,DD打車的平台。
基於數據挖掘技術的輿情監測系統為另外一個十分重要的產品。
很多 *** ,企業會採用。它的作用,簡單來說,就是發現負面信息,收集情報,有價值信息。
實施後好處: 1. 可實時監測微博,論壇,博客,新聞,搜索引擎中相關信息2. 可對重點QQ群的聊天內容進行監測3. 可對重點首頁進行定時截屏監測及特別頁面證據保存4. 對於新聞頁面可以找出其所有轉載頁面5. 系統可自動對信息進行分類6. 系統可追蹤某個專題或某個作者的所有相關信息 7. 監測人員可對信息進行挑選,再分類8. 監測人員可以基於自己的工作結果輕松導出製作含有圖表的輿情日報周報

問題三:國內真正的大數據分析產品有哪些 國內的大數據公司還是做前端可視化展現的偏多,BAT算是真正做了大數據的,行業有硬性需求,別的行業跟不上也沒辦法,需求決定市場。
說說更通用的數據分析吧。
大數據分析也屬於數據分析的一塊,在實際應用中可以把數據分析工具分成兩個維度:
第一維度:數據存儲層――數據報表層――數據分析層――數據展現層
第二維度:用戶級――部門級――企業級――BI級
1、數據存儲層
數據存儲設計到資料庫的概念和資料庫語言,這方面不一定要深鑽研,但至少要理解數據的存儲方式,數據的基本結構和數據類型。SQL查詢語言必不可少,精通最好。可從常用的selece查詢,update修改,delete刪除,insert插入的基本結構和讀取入手。
Access2003、Access07等,這是最基本的個人資料庫,經常用於個人或部分基本的數據存儲;MySQL資料庫,這個對於部門級或者互聯網的資料庫應用是必要的,這個時候關鍵掌握資料庫的庫結構和SQL語言的數據查詢能力。
SQL Server2005或更高版本,對中小企業,一些大型企業也可以採用SQL Server資料庫,其實這個時候本身除了數據存儲,也包括了數據報表和數據分析了,甚至數據挖掘工具都在其中了。
DB2,Oracle資料庫都是大型資料庫了,主要是企業級,特別是大型企業或者對數據海量存儲需求的就是必須的了,一般大型資料庫公司都提供非常好的數據整合應用平台。
BI級別,實際上這個不是資料庫,而是建立在前面資料庫基礎上的,企業級應用的數據倉庫。Data Warehouse,建立在DW機上的數據存儲基本上都是商業智能平台,整合了各種數據分析,報表、分析和展現!BI級別的數據倉庫結合BI產品也是近幾年的大趨勢。
2、報表層
企業存儲了數據需要讀取,需要展現,報表工具是最普遍應用的工具,尤其是在國內。傳統報表解決的是展現問題,目前國內的帆軟報表FineReport已經算在業內做到頂尖,是帶著數據分析思想的報表,因其優異的介面開放功能、填報、表單功能,能夠做到打通數據的進出,涵蓋了早期商業智能的功能。
Tableau、FineBI之類,可分在報表層也可分為數據展現層。FineBI和Tableau同屬於近年來非常棒的軟體,可作為可視化數據分析軟體,我常用FineBI從資料庫中取數進行報表和可視化分析。相對而言,可視化Tableau更優,但FineBI又有另一種身份――商業智能,所以在大數據處理方面的能力更勝一籌。
3、數據分析層
這個層其實有很多分析工具,當然我們最常用的就是Excel,我經常用的就是統計分析和數據挖掘工具;
Excel軟體,首先版本越高越好用這是肯定的;當然對excel來講很多人只是掌握了5%Excel功能,Excel功能非常強大,甚至可以完成所有的統計分析工作!但是我也常說,有能力把Excel玩成統計工具不如專門學會統計軟體;
SPSS軟體:當前版本是18,名字也改成了PASW Statistics;我從3.0開始Dos環境下編程分析,到現在版本的變遷也可以看出SPSS社會科學統計軟體包的變化,從重視醫學、化學等開始越來越重視商業分析,現在已經成為了預測分析軟體;
SAS軟體:SAS相對SPSS其實功能更強大,SAS是平台化的,EM挖掘模塊平台整合,相對來講,SAS比較難學些,但如果掌握了SAS會更有價值,比如離散選擇模型,抽樣問題,正交實驗設計等還是SAS比較好用,另外,SAS的學習材料比較多,也公開,會有收獲的!
JMP分析:SAS的一個分析分支
XLstat:Excel的插件,可以完......>>

問題四:國內真正的大數據分析產品有哪些 目前,大數據分析工具在金融服務、零售、醫療衛生/生命科學、執法、電信、能源與公共事業、數字媒體/精準營銷、交通運輸等行業都有著廣泛的應用。

問題五:目前大數據在哪些行業有案例或者說應用? 1、體育行業預測
世界盃期間,谷歌、網路、微軟和高盛等公司都推出了比賽結果預測平台。其中,網路在小組賽階段的表現最為亮眼,而進入淘汰賽階段,網路與微軟則以16場比賽15場准確預測的成
績讓人們見識到大數據在預測領域的魅力。從互聯網公司的經驗來看,只要有體育賽事相關的歷史數據,並且與指數公司進行多方合作,就可以在賽事預測領域取得不錯的成績。
2、經濟、金融行業預測
2013年,英國華威商學院和美國波士頓大學物理系的研究發現,用戶通過谷歌搜索的金融關鍵詞或許可以把脈金融市場的走向,相應的投資戰略收益高達326%。而此前,也有專家嘗試
通過Twitter博文情緒來預測股市波動。從預測的原理上來看,穩定發展的美國股市是比較適合大數據預測發揮其作用的。
對國內而言,網路推出的中小企業景氣指數預測,應用網路海量的搜索數據來刻畫我國中小企業運行發展的景氣狀態,以期能夠及時、有效地反映中小企業運行狀況,提高經濟監測的
全面性和及時性。目前該功能已經上線投入應用。
3、市場物價預測
CPI表徵已經發生的物價浮動情況,但統計局數據並不權威。但大數據則可能幫助人們了解未來物價走向,提前預知通貨膨脹或經濟危機。單個商品的價格預測更加容易,尤其是機票
這樣的標准化產品,去哪兒提供的「機票日歷」就是價格預測,可以告知你幾個月後機票的大概價位。商品的生產、渠道成本和大概毛利在充分競爭的市場中是相對穩定的,與價格相
關的變數相對固定,商品的供需關系在電子商務平台可實時監控,因此價格可以預測,基於預測結果可提供購買時間建議,或者指導商家進行動態價格調整和營銷活動以利益最大化。
後面還有用戶行為預測、個人健康預測、交通行為預測等領域都有涉及,你可以自己好好看看,希望對你有幫助。ruanyun/news/ryyc/n152.aspx

問題六:國內大數據公司有哪些? 大數據包涵很廣泛,涉及到很多方方面面,技術難度也很大,國內能做的公司不太多,我知道的有網路、華為、聯想、浪潮、電科華雲、騰訊、阿里巴巴、中科曙光等。

問題七:國內比較好的大數據 公司有哪些 你好,說的是什麼領域?數據挖掘、數據研發、數據應用方面都有佼佼者。像商業智能領域的話,國內我比較了解的帆軟,一開始做報表軟體,做得很好,有比較深的行業基礎,後來出的FineBI商業智能軟體也延續了FineReport的精華,在行業內比較有代表性,具體的,有官網,可以去了解一下。

問題八:大數據產品主要是用來做什麼的 大數據產品有很多,寬泛來講,大數據產品的作用是對已有數據源中的數據進行收集和存儲,在這基礎上,進行分析和應用,形成我們的產品和服務,而產品和服務也會產生新的數據,這些新數據會循環進入我們的流程中。當這整個循環體系成為一個智能化的體系,通過機器實現自動化就是一種新的模式,不管是商業的,或者是其他。
而大數據能夠實現的應用,可以概括為兩個方向,一是精準化定製,二是預測。
精準化定製可以是一些個性化的產品,精準營銷,比如互聯網推廣。
預測主要是圍繞目標對象,基於它過去、未來的一些相關因素和數據分析,從而提前做出預警,或者是實時動態的優化。可分為決策支持類的,比如典型的商業智能產品FineBI;風險預警類的,主要用於證券、銀行、投資;實時優化類的,比如實時定價。

