⑴ 關於大數據應用有什麼例子
1、關能源行業大數據應用
計算居民用電量。
2、職業籃球賽大數據應用
專業籃球隊會通過搜集大量數據來分析賽事情況,然而他們還在為這些數據的整理和實際意義而發愁。通過分析這些數據,找到對手的弱點。
3、保險行業大數據應用
集中處理所有的客戶信息。
⑵ 大數據分析技術在財經領域的應用
大數據分析技術在財經領域的應用如下:
1、銀行大數據應用
國內不少銀行已經開始嘗試通過大數據來驅動業務運營,如中信銀行信用卡中心使用大數據技術實現了實時營銷,光大銀行建立了社交網路信息資料庫,招商銀行則利用大數據發展小微貸款。
財經領域的大數據應用依然有很多的問題需要克服,同時需要國家出台促進金融大數據發展的產業規劃和扶持政策,也需要行業分階段推動金融數據開放、共享和統一平台建設,強化行業標准和安全規范。
⑶ 大數據在保險行業的應用有哪些
大數據時代對保險行業的影響還是很大的,比如,你的車輛的違章信息,駕駛習慣,保養信息,駕駛員的駕駛水平,駕齡等等,都可以匯總一起,並分析該車的風險系數。現在的車險購買就是按照這些數據給打的分數,分數越高越便宜。所以,新車險改革以後,每車的費用可能就各不相同。比如一車經常跑長途,另一車只是上班代步,前者費用會比後者高。前者的打分會比後者低不少
⑷ 數據分析建模在保險行業中有哪些應用
數據分析在保險行業有著較大的應用前景,尤其是在產險方面,其在美國已經有了較 為成熟的應用。在國內保險業可以說是處於起步階段,這也是由國內保險行業的發展階段所決定的。其中最為公認的幾方面應用包括:1)確定費率 2)獲得新客戶 3)保留舊客戶 4)檢測詐騙索賠
⑸ 互聯網保險 大數據分析
一、互聯網保險創新的現狀
根據中國保險行業協會在2015年年初發布的《互聯網保險行業發展報告》顯示,針對經營互聯網保險業務的公司分類,人身險公司有44家,財產險公司有16家,總體佔全行業133家產壽險公司的45%。包括中國人保財險、泰康人壽、平安人壽、太平洋保險、天安財險等在內的多家險企已率先在線上跑馬圈地,中國保險公司與互聯網的深度融合已全面到來。
首先在監管層面,上個月,醞釀已久的《互聯網保險業務監管暫行辦法》終於由中國保監會發布,這標志著中國互聯網保險業務基礎監管規范的形轎返悉成。《辦法》以鼓勵創新、防範風險和保護消費者權益為基本思路,從經營條件、經營區域、信息披露、監督管理等方面明確了互聯網保險業務經營的基本規則;規定了互聯網保險業務的銷售、承保、理賠、退保、投訴處理及客戶服務等保險經營行為應由保險機構管理負責;強化了經營主體履行信息披露和告知義務的內容和方式,著力解決互聯網自主交易中可能存在的信息不透明、信息不對稱等問題,以最大限度保護消費者的知情權和選擇權。
其次在保險主體方面,早在2013年,中國人保就推出「掌上人保」,並號稱是指尖上的保險;去年,以「理賠簡單,就在天安」為口號的天安財險「車易賠」APP在全國上線;隨後,「中國太保」「大地通保」、「泰康在線」等保險在線服務平台如雨後春筍般出現,可見,拼服務、拼體驗已經成為各家保險主體競爭的主要方向。同時,各家保險公司在立足保險本身的同時,從渠道上也不斷向外圍延伸,分別與P2P平台、信用保證機構等開展不同程度的合作。以下是中國保險行業協會從服務創新、技術創新、渠道創新等三個方面對2014年60家提供互聯網服務的產、壽險公司進行評價後的前15名榜單:
二、互聯網保險創新背後的風險