問題九:國內真正的大數據採集產品有哪些 大數據的應用分為兩類
第一類:基於自身平台的數據採集,現在的三大互聯網巨頭等擁有大量用戶數據,通過自身數據挖掘可以完成。
第二類:基於爬蟲或者類爬蟲技術,幫助企業, *** 採集網路 *** 息,也就是網路信息採集系統,樂趣的「樂」,思維的「思」
其主要應用在於:輿情監測,品牌監測,價格監測,門戶網站新聞採集,行業資訊採集,競爭情報獲取,商業數據整合,市場研究,資料庫營銷等領域。

問題十:大數據分析領域有哪些分析模型 IT監控類或者IT運維流程類的產品工具上線運行一段時間之後,一年會產生十幾萬、甚至幾十萬的海量數據,包括告警數據、工單數據等IT運維大數據,需要從這些海量數據中獲取更有效、更直接、更有價值的分析數據,更快速、有效的提取有意義的決策依據同樣需要工具系統來滿足運維大數據的IT數據挖掘、IT數據鑽取需求。 RIIL Insight目前是國內首款定位於IT管理領域的大數據決策分析系統產品,通過建立多維數據分析模型進行信息提取、統計分析並提出決策依據,是IT運維管理領域的BI。系統通過IT運營管理、IT部門績效管理、可視化項目管理、資產管理、業務關系管理、供應商軟體管理等自定義維度的運行數據進行分析,可快速獲取運維管理各方面的直觀准確數據,診斷分析問題根源,預判數據走勢,洞察全局運維動態。

『貳』 常見的大數據分析工具有哪些

大數據分析的前瞻性使得很多公司以及企業都開始使用大數據分析對公司的決策做出幫助,而大數據分析是去分析海量的數據,所以就不得不藉助一些工具去分析大數據,。一般來說,數據分析工作中都是有很多層次的,這些層次分別是數據存儲層、數據報表層、數據分析層、數據展現層。對於不同的層次是有不同的工具進行工作的。下面小編就對大數據分析工具給大家好好介紹一下。
首先我們從數據存儲來講數據分析的工具。我們在分析數據的時候首先需要存儲數據,數據的存儲是一個非常重要的事情,如果懂得資料庫技術,並且能夠操作好資料庫技術,這就能夠提高數據分析的效率。而數據存儲的工具主要是以下的工具。
1、MySQL資料庫,這個對於部門級或者互聯網的資料庫應用是必要的,這個時候關鍵掌握資料庫的庫結構和SQL語言的數據查詢能力。
2、SQL Server的最新版本,對中小企業,一些大型企業也可以採用SQL Server資料庫,其實這個時候本身除了數據存儲,也包括了數據報表和數據分析了,甚至數據挖掘工具都在其中了。
3、DB2,Oracle資料庫都是大型資料庫了,主要是企業級,特別是大型企業或者對數據海量存儲需求的就是必須的了,一般大型資料庫公司都提供非常好的數據整合應用平台;
接著說數據報表層。一般來說,當企業存儲了數據後,首先要解決報表的問題。解決報表的問題才能夠正確的分析好資料庫。關於數據報表所用到的數據分析工具就是以下的工具。
1、Crystal Report水晶報表,Bill報表,這都是全球最流行的報表工具,非常規范的報表設計思想,早期商業智能其實大部分人的理解就是報表系統,不藉助IT技術人員就可以獲取企業各種信息——報表。
2、Tableau軟體,這個軟體是近年來非常棒的一個軟體,當然它已經不是單純的數據報表軟體了,而是更為可視化的數據分析軟體,因為很多人經常用它來從資料庫中進行報表和可視化分析。
第三說的是數據分析層。這個層其實有很多分析工具,當然我們最常用的就是Excel,我經常用的就是統計分析和數據挖掘工具;
1、Excel軟體,首先版本越高越好用這是肯定的;當然對Excel來講很多人只是掌握了5%Excel功能,Excel功能非常強大,甚至可以完成所有的統計分析工作!但是我也常說,有能力把Excel玩成統計工具不如專門學會統計軟體;
2、SPSS軟體:當前版本是18,名字也改成了PASW Statistics;我從3.0開始Dos環境下編程分析,到現在版本的變遷也可以看出SPSS社會科學統計軟體包的變化,從重視醫學、化學等開始越來越重視商業分析,現在已經成為了預測分析軟體。
最後說表現層的軟體。一般來說表現層的軟體都是很實用的工具。表現層的軟體就是下面提到的內容。
1、PowerPoint軟體:大部分人都是用PPT寫報告。
2、Visio、SmartDraw軟體:這些都是非常好用的流程圖、營銷圖表、地圖等,而且從這里可以得到很多零件;
3、Swiff Chart軟體:製作圖表的軟體,生成的是Flash

『叄』 資料庫的多表大數據查詢應如何優化

資料庫的多表大數據查詢應如何優化?

1.應盡量避免在 where 子句中對欄位進行 null 值判斷,否則將導致引擎放棄使用索引而進行全表掃描,如:
select id from t where num is null
可以在num上設置默認值0,確保表中num列沒有null值,然後這樣查詢:
select id from t where num=0
2.應盡量避免在 where 子句中使用!=或<>操作符,否則將引擎放棄使用索引而進行全表掃描。優化器簡悉將無法通過索引來確定將要命中的行數,因此需要搜索該表的所有行。
3.應盡量避免在 where 子句中使用 or 來連接條件,否則將導致引擎放棄使用索引而進行全表掃描,如:
select id from t where num=10 or num=20
可以這樣查詢:
select id from t where num=10
union all
select id from t where num=20
4.in 和 not in 也要慎用,因為IN會使系統無法使用索引,而只能直接搜索表中的數據。如:
select id from t where num in(1,2,3)
對於連續的數值,能用 beeen 就不要用 in 了:
select id from t where num beeen 1 and 3
5.盡量避免在索引過的字元數據中,使用非打頭字母搜索。這也使得引擎無法利用索引。
見如下例子:
SELECT * FROM T1 WHERE NAME LIKE 『%L%』
SELECT * FROM T1 WHERE SUBSTING(NAME,2,1)=』L』
SELECT * FROM T1 WHERE NAME LIKE 『L%』
即使NAME欄位建有索引,前兩個查詢依然無法利用索引完成加快操作,引擎不得不對全表所有數據逐條操作來完成任務。而第三個查詢能夠使用索引來加快操作。
6.必要時強制查詢優化器使用某個索引,如在 where 子句中使用參數,也會導致全表掃描。因為SQL只有在運行時才會解析局部變數,但優化程序不能將訪問計劃的選擇推遲到運行時;它必須在編譯時進行選擇。然而,如果在編譯時建立訪問計劃,變數的值還是未散罩知的,因而無法作為索引選擇的輸入項。如下面語句將進行全表掃描:
select id from t where num=@num
可以改為強制查詢使用索引:
select id from t with(index(索引名)) where num=@num
7.應盡量避免在 where 子句中對欄位進行表達式操作,這將導致引擎放棄使用索引而進行全表掃描。如:
SELECT * FROM T1 WHERE F1/2=100
應改為:
SELECT * FROM T1 WHERE F1=100*2
SELECT * FROM RECORD WHERE SUBSTRING(CARD_NO,1,4)=』5378』
應改為:
SELECT * FROM RECORD WHERE CARD_NO LIKE 『5378%』
SELECT member_number, first_name, last_name FROM members
WHERE DATEDIFF(yy,datofbirth,GETDATE()) > 21
應改為:
SELECT member_number, first_name, last_name FROM members
WHERE dateofbirth < DATEADD(yy,-21,GETDATE())
即:任何對列的操作都將導致表掃描,它包括資料庫函數、計算表達式等等,查詢時要盡可能將操作移至等號右邊。
8.應盡量避免在where子句中對欄位進行沖咐鬧函數操作,這將導致引擎放棄使用索引而進行全表掃描。如:
select id from t where substring(name,1,3)='abc'--name以abc開頭的id
select id from t where datediff(day,createdate,񟭅-11-30')=0--『2005-11-30』生成的id
應改為:
select id from t where name like 'abc%'
select id from t where createdate>=񟭅-11-30' and createdate<񟭅-12-1'
9.不要在 where 子句中的「=」左邊進行函數、算術運算或其他表達式運算,否則系統將可能無法正確使用索引。
10.在使用索引欄位作為條件時,如果該索引是復合索引,那麼必須使用到該索引中的第一個欄位作為條件時才能保證系統使用該索引,否則該索引將不會被使用,並且應盡可能的讓欄位順序與索引順序相一致。
11.很多時候用 exists是一個好的選擇:
elect num from a where num in(select num from b)
用下面的語句替換:
select num from a where exists(select 1 from b where num=a.num)
SELECT SUM(T1.C1)FROM T1 WHERE(
(SELECT COUNT(*)FROM T2 WHERE T2.C2=T1.C2>0)
SELECT SUM(T1.C1) FROM T1WHERE EXISTS(
SELECT * FROM T2 WHERE T2.C2=T1.C2)
兩者產生相同的結果,但是後者的效率顯然要高於前者。因為後者不會產生大量鎖定的表掃描或是索引掃描。

Java怎麼把資料庫的數據查詢

Statement stmt = null;
ResultSet rs = null;
String query = "select 列名 from 表名 where id=11 and fname='xx' order by 列名 desc limit 1";
stmt = conn.createStatement();
rs = stmt.executeQuery(query);
if (rs.next()) {
result = rs.getInt("列名");
}

資料庫表內數據查詢

樓上的 拼寫錯誤,我來修正 ^^
select count(*) from 表名

如何查詢大資料庫數據存在

傳統資料庫處理大數據很困難吧,不建議使用傳統資料庫來處理大數據。
建議研究下,Hadoop,Hive等,可處理大數據。
如果有預算,可以使用一些商業大數據產品,國內的譬如永洪科技的大數據BI產品,不僅能高性能處理大數據,還可做數據分析。
當然如果是簡單的查詢,傳統資料庫如果做好索引,可能可以提高性能。

如何實現不同資料庫的數據查詢分頁

有兩種方法
方法1:
select 100 * from tbllendlist where fldserialNo not in ( select 300100 fldserialNo from tbllendlist order by fldserialNo ) order by fldserialNo
方法2:
SELECT TOP 100 * FROM tbllendlist WHERE (fldserialNo > (SELECT MAX(fldserialNo) FROM (SELECT TOP 300100 fldserialNo FROM tbllendlist ORDER BY fldserialNo) AS T)) ORDER BY fldserialNo

如何提高Oracle資料庫數據查詢的命中率

影響命中率的因素有四種:字典表活動、臨時段活動、回滾段活動、表掃描, 應用DBA可以對這四種因素進行分析,找出資料庫命中率低的症結所在。 1)字典表活動 當一個SQL語句第一次到達Oracle內核時資料庫對SQL語句進行分析,包含在查詢中的數據字典對象被分解,產生SQL執行路徑。如果SQL語句指向一個不在SGA中的對象?表或視圖,Oracle執行SQL語句到數據典中查詢有關對象的信息。數據塊從數據字典表被讀取到SGA的數據緩存中。由於每個數據字典都很小,因此,我們可緩存這些表以提高對這些表的命中率。但是由於數據字典表的數據塊在SGA中占據空間,當增加全部的命中率時,它們會降低表數據塊的可用空間, 所以若查詢所需的時間字典信息已經在SGA緩存中,那麼就沒有必要遞歸調用。 2)臨時段的活動 當用戶執行一個需要排序的查詢時,Oracle設法對內存中排序區內的所有行進行排序,排序區的大小由資料庫的init.ora文件的數確定。如果排序區域不夠大,資料庫就會在排序操作期間開辟臨時段。臨時段會人為地降低OLTP(online transaction processing)應用命中率,也會降低查詢進行排序的性能。如果能在內存中完成全部排序操作,就可以消除向臨時段寫數據的開銷。所以應將SORT_AREA_SIZE設置得足夠大,以避免對臨時段的需要。這個參數的具體調整方法是:查詢相關數據,以確定這個參數的調整。 select * from v$sysstat where name='sorts(disk)'or name='sorts(memory); 大部分排序是在內存中進行的,但還有小部分發生在臨時段, 需要調整 值,查看init.ora文件的 SORT_AREA_SIZE值,參數為:SORT_AREA_SIZE=65536;將其調整到SORT_AREA_SIZE=131072、這個值調整後,重啟ORACLE資料庫即可生效。 3)回滾段的活動 回滾段活動分為回滾活動和回滾段頭活動。對回滾段頭塊的訪問會降低應用的命中率, 對OLTP系統命中率的影響最大。為確認是否因為回滾段影響了命中率,可以查看監控輸出報表中的「數據塊相容性讀一重寫記錄應用」 的統計值,這些統計值是用來確定用戶從回滾段中訪問數據的發生次數。 4)表掃描 通過大掃描讀得的塊在數據塊緩存中不會保持很長時間, 因此表掃描會降低命中率。為了避免不必要的全表掃描,首先是根據需要建立索引,合理的索引設計要建立人對各種查詢的分析和預測上,筆者會在SQL優化中詳細談及;其次是將經常用到的表放在內存中,以降低磁碟讀寫次數。

如何優化資料庫提高資料庫的效率

1. SQL優化的原則是:將一次操作需要讀取的BLOCK數減到最低,即在最短的時間達到最大的數據吞吐量。
調整不良SQL通常可以從以下幾點切入:
? 檢查不良的SQL,考慮其寫法是否還有可優化內容
? 檢查子查詢 考慮SQL子查詢是否可以用簡單連接的方式進行重新書寫
? 檢查優化索引的使用
? 考慮資料庫的優化器
2. 避免出現SELECT * FROM table 語句,要明確查出的欄位。
3. 在一個SQL語句中,如果一個where條件過濾的資料庫記錄越多,定位越准確,則該where條件越應該前移。
4. 查詢時盡可能使用索引覆蓋。即對SELECT的欄位建立復合索引,這樣查詢時只進行索引掃描,不讀取數據塊。
5. 在判斷有無符合條件的記錄時建議不要用SELECT COUNT (*)和select 1 語句。
6. 使用內層限定原則,在拼寫SQL語句時,將查詢條件分解、分類,並盡量在SQL語句的最里層進行限定,以減少數據的處理量。
7. 應絕對避免在order by子句中使用表達式。
8. 如果需要從關聯表讀數據,關聯的表一般不要超過7個。
9. 小心使用 IN 和 OR,需要注意In集合中的數據量。建議集合中的數據不超過200個。
10. <> 用 < 、 > 代替,>用>=代替,<用<=代替,這樣可以有效的利用索引。
11. 在查詢時盡量減少對多餘數據的讀取包括多餘的列與多餘的行。
12. 對於復合索引要注意,例如在建立復合索引時列的順序是F1,F2,F3,則在where或order by子句中這些欄位出現的順序要與建立索引時的欄位順序一致,且必須包含第一列。只能是F1或F1,F2或F1,F2,F3。否則不會用到該索引。
13. 多表關聯查詢時,寫法必須遵循以下原則,這樣做有利於建立索引,提高查詢效率。格式如下select sum(table1.je) from table1 table1, table2 table2, table3 table3 where (table1的等值條件(=)) and (table1的非等值條件) and (table2與table1的關聯條件) and (table2的等值條件) and (table2的非等值條件) and (table3與table2的關聯條件) and (table3的等值條件) and (table3的非等值條件)。
注:關於多表查詢時from 後面表的出現順序對效率的影響還有待研究。
14. 子查詢問題。對於能用連接方式或者視圖方式實現的功能,不要用子查詢。例如:select name from customer where customer_id in ( select customer_id from order where money>1000)。應該用如下語句代替:select name from customer inner join order on customer.customer_id=order.customer_id where order.money>100。
15. 在WHERE 子句中,避免對列的四則運算,特別是where 條件的左邊,嚴禁使用運算與函數對列進行處理。比如有些地方 substring 可以用like代替。
16. 如果在語句中有not in(in)操作,應考慮用not exists(exists)來重寫,最好的辦法是使用外連接實現。
17. 對一個業務過程的處理,應該使事物的開始與結束之間的時間間隔越短越好,原則上做到資料庫的讀操作在前面完成,資料庫寫操作在後面完成,避免交叉。
18. 請小心不要對過多的列使用列函數和order by,group by等,謹慎使用disti軟體開發t。
19. 用union all 代替 union,資料庫執行union操作,首先先分別執行union兩端的查詢,將其放在臨時表中,然後在對其進行排序,過濾重復的記錄。
當已知的業務邏輯決定query A和query B中不會有重復記錄時,應該用union all代替union,以提高查詢效率。
數據更新的效率
1. 在一個事物中,對同一個表的多個insert語句應該集中在一起執行。
2. 在一個業務過程中,盡量的使insert,update,delete語句在業務結束前執行,以減少死鎖的可能性。
資料庫物理規劃的效率
為了避免I/O的沖突,我們在設計資料庫物理規劃時應該遵循幾條基本的原則(以ORACLE舉例):
?? table和index分離:table和index應該分別放在不同的tablespace中。
?? Rollback Segment的分離:Rollback Segment應該放在獨立的Tablespace中。
?? System Tablespace的分離:System Tablespace中不允許放置任何用戶的object。(mssql中primary filegroup中不允許放置任何用戶的object)
?? Temp Tablesace的分離:建立單獨的Temp Tablespace,並為每個user指定default Temp Tablespace
??避免碎片:但segment中出現大量的碎片時,會導致讀數據時需要訪問的block數量的增加。對經常發生DML操作的segemeng來說,碎片是不能完全避免的。所以,我們應該將經常做DML操作的表和很少發生變化的表分離在不同的Tablespace中。
當我們遵循了以上原則後,仍然發現有I/O沖突存在,我們可以用數據分離的方法來解決。
?? 連接Table的分離:在實際應用中經常做連接查詢的Table,可以將其分離在不同的Taclespace中,以減少I/O沖突。
?? 使用分區:對數據量很大的Table和Index使用分區,放在不同的Tablespace中。
在實際的物理存儲中,建議使用RAID。日誌文件應放在單獨的磁碟中。