應該說基於提升客戶體驗的互聯網保險創新,方向是對的。互聯網保險作為一個新興的領域,發展空間巨大,但同時互聯網保險創新也帶來一系列風險和問題。從目前已經暴露的風險來看,主要包括保險產品創新異位、消費者投訴急劇增加、消費者道德風險敞口擴大、風險評估和控制不到位等。
(一)保險產品創新異位
自2013年底由「三馬」投資的眾安在線成立以來,帶動了中國各大保險主體在保險產品上的創新熱潮。盜刷險、高溫險、退貨險、喝麻險、世界盃足球流氓險等創新險種不斷涌現,壽險公司也相繼推出求關愛、愛升級、救生圈等所謂的基於微信平台的「扔撈」產品,名字一個比一個花哨,其中,不乏一些險種初具規模,但更多的是為創新而創新。如世界盃足球流氓險從頭到尾就沒賣出幾份,導致本來就比較便宜的3元/份,到後期直接降價到1分錢/份,變成了一個十足的噱頭。更有甚者,開發出霧霾險、賞月險、搖號險等,嚴重脫離保險的本質。
(二)消費者投訴急劇增加
據保監會近日公布的《關於2015年上半年保險消費者投訴情況的通報》顯示,2015年上半年,中國保監會12378投訴維權熱線全國轉人工呼入總量157544件,同比上升40.24%。而其中,捆綁銷售互聯網產品的投訴占據一定比例,究其原因,很多保險主體互聯網保險業務發展迅速,但管理和服務能力嚴重不足,片面注重銷售前端網路化,後台運營管理卻仍是傳統思維,前端和後台不配套,買時容易退時難,從而導致消費者投訴。
(三)消費者道德風險敞口擴大
目前,各家保險主體在理賠服務上基本上都推出了簡易賠付,即保險公司對於一定金額以下(2000-10000元不等)的保險事故實行簡易賠付,消費者通過保險公司自己推出的APP平台,或拍照、或視頻,將事故現場信息傳輸到保險公司後台,保險公司審核確認後立刻賠付,全程一般在5分鍾左右時間世拿完成。應該說這種做法極大地簡化了理賠程序,縮短了理賠時間,方便了消費者。但是,客觀地講,我們也不得不面對當下國內的基本現狀,國民的平均道德水準有待提高,修理廠、4S店有組織地批量造假,保險欺詐層出不窮,這些無疑都將保險公司的風險敞口無限擴大。
(四)風險評估和管理不到位
保險從本質上是風險轉移的安排,應該有可量化的數據支撐,目前,很多產品的創新,缺少基本的費率釐定、成本測算等程序。同時,保險閉乎講究的是大數法則,如果一款產品不能具備一定規模,賠付水平就會極不穩定,風險管理也就無從談起。
三、互聯網保險創新的風險管理
(一)保險產品創新:回歸本質
保險,在法律和經濟學意義上,是一種風險管理方式。因此,保險產品創新的基本原則和底線是創新的產品具有風險管理的可能性,即通過經驗的積累和有效的管理措施能夠降低保險標的風險。這也就是一般情況下地震、颶風等不可抗力不列入保險范圍的根本原因,因為到目前為止,人類還無法通過自身的行為影響上述事件的發生。反觀現在的保險產品創新,霧霾險也好,賞月險也罷,甚至是高溫險,基本上都突破了上述這一基本原則。
之所以會出現現在這種情況,我想主要有兩個方面原因,一是保險本身,在目前的保險市場上,規模產品的同質性非常嚴重,基本相同的條款,基本相同的費率,基本相同的服務,在這種情況下,產品創新的目標已經不再是客戶的「需求」,而是客戶的「眼球」。記得若干年前,有一個保險公司開發了一個險種叫「酒駕險」,從始至終沒賣出一份保單,但公司從上到下都非常開心,因為這個產品在當時引起了包括新聞媒體、監管部門、同業公司以及消費者的極大關注,很好地提高了公司的知名度。二是與目前整個社會的大環境有關,當下,從集體到個體,在物質和經濟的指揮下,每一個社會組織和細胞都在極力獲取盡量多的資源,而忽視了資源本身的效用和價值。正像有一句話所說,走著,走著,忘記了出發的目的。
(二)保險風險管理:大數據為器
1.大數據在費率釐定中的應用。保單的費率設定是保險公司風險管理的源頭,也是一項非常重要的工作,主要目的是使設定的費率對應於投保人的風險等級,風險越小,費率越低,盡量做到公平。確定費率較為關鍵的問題就是找出「影響賠付支出的風險因素或變數」,其實生命表就是「影響賠付支出的風險因素或變數」之一年齡的一個分類。再如,在車險定價中城市交通的擁擠程度、駕駛員的年齡、駕齡、性別、汽車的新舊程度等都可能是「影響賠付支出的風險因素或變數」,而這些因素或變數就是可以通過大量數據分析和處理來確定。
2.大數據在風險評估中的應用。在大數據時代,風險評估已經不僅僅局限於公司的歷史數據、行業的歷史數據,無論是風險特徵的描述還是數據資源的獲取都更加便利。首先在占據財產險市場70%以上份額的車險領域,保險公司可以獲取三個層級數據來支撐風險評估,第一層級是核心層,包括公司和行業數據,第二層級是緊密層,包括車型、汽車零整比、二手車等數據;第三層級是外圍移動層,包括利用車載感測設備收集駕駛員行為數據等。同時,對於保險公司的精算師來講,更多、更廣的數據獲取,可以更精確地識別個體對象的潛在風險,建立更加有效的數據模型,不斷改善和提高精算的精準程度,以幫助判斷和評估風險以及風險准備金。
3.大數據在反理賠欺詐中的應用。在確保數據資源的情況下,通過完整的、多樣化的數據(數據包括但不限於公司內部保單及理賠歷史記錄、行業數據、徵信記錄、公共社交網路數據、犯罪記錄等),輔之以有效的演算法和模型,來識別理賠中可能的欺詐模式、理賠人潛在的欺詐行為以及可能存在的欺詐鏈條,應該是未來反理賠欺詐的主要方向。而對於整個中國保險行業來講,盡快建立起一套行業級的保險數據信息平台,是反理賠欺詐的關鍵。目前,上海、江蘇等省市已經實現理賠信息數據共享,在這些地區反理賠欺詐行為的成效明顯提高。
4.大數據在保險行業風險管理中應用之核心—數據整合。目前保險公司的數據有行業平台的同業數據、前端客戶APP導入(或現場出單)數據,中端中介、渠道、理賠、呼叫數據,後端財務收付數據,另外,還有定價系統的汽車零配件數據、人事系統的人員數據、稽核審計風控系統的風控數據等,種類繁多和龐雜,因此,急需建立大數據平台進行數據整合,統一數據存儲和傳遞標准,並將不同系統進行數據打通,再根據不同需要進行數據挖掘。
(三)保險風險控制:新技術應用
未來,新技術、新設備的應用將成為保險行業風險控制的主要途徑。在承保環節,基於大數據基礎的數據分析技術將在第一時間立體呈現保險標的各項數據和特徵,為承保決策和政策提供第一手資料,從源頭控制風險。在理賠環節,新技術、新設備同樣將被廣泛應用。在車輛保險領域,通過裝載在車上的無線電子設備,運用通訊網路,實現對車輛、道路以及行車駕駛員進行靜、動態信息提取和行為記錄,從而監督行車駕駛員人的行為風險和道德風險,並進行出險前預防、出險中響應和出險後處理,從而使保險事故管理變被動為主動,降低理賠成本。在人壽保險領域,利用能夠實時監控人體健康情況的可穿戴設備,來獲取和細分不同群體、不同年齡的人體健康和生死概率,並適時向客戶提供飲食、健身等方面的建議,從而降低投保人的醫療費用。在家庭財產險領域,通過智能家居系統對住宅進行遠程監控並及時發現和緩解風險,當家中發生煤氣泄漏或水管爆裂,可自動關掉閥門,從而減輕損失等。