資料庫的查詢優化演算法

給出你的查詢,然後才可以對其進行優化

如何優化SQL Server資料庫查詢

如果你的查詢比較固定,並且查詢的條件區別度較高,可以建立相應的索引。
其他的一些規則,比如使用exists代替 in都可以試試

查詢速度慢的原因很多,常見如下幾種:
1、沒有索引或者沒有用到索引(這是查詢慢最常見的問題,是程序設計的缺陷)
2、I/O吞吐量小,形成了瓶頸效應。
3、沒有創建計算列導致查詢不優化。
4、內存不足
5、網路速度慢
6、查詢出的數據量過大(可以採用多次查詢,其他的方法降低數據量)
7、鎖或者死鎖(這也是查詢慢最常見的問題,是程序設計的缺陷)
8、sp_lock,sp_who,活動的用戶查看,原因是讀寫競爭資源。
9、返回了不必要的行和列
10、查詢語句不好,沒有優化
可以通過如下方法來優化查詢 :
1、把數據、日誌、索引放到不同的I/O設備上,增加讀取速度,以前可以將Tempdb應放在RAID0上,SQL2000不在支持。數據量(尺寸)越大,提高I/O越重要.
2、縱向、橫向分割表,減少表的尺寸(sp_spaceuse)
3、升級硬體
4、根據查詢條件,建立索引,優化索引、優化訪問方式,限制結果集的數據量。注意填充因子要適當(最好是使用默認值0)。索引應該盡量小,使用位元組數小的列建索引好(參照索引的創建),不要對有限的幾個值的欄位建單一索引如性別欄位
5、提高網速;
6、擴大伺服器的內存,Windows 2000和SQL server 2000能支持4-8G的內存。配置虛擬內存:虛擬內存大小應基於計算機上並發運行的服務進行配置。運行 Microsoft SQL Server? 2000 時,可考慮將虛擬內存大小設置為計算機中安裝的物理內存的 1.5 倍。如果另外安裝了全文檢索功能,並打算運行 Microsoft 搜索服務以便執行全文索引和查詢,可考慮:將虛擬內存大小配置為至少是計算機中安裝的物理內存的 3 倍。將 SQL Server max server memory 伺服器配置選項配置為物理內存的 1.5 倍(虛擬內存大小設置的一半)。
7、增加伺服器 CPU個數; 但是必須明白並行處理串列處理更需要資源例如內存。使用並行還是串列程是MsSQL自動評估選擇的。單個任務分解成多個任務,就可以在處理器上運行。例如耽擱查詢的排序、連接、掃描和GROUP BY字句同時執行,SQL SERVER根據系統的負載情況決定最優的並行等級,復雜的需要消耗大量的CPU的查詢最適合並行處理。但是更新操作Update,Insert, Delete還不能並行處理。
8、如果是使用like進行查詢的話,簡單的使用index是不行的,但是全文索引,耗空間。 like 'a%' 使用索引 like '%a' 不使用索引用 like '%a%' 查詢時,查詢耗時和欄位值總長度成正比,所以不能用CHAR類型,而是VARCHAR。對於欄位的值很長的建全文索引。
9、DB Server 和APPLication Server 分離;OLTP和OLAP分離
10、分布式分區視圖可用於實現資料庫伺服器聯合體。聯合體是一組分開管理的伺服器,但它們相互協作分擔系統的處理負荷。這種通過分區數據形成資料庫伺服器聯合體的機制能夠擴大一組伺服器,以支持大型的多層 Web 站點的處理需要。有關更多信息,參見設計聯合資料庫伺服器。(參照SQL幫助文件'分區視圖')
a、在實現分區視圖之前,必須先水平分區表
b、在創建成員表後,在每個成員伺服器上定義一個分布式分區視圖,並且每個視圖具有相同的名稱。這樣,引用分布式分區視圖名的查詢可以在任何一個成員伺服器上運行。系統操作如同每個成員伺服器上都有一個原始表的復本一樣,但其實每個伺服器上只有一個成員表和一個分布式分區視圖。數據的位置對應用程序是透明的。
11、重建索引 DBCC REINDEX ,DBCC INDEXDEFRAG,收縮數據和日誌 DBCC SHRINKDB,DBCC SHRINKFILE. 設置自動收縮日誌.對於大的資料庫不要設置資料庫自動增長,它會降低伺服器的性能。在T-sql的寫法上有很大的講究,下面列出常見的要點:首先,DBMS處理查詢計劃的過程是這樣的:
1、 查詢語句的詞法、語法檢查
2、 將語句提交給DBMS的查詢優化器
3、 優化器做代數優化和存取路徑的優化
4、 由預編譯模塊生成查詢規劃
5、 然後在合適的時間提交給系統處理執行
6、 最後將執行結果返回給用戶其次,看一下SQL SERVER的數據存放的結構:一個頁面的大小為8K(8060)位元組,8個頁面為一個盤區,按照B樹存放。
12、Commit和rollback的區別 Rollback:回滾所有的事物。 Commit:提交當前的事物. 沒有必要在動態SQL里寫事物,如果要寫請寫在外面如: begin tran exec(@s) mit trans 或者將動態SQL 寫成函數或者存儲過程。
13、在查詢Select語句中用Where字句限制返回的行數,避免表掃描,如果返回不必要的數據,浪費了伺服器的I/O資源,加重了網路的負擔降低性能。如果表很大,在表掃描的期間將表鎖住,禁止其他的聯接訪問表,後果嚴重。
14、SQL的注釋申明對執行沒有任何影響
15、盡可能不使用游標,它佔用大量的資源。如果需要row-by-row地執行,盡量採用非游標技術,如:在客戶端循環,用臨時表,Table變數,用子查詢,用Case語句等等。游標可以按照它所支持的提取選項進行分類: 只進 必須按照從第一行到最後一行的順序提取行。FETCH NEXT 是唯一允許的提取操作,也是默認方式。可滾動性可以在游標中任何地方隨機提取任意行。游標的技術在SQL2000下變得功能很強大,他的目的是支持循環。有四個並發選項 READ_ONLY:不允許通過游標定位更新(Update),且在組成結果集的行中沒有鎖。 OPTIMISTIC WITH valueS:樂觀並發控制是事務控制理論的一個標准部分。樂觀並發控制用於這樣的情形,即在打開游標及更新行的間隔中,只有很小的機會讓第二個用戶更新某一行。當某個游標以此選項打開時,沒有鎖控制其中的行,這將有助於最大化其處理能力。如果用戶試圖修改某一行,則此行的當前值會與最後一次提取此行時獲取的值進行比較。如果任何值發生改變,則伺服器就會知道其他人已更新了此行,並會返回一個錯誤。如果值是一樣的,伺服器就執行修改。選擇這個並發選項OPTIMISTIC WITH ROW VERSIONING:此樂觀並發控制選項基於行版本控制。使用行版本控制,其中的表必須具有某種版本標識符,伺服器可用它來確定該行在讀入游標後是否有所更改。在 SQL Server 中,這個性能由 timestamp 數據類型提供,它是一個二進制數字,表示資料庫中更改的相對順序。每個資料庫都有一個全局當前時間戳值:@@DBTS。每次以任何方式更改帶有 timestamp 列的行時,SQL Server 先在時間戳列中存儲當前的 @@DBTS 值,然後增加 @@DBTS 的值。如果某 個表具有 timestamp 列,則時間戳會被記到行級。