任何事物的發展,都要有與之相對應的配套管理措施,互聯網保險創新也不例外。今後相當長一段時間,互聯網保險創新都將在路上,基於互聯網保險創新的風險管理也必將亦步亦趨,緊緊跟隨。
擴展閱讀:【保險】怎麼買,哪個好,手把手教你避開保險的這些"坑"
⑹ 「大數據」的保險業應用主題
「大數據」的保險業應用主題_數據分析師考試
在數據應用呈現爆炸式發展的時代,不能把握「大數據」商機、引領潮流的保險企業,將可能逐漸喪失市場競爭力。
「大數據」是依託新的數據處理技術,對海量、高速增長、多樣化的結構和非結構數據進行加工挖掘,找尋數據背後的規律,以提高分析決策能力、優化流程和科學配置資源的管理工具。
「大數據」正在向經濟、社會、科學、文體及公共衛生等多個領域快速滲透。在網路技術、移動互聯、雲計算等新技術和金融市場化改革的雙驅動下,金融與互聯網、各金融板塊之間的界限和壁壘被沖破,市場的游戲規則發生了深刻變化,誰掌握了數據,誰就掌握了競爭的制高點。
現代保險服務業要在經濟「新常態」中研究和實施「大數據」戰略,關鍵要找准大數據在保險業的應用場景、應用主題和應用策略。
助力保險費率市場化
保險作為一種風險轉移和管理工具,是一種社會群體之間的風險救助機制。保險產品機理主要是遵循統計學范疇的「大數法則」,基於歷史風險發生和損失的數據進行分析和預測,在重復隨機現象中找出「必然」規律,依靠精算技術實施產品定價、建立財務運行機制。有些觀點認為大數據顛覆了「大數法則」,實際上,雖然兩者都是在「大量」數據基礎上進行風險和財務預測,但在保險產品定價機制中的作用基點是完全不同的。
「大數法則」是保險定價的根本法則,特別是針對車險、壽險、健康等關系社會公眾利益的領域,必須依託「大數法則」確保行業基準純風險損失率釐定的公平性、充足性和安全性。也就是說,「大數法則」是保險運行管理的數理邏輯,是保險業不可動搖的理論和定價基礎。而「大數據」主要發揮保險定價的輔助作用,特別是採集和獲取客戶行為、交易的網路數據進行關聯分析,找尋數據背後風險與成本、收益的匹配規律,推動保險公司客戶細分化、責任碎片化、產品定製化,優化精算定價模型,主要基於附加費率建立科學、有效的保險費率浮動機制和差別化定價機制。
因此,「大數據」並沒有顛覆「大數法則」,而是對保險費率市場化形成機制的重要優化和改進,是一種以新技術為依託、更加精細化的風險管理輔助工具。
目前,新一輪保險費率形成機制改革步伐明顯加快,非車險、意外險、投資連結險、普通型壽險、萬能險等已經相繼放開,商業車險、分紅險市場化改革也即將發令放行,更多的產品定價權和選擇權將交給市場。科學、有效的費率形成機制是市場化改革成功的關鍵。應全面構造以「大數法則」為基礎的基準費率和以「大數據」技術為輔助的附加費率和產品創新機制。
一方面,保險監管部門應主導構建公開公正的保險基準費率形成機制,建立保險基準費率定期測算和發布機制,特別是借鑒國際上的成熟經驗和模式,設立獨立的保險費率釐定機構,形成主要保險產品的定價參照基準體系。另一方面,要鼓勵保險企業在遵循基準費率的同時,發揮大數據在保險產品區域化、差別化、個性化的創新支撐作用,處理好產品創新與風險、成本、收益的關系。
驅動新一輪轉型發展
自改革開放以來,保險市場保費和資產規模迅速擴張,卻難以逃脫產品同質化、「跑馬圈地」、價格惡性競爭、服務體驗差的外部詬病,歸根到底還是源於「以產品為中心」的粗放式發展模式。由於保險企業數據維度、質量、可利用度和處理能力不足,向「以客戶為中心」的集約化管理模式轉型「常提卻難新」。
伴隨金融綜合化、保險集團化、渠道多元化發展,特別是電銷、第三方電商、移動互聯等新渠道的興起,保險數據的歷史積累、採集維度、關聯分析與實踐應用日益成熟,由於大數據有利於提升保險企業對客戶行為特徵、風險和產品偏好的分析能力,為保險企業客戶關系管理、風險識別與定價、營銷策略分析、理賠欺詐風險防控提供了新的驅動力,成為保險業新一輪轉型發展的「利器」。
因此,保險企業應找准大數據在經營管理中的應用場景,著力解決制約轉型發展的關鍵環節。
一是加強數據資源內外部整合。加強集團內部、各渠道、各產品線的數據整合利用,積極採集全面反映客戶行為特徵和交易偏好的移動互聯、社交媒體、電商、地理位置、OBD等線上數據,引入身份、信用、車輛、駕駛行為等線下數據,為大數據技術應用建立現實基礎。
二是構建完整的客戶數據圖譜。依託數據挖掘技術,推進客戶需求分析和客戶群組細分,在集團或公司內部建立客戶虛擬賬戶,豐富客戶全景視圖,加強客戶挽留與個性化推薦,促進客戶的獲取率、留存率和持續率。構建完善的客戶自助服務體系,改善客戶體驗、提升客戶忠誠度、提高客戶整體價值。
三是提升數據發現和決策能力。重點提升對非結構化數據的存儲、加工和分析能力。圍繞交叉和二次銷售、精準營銷、代理人甄選和流失預警,加強數據分析和快速響應,整合昂貴的渠道資源,提升銷售渠道價值。通過理賠洞見分析、反欺詐關聯分析,提升成本精細化管理、精準打擊欺詐行為。
四是加強數據架構規劃。引入新的大數據分析工具和存儲技術,提高對語音、視頻、圖片、網路日誌等非結構化數據的分析處理能力,對信息模型、主輔數據源以及數據集成架構進行前瞻性設計,加強主數據和元數據管理,推動信息數據的邏輯整合。提高自身數據質量,注重數據全生命周期管理。
開創「數據治理」新模式
在保險資金運用和費率市場化加快推進的背景下,按照保監會「放開前端、管住後端」的市場化改革思路,市場化的「新常態」使傳統的文件出台、現場檢查、行政處罰等保險市場治理手段難以奏效,滯後的監管技術手段將無助於有效防控區域性和系統性風險,客觀上要求保險監管部門從依靠行政手段向依靠「數據手段」治理市場轉變:
一是從場外交易向場內交易轉變。通過建立保險產品交易、中介交易和資產交易的交易場所和信息平台,促進保險交易的透明化、規則化和信息對稱化;二是從監管信息統計與非現場監管向保單登記管理轉變。市場和風險的快速變化,促使保險監管從依靠時滯的統計數據和局部的樣本數據,向保單級的全量數據和實時的生產數據演變;三是由條款費率靜態審批管理向基準費率測算常態化轉變。定價權逐步交給市場後,產品創新必然層出不窮,基準費率常態監測、回溯分析和定期測算是產品監管和風險控制的必然要求。
基於上述行業轉型發展和市場治理需求,應從提高行業核心競爭力和抗風險能力的高度,科學規劃行業大數據體系。
一是全面推進行業信息共享與應用。在客戶隱私保護和數據安全的前提下,建立行業中央集成數據倉庫,打破企業之間的數據孤島,將分散在各保險機構的數據,按照客戶、保單、業務等多個主題進行採集、存儲和有限共享,充分釋放數據共享在規范市場行為、反保險欺詐、提升定價能力、促進精細化管理等方面的內在價值。