伺服器就可以比較某行的當前時間戳值和上次提取時所存儲的時間戳值,從而確定該行是否已更新。伺服器不必比較所有列的值,只需比較 timestamp 列即可。如果應用程序對沒有 timestamp 列的表要求基於行版本控制的樂觀並發,則游標默認為基於數值的樂觀並發控制。 SCROLL LOCKS 這個選項實現悲觀並發控制。在悲觀並發控制中,在把資料庫的行讀入游標結果集時,應用程序將試圖鎖定資料庫行。在使用伺服器游標時,將行讀入游標時會在其上放置一個更新鎖。如果在事務內打開游標,則該事務更新鎖將一直保持到事務被提交或回滾;當提取下一行時,將除去游標鎖。如果在事務外打開游標,則提取下一行時,鎖就被丟棄。因此,每當用戶需要完全的悲觀並發控制時,游標都應在事務內打開。更新鎖將阻止任何其它任務獲取更新鎖或排它鎖,從而阻止其它任務更新該行。然而,更新鎖並不阻止共享鎖,所以它不會阻止其它任務讀取行,除非第二個任務也在要求帶更新鎖的讀取。滾動鎖根據在游標定義的 Select 語句中指定的鎖提示,這些游標並發選項可以生成滾動鎖。滾動鎖在提取時在每行上獲取,並保持到下次提取或者游標關閉,以先發生者為准。下次提取時,伺服器為新提取中的行獲取滾動鎖,並釋放上次提取中行的滾動鎖。滾動鎖獨立於事務鎖,並可以保持到一個提交或回滾操作之後。如果提交時關閉游標的選項為關,則 COMMIT 語句並不關閉任何打開的游標,而且滾動鎖被保留到提交之後,以維護對所提取數據的隔離。所獲取滾動鎖的類型取決於游標並發選項和游標 Select 語句中的鎖提示。鎖提示 只讀 樂觀數值 樂觀行版本控制 鎖定無提示 未鎖定 未鎖定 未鎖定 更新 NOLOCK 未鎖定 未鎖定未鎖定 未鎖定 HOLDLOCK 共享 共享 共享 更新 UPDLOCK 錯誤 更新 更新 更新 TABLOCKX 錯誤 未鎖定 未鎖定更新其它 未鎖定 未鎖定 未鎖定 更新 *指定 NOLOCK 提示將使指定了該提示的表在游標內是只讀的。
16、用Profiler來跟蹤查詢,得到查詢所需的時間,找出SQL的問題所在; 用索引優化器優化索引
17、注意UNion和UNion all 的區別。UNION all好
18、注意使用DISTINCT,在沒有必要時不要用,它同UNION一樣會使查詢變慢。重復的記錄在查詢里是沒有問題的
19、查詢時不要返回不需要的行、列
20、用sp_configure 'query governor cost limit'或者SET QUERY_GOVERNOR_COST_LIMIT來限制查詢消耗的資源。當評估查詢消耗的資源超出限制時,伺服器自動取消查詢,在查詢之前就扼殺掉。 SET LOCKTIME設置鎖的時間
21、用select 100 / 10 Percent 來限制用戶返回的行數或者SET ROWCOUNT來限制操作的行
22、在SQL2000以前,一般不要用如下的字句: "IS NULL", "<>", "!=", "!>", "!<", "NOT", "NOT EXISTS", "NOT IN", "NOT LIKE", and "LIKE '%500'",因為他們不走索引全是表掃描。也不要在Where字句中的列名加函數,如Convert,substring等,如果必須用函數的時候,創建計算列再創建索引來替代.還可以變通寫法:Where SUBSTRING(firstname,1,1) = 'm'改為Where firstname like 'm%'(索引掃描),一定要將函數和列名分開。並且索引不能建得太多和太大。NOT IN會多次掃描表,使用EXISTS、NOT EXISTS ,IN , LEFT OUTER JOIN 來替代,特別是左連接,而Exists比IN更快,最慢的是NOT操作.如果列的值含有空,以前它的索引不起作用,現在2000的優化器能夠處理了。相同的是IS NULL,"NOT", "NOT EXISTS", "NOT IN"能優化她,而"<>"等還是不能優化,用不到索引。
23、使用Query Analyzer,查看SQL語句的查詢計劃和評估分析是否是優化的SQL。一般的20%的代碼占據了80%的資源,我們優化的重點是這些慢的地方。
24、如果使用了IN或者OR等時發現查詢沒有走索引,使用顯示申明指定索引: Select * FROM PersonMember (INDEX = IX_Title) Where processid IN ('男','女')
25、將需要查詢的結果預先計算好放在表中,查詢的時候再Select。這在SQL7.0以前是最重要的手段。例如醫院的住院費計算。
26、MIN() 和 MAX()能使用到合適的索引。
27、資料庫有一個原則是代碼離數據越近越好,所以優先選擇Default,依次為Rules,Triggers, Constraint(約束如外健主健CheckUNIQUE……,數據類型的最大長度等等都是約束),Procere.這樣不僅維護工作小,編寫程序質量高,並且執行的速度快。
28、如果要插入大的二進制值到Image列,使用存儲過程,千萬不要用內嵌Insert來插入(不知JAVA是否)。因為這樣應用程序首先將二進制值轉換成字元串(尺寸是它的兩倍),伺服器受到字元後又將他轉換成二進制值.存儲過程就沒有這些動作: 方法:Create procere p_insert as insert into table(Fimage) values (@image), 在前台調用這個存儲過程傳入二進制參數,這樣處理速度明顯改善

『肆』 商業智能BI產品有哪些

現在大數據時代,國內外的商業智能BI產品都伏辯挺多的。有橡掘新起的,也有老牌的。
老 牌的奧 威。推出的大數據可視化分析平台OurwayBI.OurwayBI採用Node.js。Node.js是一個Javascript運行環境(runtime),它實際上是對Google V8引擎進行了封裝。V8引擎執行Javascript的速度非常快,利用基於時間序列的內存計算技術,減少與資料庫的交互,可大大提升梁廳核效率。操作指引更易上手:OurwayBI為了讓用戶不進行任何培訓即可掌握常用操作,設置了操作指引,智能引導用戶逐步掌握基本操作及各項技巧。整個產品的UI進行了大量細節優化,以增加使用者的美觀要求與使用體驗等。

『伍』 中國大數據的十大商業應用

中國大數據的十大商業應用

在未來的幾十年裡,大數據都將會是一個重要都話題。大數據影響著每一個人,並在可以預見的未來繼續影響著。大數據沖擊著許多主要行業,包括零售業、金融行業、醫療行業等,大數據也在徹底地改變著我們的生活。現在我們就來看看大數據給中國帶來的十商業應用場景,未來大數據產業將會是一個萬億市場。

1、智慧城市

如今,世界超過一半的人口生活在城市裡,到2050年這一數字會增長到75%。政府需要利用一些技術手段來管理好城市,使城市裡的資源得到良好配置。既不出現由於資源配置不平衡而導致的效率低下以及騷亂,又要避免不必要的資源浪費而導致的財政支出過大。大數據作為其中的一項技術可以有效幫助政府實現資源科學配置,精細化運營城市,打造智慧城市。