二是主動與外部數據交互應用。拓寬行業整體數據維度,依託行業數據共享的平台優勢,積極引入公安、氣象、醫療、教育、信用、移動通信等外部數據,主動與交管、稅務、經偵、社保、徵信等公共管理部門進行數據交互,發揮外部數據在行業內部治理中的獨特作用,依託共享平台有效延伸保險參與社會治理的范圍和觸點。
三是研究制定行業大數據戰略和設施框架。完善信息共享平台和保單登記制度等相關法律法規,為行業大數據戰略實施建立良好的政策環境。加強行業數據標准建設,規范統一共享介面標准,提高數據整體質量;不斷優化共享資料庫的採集、存儲、處理與結果應用的流程和技術,研究建立行業數據分析框架和模型,依託數據挖掘、雲計算平台、虛擬化技術,支持海量、多結構類型、高頻度的大數據處理。加強行業信息共享的安全體系建設,保障保險機構與共享信息關聯生產的連續性、安全性和穩定性。
以上是小編為大家分享的關於「大數據」的保險業應用主題的相關內容,更多信息可以關注環球青藤分享更多干貨
⑺ 大數據給銀行業、保險業、證券業、徵信業分別帶來了哪些大變革
去給銀行業保險也掙錢也真心也分別帶來了非常大的變化這些業務都根據咱數據來發展他不來的。
⑻ 大數據時代到來給保險發展帶來機遇
【摘要】 大數據時代的到來將為人類的生活創造前所未有的可量化的維度。大數據已經成為了新發明和新服務的源泉,而更多的改變正蓄勢待發。保監會副主席曾經這樣說:“大數據對金融業的影響將是全面和深刻的, 保險 業要站在更好滿足消費者需求高度看待大數據的影響。”保險行業要想實現持續健康發展,還需充分發揮 大數據 的作用。
一是思維方式面臨沖擊。這些年我國保險業市場創新不斷涌現,但總體上還是延續了發達保險市場的發展脈絡。而大數據對思維方式的沖擊可能是顛覆性的。在技術劇烈變化的條件下,如果思維方式跟不上,企業經營或保險監管都可能會出現很大問題。
二是數據基礎比較薄弱。這些年,保險業在大數據戰略和網路經營等方面進行了積極探索。2012年,有61家保險公司開展了網上保險業務。中國人保集團建設完成了企業私有雲計算平台,並准備開展車聯網試點。中國人壽2002年將全國500多套應用系統集中到數據中心進行統一運營。中國平安與網路聯手研究 車險 用戶基於互聯網的行為模式。
但總體上保險業大數據的基礎還很薄弱,和銀行證券業相比還有一定差距。同時,不同主體間大數據應用能力存在較大差異,保險主體挖掘內部數據,收集外部數據,對數據分析和處理,發現數據背後價值的能力還很不平衡。
三是外部競爭可能加劇。在大數據時代,保險業面臨來自互聯網企業和科技公司業務分割的競爭壓力。保險企業的生存空間受到了擠壓,保險業的競爭能力可能會被進一步惡化。
四是人才儲備嚴重不足。高端新型技術人才匱乏是制約保險業發展的重要因素之一。面向大數據時代,保險業在人才上的問題顯得更加突出。
王祖繼強調,保險監管機構要順應大數據時代的潮流,為行業創新發展營造良好環境;要強化基礎建設,建立大數據質量標准,消除壁壘,推進信息 共享 ,建立信息隱私保護制度,建立安全有效的大數據共享使用環境;要鼓勵包容創新,以開放心態支持保險機構運用大數據進行產品、服務、管理等方面的有益創新。要完善監管制度,對保險市場基於大數據的新事物、新探索,適時制定監管制度加以規范,減少監管死角和監管真空地帶,保護消費者合法權益,同時也要避免過度監管;要防範創新風險,加強對風險的預警跟蹤,對於大數據時代下新的風險形態保持足夠的敏感和警惕,促進保險業市場可持續發展。