城市的道路交通,完全可以利用GPS數據和攝像頭數據來進行規劃,包括道路紅綠燈時間間隔和關聯控制,包括直行和左右轉彎車道的規劃、單行道的設置。利用大數據技術實施的城市交通智能規劃,至少能夠提高30%左右的道路運輸能力,並能夠降低交通事故率。在美國,政府依據某一路段的交通事故信息來增設信號燈,降低了50%以上的交通事故率。機場的航班起降依靠大數據將會提高航班管理的效率,航空公司利用大數據可以提高上座率,降低運行成本。鐵路利用大數據可以有效安排客運和貨運列車,提高效率、降低成本。

城市公共交通規劃、教育資源配置、醫療資源配置、商業中心建設、房地產規劃、產業規劃、城市建設等都可以藉助於大數據技術進行良好規劃和動態調整。

大數據技術可以了解經濟發展情況,各產業發展情況,消費支出和產品銷售情況,依據分析結果,科學地制定宏觀政策,平衡各產業發展,避免產能過剩,有效利用自然資源和社會資源,提高社會生產效率。大數據技術也能幫助政府進行支出管理,透明合理的財政支出將有利於提高公信力和監督財政支出。大數據及大數據技術帶給政府的不僅僅是效率提升、科學決策、精細管理,更重要的是數據治國、科學管理的意識改變,未來大數據將會從各個方面來幫助政府實施高效和精細化管理,具有極大的想像空間。

2、金融行業

大數據在金融行業應用范圍較廣,典型的案例有花旗銀行利用IBM沃森電腦為財富管理客戶推薦產品,美國銀行利用客戶點擊數據集為客戶提供特色服務。中國金融行業大數據應用開展的較早,但都是以解決大數據效率問題為主,很多金融行業建立了大數據平台,對金融行業的交易數據進行採集和處理。

金融行業過去的大數據應用以分析自身財務數據為主,以提供動態財務報表為主,以風險管理為主。在大數據價值變現方面,開展的不夠深入,這同金融行業每年上萬億的凈利潤相比是不匹配的。現在已經有一些銀行和證券開始和移動互聯網公司合作,一起進行大數據價值變現,其中招商銀行、平安集團、興業銀行、國信證券、海通證券和TalkingData在移動大數據精準營銷、獲客、用戶體驗等方面進行了不少的嘗試,大數據價值變現效果還不錯,大數據正在幫助金融行業進行價值變現。大數據在金融行業的應用可以總結為以下五個方面:

(1)精準營銷:依據客戶消費習慣、地理位置、消費時間進行推薦

(2)風險管控:依據客戶消費和現金流提供信用評級或融資支持,利用客戶社交行為記錄實施信用卡反欺詐

(3)決策支持:利用抉策樹技術進抵押貸款管理,利用數據分析報告實施產業信貸風險控制

(4)效率提升:利用金融行業全局數據了解業務運營薄弱點,利用大數據技術加快內部數據處理速度

(5)產品設計:利用大數據計算技術為財富客戶推薦產品,利用客戶行為數據設計滿足客戶需求的金融產品

3、醫療行業

醫療行業擁有大量病例、病理報告、醫療方案、葯物報告等。如果這些數據進行整理和分析,將會極大地幫助醫生和病人。在未來,藉助於大數據平台我們可以收集疾病的基本特徵、病例和治療方案,建立針對疾病的資料庫,幫助醫生進行疾病診斷。

如果未來基因技術發展成熟,可以根據病人的基因序列特點進行分類,建立醫療行業的病人分類資料庫。在醫生診斷病人時可以參考病人的疾病特徵、化驗報告和檢測報告,參考疾病資料庫來快速幫助病人確診。在制定治療方案時,醫生可以依據病人的基因特點,調取相似基因、年齡、人種、身體情況相同的有效治療方案,制定出適合病人的治療方案,幫助更多人及時進行治療。同時這些數據也有利於醫葯行業開發出更加有效的葯物和醫療器械。

醫療行業的數據應用一直在進行,但是數據沒有打通,都是孤島數據,沒有辦法起大規模應用。未來需要將這些數據統一收集起來,納入統一的大數據平台,為人類健康造福。政府是推動這一趨勢的重要動力,未來市場將會超過幾千億元。

4、農牧業

農產品不容易保存,合理種植和養殖農產品對農民非常重要。藉助於大數據提供的消費能力和趨勢報告,政府將為農牧業生產進行合理引導,依據需求進行生產,避免產能過剩,造成不必要的資源和社會財富浪費。大數據技術可以幫助政府實現農業的精細化管理,實現科學決策。在數據驅動下,結合無人機技術,農民可以採集農產品生長信息,病蟲害信息。

農業生產面臨的危險因素很多,但這些危險因素很大程度上可以通過除草劑、殺菌劑、殺蟲劑等技術產品進行消除。天氣成了影響農業非常大的決定因素。過去的天氣預報僅僅能提供當地的降雨量,但農民更關心有多少水分可以留在他們的土地上,這些是受降雨量和土質來決定的。Climate公司利用政府開放的氣象站的數據和土地數據建立了模型,他們可以告訴農民可以在哪些土地上耕種,哪些土地今天需要噴霧並完成耕種,哪些正處於生長期的土地需要施肥,哪些土地需要5天後才可以耕種,大數據技術可以幫助農業創造巨大的商業價值。

5、零售行業

零售行業比較有名氣的大數據案例就是沃爾瑪的啤酒和尿布的故事,以及Target通過向年輕女孩寄送尿布廣告而告知其父親,女孩懷孕的故事。

零售行業可以通過客戶購買記錄,了解客戶關聯產品購買喜好,將相關的產品放到一起增加來增加產品銷售額,例如將洗衣服相關的化工產品例如洗衣粉、消毒液、衣領凈等放到一起進行銷售。根據客戶相關產品購買記錄而重新擺放的貨物將會給零售企業增加30%以上的產品銷售額。

零售行業還可以記錄客戶購買習慣,將一些日常需要的必備生活用品,在客戶即將用完之前,通過精準廣告的方式提醒客戶進行購買。或者定期通過網上商城進行送貨,既幫助客戶解決了問題,又提高了客戶體驗。

電商行業的巨頭天貓和京東,已經通過客戶的購買習慣,將客戶日常需要的商品例如尿不濕,衛生紙,衣服等商品依據客戶購買習慣事先進行准備。當客戶剛剛下單,商品就會在24小時內或者30分鍾內送到客戶門口,提高了客戶體驗,讓客戶連後悔等時間都沒有。

利用大數據的技術,零售行業將至少會提高30%左右的銷售額,並提高客戶購買體驗。

6、大數據技術產業

進入移動互聯網之後,非結構化數據和結構化數據呈指數方式增長。現在人類社會每兩年產生的數據將超過人類歷史過去所有數據之和。進入到2015年,人類社會所有的數據之和有望突破5澤B(5ZB),這些數據如何存儲和處理將會成為很大的問題。

這些大數據為大數據技術產業提供了巨大的商業機會。據估計全世界在大數據採集、存儲、處理、清晰、分析所產生的商業機會將會超過2000億美金,包括政府和企業在大數據計算和存儲,數據挖掘和處理等方面等投資。中國2014年大數據產業產值已經超過了千億人民幣,本屆貴陽大數據博覽會就吸引了400多家廠商來參展,充分說明大數據產業的未來的商業價值巨大。

未來中國的大數據產業將會呈幾何級數增長,在5年之內,中國的大數據產業將會形成萬億規模的市場。不僅僅是大數據技術產品的市場,也將是大數據商業價值變現的市場。大數據將會在企業的精準營銷、決策分析、風險管理、產品設計、運營優化等領域發揮重大的作用。

大數據技術產業將會解決大數據存儲和處理的問題,大數據服務公司將利用自身的數據將解決大數據價值變現問題,其所帶來的市場規模將會超過千億人民幣。中國目前擁有大數據,並提供大數據價值變現服務的公司除了我們眾所周知的BAT和移動運營商之外,360、小米、京東、TalkingData、九次方等都會成為大數據價值變現市場的有力參與者,市場足夠大,期望他們將市場做大,幫助所有企業實現大數據價值變現。

7、物流行業

中國的物流產業規模大概有5萬億左右,其中公里物流市場大概有3萬億左右。物流行業的整體凈利潤從過去的30%以上降低到了20%左右,並且下降的趨勢明顯。物流行業很多的運力浪費在返程空載、重復運輸、小規模運輸等方面。中國市場最大等物流公司所佔的市場份額不到1%。因此資源需要整合,運送效率需要提高。

物流行業藉助於大數據,可以建立全國物流網路,了解各個節點的運貨需求和運力,合理配置資源,降低貨車的返程空載率,降低超載率,減少重復路線運輸,降低小規模運輸比例。通過大數據技術,及時了解各個路線貨物運送需求,同時建立基於地理位置和產業鏈的物流港口,實現貨物和運力的實時配比,提高物流行業的運輸效率。藉助於大數據技術對物流行業進行的優化資源配置,至少可以增加物流行業10%左右的收入,其市場價值將在5000億左右。

8、房地產業

中國房地產業發展的高峰已經過去,其面臨的挑戰逐漸增加,房地產業正從過去的粗放發展方式轉向精細運營方式,房地產企業在拍賣土地、住房地產開發規劃、商業地產規劃方面也將會謹慎進行。

藉助於大數據,特別是移動大數據技術。房地產業可以了解開發土地所在范圍常駐人口數量、流動人口數量、消費能力、消費特點、年齡階段、人口特徵等重要信息。這些信息將會幫助房地商在商業地產開發、商戶招商、房屋類型、小區規模進行科學規劃。利用大數據技術,房地產行業將會降低房地產開發前的規劃風險,合理制定房價,合理制定開發規模,合理進行商業規劃。大數據技術可以降低土地價格過高,實際購房需求過低的風險。已經有房地產公司將大數據技術應用於用戶畫像、土地規劃、商業地產開發等領域,並取得了良好的效果。

9、製造業

製造業過去面臨生產過剩的壓力,很多產品包括家電、紡織產品、鋼材、水泥、電解鋁等都沒有按照市場實際需要生產,造成了資源的極大浪費。利用電商數據、移動互聯網數據、零售數據,我們可以了解未來產品市場都需求,合理規劃產品生產,避免生產過剩。

例如依據用戶在電商搜索產品的數據以及物流數據,可以推測出家電產品和紡織產品未來的實際需求量,廠家將依據這些數據來進行生產,避免生產過剩。移動互聯網的位置信息可以幫助了解當地人口進出的趨勢,避免生產過多的鋼材和水泥。

大數據技術還可以根據社交數據和購買數據來了解客戶需求,幫助廠商進行產品開發,設計和生產出滿足客戶需要的產品。

10、互聯網廣告業

2014年中國互聯網廣告市場迎來發展高峰,市場規模預計達到1500億元左右,較2013年增長56.5%。數字廣告越來越受到廣告主的重視,其未來市場規模越來越大。2014年美國的互聯網廣告市場規模接近500億美元,參考中國的人口消費能力,其市場規模會很快達到2000億人民幣左右。

過去到廣告投放都是以好的廣告渠道+廣播式投放為主,廣告主將廣告交給廣告公司,由廣告公司安排投放,其中SEM廣告市場最大,其他的廣告投放方式也是以頁面展示為主,大多是廣播式廣告投放。廣播式投放的弊端是投入資金大,沒有針對目標客戶,面對所有客戶進行展示,廣告的轉化率較低,並存在數字廣告營銷陷阱等問題。

大數據技術可以將客戶在互聯網上的行為記錄下來,對客戶的行為進行分析,打上標簽並進行用戶畫像。特別是進入移動互聯網時代之後,客戶主要的訪問方式轉向了智能手機和平台電腦,移動互聯網的數據包含了個人的位置信息,其360度用戶畫像更加接近真實人群。360度用戶畫像可以幫助廣告主進行精準營銷,廣告公司可以依據用戶畫像的信息,將廣告直接投放到用戶的移動設備,通過用戶經常使用的APP進行廣告投放,其廣告的轉化可以大幅度提高。利用移動互聯網大數據技術進行的精準營銷將會提高十倍以上的客戶轉化率,廣告行業的程序化購買正在逐步替代廣播式廣告投放。大數據技術將幫助廣告主和廣告公司直接將廣告投放給目標用戶,其將會降低廣告投入,提高廣告的轉化率。

目前影響大數據產業發展主要有兩個大問題,一個是大數據應用場景,一個是大數據隱私保護問題。

大數據商業價值的應用場景,大數據公司和企業正在尋找,目前在移動互聯網的精準營銷和獲客、360度用戶畫像、房地產開發和規劃、互聯網金融的風險管理、金融行業的供應鏈金融,個人徵信等方面已經取得了進步,擁有了很多經典案例。

但在有關大數據隱私保護以及大數據應用過程中個人信息保護方面還停滯不前,大家都在摸石頭過河,不知道哪些事情可以做,哪些事情不可以做。國家在大數據隱私保護方面正在進行立法,估計不久的將來,大數據服務公司和企業將會了解大數據隱私保護方面的具體要求。在沒有明確有關大數據隱私保護法規前,我們可以參考國外的隱私法,嚴格遵守國際上通用的個人隱私保護法,在實施大數據價值變現的過程中,充分保護所有相關方的個人利益。

最後縱觀人類歷史,在任何領域,如果我們可以拿到數據進行分析,我們就會取得進步。如果我們拿不到數據,無法進行分析,我們註定要落後。我們過去因數據不足導致的錯誤遠遠好過那些根本不用數據的錯誤,因此我們需要掌握大數據這個武器,利用好它,幫助人類社會加速進化,幫助企業實現大數據的價值變現。

以上是小編為大家分享的關於中國大數據的十大商業應用的相關內容,更多信息可以關注環球青藤分享更多干貨

『陸』 大數據產品有哪些

大數據產品有哪些我覺得大數據產品就是一些推薦,比如說你最近想買空調,只要你一搜索空調的話,那麼後台就會在這幾天一直給你發空調的一些推薦。

『柒』 商業數據分析工具有哪些

1.FineBI


目前國內數據分析的佼佼者。FineBI是新一代自助式BI工具,企業客戶多、服務范圍廣, 多維OLAP分析是BI工具分析功能的集中體現,憑借FineBI簡單流暢的操作、強勁的大數據性能和自助式的分析體驗,企業可充分了解和利用他們的數據,增強企業的競爭力。


2.Tableau


Tableau是大數據可視化軟體的市場領導者之一,在為大數據操作,深度學習演算法和多種類型的AI應用程序提供互動式數據可視化方面尤為高效。它內置常用的分析圖表,和一些數據分析模型,可以快速的探索式數據分析,可以快速地做出動態交互圖。


3.永洪敏捷BI


該產品穩定性較高,利用sql處理數據。永洪的技術主要分為大數據和可視化亮點。覆蓋BI和大數據(海量數據、實時分析),敏捷BI,自服務BI,探索式BI,性價比高。但不支持程序介面,實施交由第三方外包。永洪BI在產品能力上還不錯,特別是大數據性能方面,同樣可以支撐億級數據的抽取和分析,而在服務方面則表現一般。


4.Power BI


Microsoft Power BI是一個基於Web的業務分析工具套件,擅長數據可視化,採用的CS架構,主要的報表連接過程使用的客戶端,瀏覽器端可以進行簡單的報表編輯。其連接數據源需要單獨下載msi驅動,而不是目前主流的JDBC的連接方式。操作基本都是拖拽,不過其探索式分析能力有限,不適合做定製化開發(這個不符合我們需要集成的需求)。學習成本較低上手快,但功能簡單,無法支持復雜的業務場景,不支持定製開發。


5.SmartBI


企業級商業智能應用平台,用戶可以更直觀便捷地獲取信息。能滿足用戶自助式的數據查詢和報表,OLAP,各種業務報表,製作儀表盤,在移動終端上展示,有統一服務平台支持眾多的管理維護功能。和FineBI同為比較不錯的國內BI數據分析軟體,但是操作體驗並不是很好,界面粗糙,並沒有FineBI的界面美觀。


6.Qlikview


屬於新一代的輕量化商業智能BI產品,體現在建模、部署和使用上。只能運行在windows系統,C/S的產品架構。採用內存動態計算,數據量小時,速度很快;數據量大時,吃內存很厲害性能偏慢。不過目前對於QlikView也是代理形式為主,本地化和定製化能力差,和tableau一樣沒有大數據處理能力,需要對接數據倉庫。國內復雜報表填報等難以支持,另外代理商對客戶的響應能力有限。

『捌』 3大常用的數據分析工具是什麼

3大常用的數據分析工具如下:

1、思邁特軟體Smartbi

思邁特軟體Smartbi是專業的BI工具,基於統一架構實現數據採集、查詢、報表、自助分析、多維分析、移動分析、儀表盤、數據挖掘以及其他輔助功能,並且具有分析報告、結合AI進行語音分析等特色功能。十多年的發展歷史,國產BI軟體中最全面和成熟穩定的產品。廣泛應用於金融、政府、電信、企事業單位等領域。完善的在線文檔和教學視頻,操作簡便易上手。

2、MineSet

MineSet是由SGI公司和美國Standford大學聯合開發的多任務數據挖掘系統。MineSet集成多種數據挖掘演算法和可視化工具,幫助用戶直觀地、實時地發掘、理解大量數據背後的知識。

3、QUEST

QUEST是IBM公司Almaden研究中心開發的一個多任務數據挖掘系統,他的目的是為新一代決策支持系統的應用開發提供高效的數據開采基本構件。

數據分析工具靠不靠譜,來試試Smartbi,思邁特軟體Smartbi經過多年持續自主研發,凝聚大量商業智能最佳實踐經驗,整合了各行業的數據分析和決策支持的功能需求。滿足最終用戶在企業級報表、數據可視化分析、自助探索分析、數據挖掘建模、AI智能分析等大數據分析需求。

『玖』 國內真正的大數據分析產品有哪些

國內的大數據公司還是做前端可視化展現的偏多,BAT算是真正做了大數據的,行業有硬性需求,別的行業跟不上也沒辦法,需求決定市場。
說說更通用的數據分析吧。
大數據分析也屬於數據分析的一塊,在實際應用中可以把數據分析工具分成兩個維度:
第一維度:數據存儲層——數據報表層——數據分析層——數據展現層
第二維度:用戶級——部門級——企業級——BI級

1、數據存儲層
數據存儲設計到資料庫的概念和資料庫語言,這方面不一定要深鑽研,但至少要理解數據的存儲方式,數據的基本結構和數據類型。SQL查詢語言必不可少,精通最好。可從常用的selece查詢,update修改,delete刪除,insert插入的基本結構和讀取入手。

Access2003、Access07等,這是最基本的個人資料庫,經常用於個人或部分基本的數據存儲;MySQL資料庫,這個對於部門級或者互聯網的資料庫應用是必要的,這個時候關鍵掌握資料庫的庫結構和SQL語言的數據查詢能力。

SQL Server2005或更高版本,對中小企業,一些大型企業也可以採用SQL Server資料庫,其實這個時候本身除了數據存儲,也包括了數據報表和數據分析了,甚至數據挖掘工具都在其中了。

DB2,Oracle資料庫都是大型資料庫了,主要是企業級,特別是大型企業或者對數據海量存儲需求的就是必須的了,一般大型資料庫公司都提供非常好的數據整合應用平台。

BI級別,實際上這個不是資料庫,而是建立在前面資料庫基礎上的,企業級應用的數據倉庫。Data Warehouse,建立在DW機上的數據存儲基本上都是商業智能平台,整合了各種數據分析,報表、分析和展現!BI級別的數據倉庫結合BI產品也是近幾年的大趨勢。

2、報表層
企業存儲了數據需要讀取,需要展現,報表工具是最普遍應用的工具,尤其是在國內。傳統報表解決的是展現問題,目前國內的帆軟報表FineReport已經算在業內做到頂尖,是帶著數據分析思想的報表,因其優異的介面開放功能、填報、表單功能,能夠做到打通數據的進出,涵蓋了早期商業智能的功能。

Tableau、FineBI之類,可分在報表層也可分為數據展現層。FineBI和Tableau同屬於近年來非常棒的軟體,可作為可視化數據分析軟體,我常用FineBI從資料庫中取數進行報表和可視化分析。相對而言,可視化Tableau更優,但FineBI又有另一種身份——商業智能,所以在大數據處理方面的能力更勝一籌。

3、數據分析層
這個層其實有很多分析工具,當然我們最常用的就是Excel,我經常用的就是統計分析和數據挖掘工具;
Excel軟體,首先版本越高越好用這是肯定的;當然對excel來講很多人只是掌握了5%Excel功能,Excel功能非常強大,甚至可以完成所有的統計分析工作!但是我也常說,有能力把Excel玩成統計工具不如專門學會統計軟體;
SPSS軟體:當前版本是18,名字也改成了PASW Statistics;我從3.0開始Dos環境下編程分析,到現在版本的變遷也可以看出SPSS社會科學統計軟體包的變化,從重視醫學、化學等開始越來越重視商業分析,現在已經成為了預測分析軟體;
SAS軟體:SAS相對SPSS其實功能更強大,SAS是平台化的,EM挖掘模塊平台整合,相對來講,SAS比較難學些,但如果掌握了SAS會更有價值,比如離散選擇模型,抽樣問題,正交實驗設計等還是SAS比較好用,另外,SAS的學習材料比較多,也公開,會有收獲的!
JMP分析:SAS的一個分析分支
XLstat:Excel的插件,可以完成大部分SPSS統計分析功能

4、表現層
表現層也叫數據可視化,以上每種工具都幾乎提供了一點展現功能。FineBI和Tableau的可視化功能上文有提過。其實,近年來Excel的可視化越來越棒,配上一些插件,使用感更佳。
PPT:辦公常用,用來寫數據分析報告;
Xmind&網路腦圖:梳理流程,幫助思考分析,展現數據分析的層次;
Xcelsius軟體:Dashboard製作和數據可視化報表工具,可以直接讀取資料庫,在Excel里建模,互聯網展現,最大特色還是可以在PPT中實現動態報表

『拾』 大數據產品主要是用來做什麼的

大數據產品有很多,寬泛來講,大數據產品的作用是對已有數據源中的數專據進行收集和存儲,在這基礎上,屬進行分析和應用,形成我們的產品和服務,而產品和服務也會產生新的數據,這些新數據會循環進入我們的流程中。當這整個循環體系成為一個智能化的體系,通過機器實現自動化就是一種新的模式,不管是商業的,或者是其他。
而大數據能夠實現的應用,可以概括為兩個方向,一是精準化定製,二是預測。
精準化定製可以是一些個性化的產品,精準營銷,比如互聯網推廣。
預測主要是圍繞目標對象,基於它過去、未來的一些相關因素和數據分析,從而提前做出預警,或者是實時動態的優化。可分為決策支持類的,比如典型的商業智能產品FineBI;風險預警類的,主要用於證券、銀行、投資;實時優化類的,比如實時定價。

閱讀全文

與商業大數據產品相關的資料

熱點內容
java應用程序已被阻止 瀏覽:650
69版本烏鴉視頻 瀏覽:588
4g為什麼網路很好卻很卡 瀏覽:723
有什麼簽到的app 瀏覽:239
ios13第三方軟體無描述文件 瀏覽:494
如何寫一個編程輸出九九乘法表 瀏覽:617
文件存到d盤就找不到了 瀏覽:861
漏洞驗證工具 瀏覽:999
手機網易郵箱怎麼看文件名 瀏覽:607
ipa版本是什麼意思 瀏覽:124
gcc找不到庫文件 瀏覽:312
狀態欄網路圖標插件 瀏覽:536
java的文件夾 瀏覽:811
電腦版微信聊天視頻在哪個文件夾 瀏覽:125
joomla文件管理插件 瀏覽:724
如何設置工作組網路連接 瀏覽:331
cnc編程半桶水什麼意思 瀏覽:44
jsp開發詳解 瀏覽:319
360設置記住密碼 瀏覽:257
香港有什麼團購網站 瀏覽:623

友情鏈接