慧擇提示 :大數據的浪潮是無法抗拒的。大數據基於精確量化的承保損失分布,它可以提升保險機構資產負債的管理水平,可以在資本市場實施更精準的風險投資組合策略,提高保險業在資本市場的投資回報水平。所以,保險監管機構也要順應大數據時代的潮流,為行業創新發展營造良好環境,促進保險行業更好發展。
⑼ 大數據在保險中的實時應用
大數據在保險中的實時應用
幾十年來,保險業一直在努力處理交易和風險管理方面的數據。電信與數據融合的前沿趨勢讓保險公司對客戶行為有了新的認知,而這被稱之為「大數據」。數據具有廣泛性、多樣性的特點,特別是能將傳統的關系型資料庫管理技術推向極致,並且讓人們越來越關注數據管理的新方法。大數據、分析和數據管理齊頭並進;美國1.1萬億美元保險市場的各家公司正在爭先恐後地開展自己的數據分析實踐。
大數據的實時應用案例
大數據技術可以使公司評估非結構化數據由不可行變為可行。這里將介紹一些大數據技術在保險領域的應用案例。
欺詐識別
大數據已經幫助保險人做出了改變。而今他們超越了以索賠為中心和以人為中心的演算法欺詐檢測技術。這些技術側重於分析索賠方、保險供應方和其他的信息來源(例如,同一個被保險人提交了多少份類似的索賠請求),並擴展到防火牆之外的數據源,以便基於外部信息分析(例如隊列分析 - 使用一個人的社交圈子來分析相關個體之間的類似行為),這里考慮到的是一群互相聯系的人而不僅僅是一個人。
在美國,每年健康保險欺詐給保險業帶來大約700億到2600億美元的損失;歐盟也有300億到1000億美元的損失。
欺詐檢測和預防主要通過兩種方法實現:
基於實時數據分析的欺詐審計規則(基於歷史數據的傳統類型)
欺詐預測記分卡(基於實時數據的新類型)
客戶關系管理(CRM)
所有的非結構化數據都可以提供給所有的保險公司,這可以成為「大數據分析」方法的基礎。一些非結構化數據源包括:
客戶線上文檔
如果這些文檔可以被輕松搜索到並且能匯集到企業的數據管理平台,那麼保險公司就可以獲得關於客戶的大量信息,包括對非標准、非結構化的生命健康的醫療報告信息,以及再保險和大型商業財產保險部門的信息。
客戶關懷通話記錄
這些內容包含了客戶來電自由形式的代表性評論,這些評論可以用來進行市場情緒調研,有助於形成策略和付諸實踐,以提高客戶的保留率,減少客戶流失。
點擊流數據
由面向客戶的網站生成,可以分析這些數據,以發現顯示客戶傾向的瀏覽模式,尤其是當與呼叫中心記錄相關的時候,找出那些客戶在網路交互後立即呼叫的例子。
索賠管理
大數據也與索賠管理息息相關:運營商希望在索賠流程期間保存好圖像、視頻和文本標記(例如,來自警察檢查員或拖車司機的汽車保險索賠的文本標記)。結合投保人和受益人幾個實體(受益人、投保人、保險人)的匯總信息對非結構化數據的大數據分析變得尤為重要。
承保
在再保險和大型商業保險部門,大量的支持信息會作為信息提交的一部分(例如,損失歷史、財產計劃、車輛調度和董事的詳細信息)。
大數據技術使保險公司能夠快速地存儲和訪問任何數據,以便他們能夠通過分析來突出異常、某種模式和部分重點——這是人工閱讀文檔時代非常困難的事情。自動化數據管理的能力,以及記錄支持文檔的能力,使保險公司能夠創建風險和客戶檔案,這在整個公司中都是統一可審計的並且能夠提供豐富的分析資料。
⑽ 何為大數法則,它在保險業中的作用是什麼
風險大量原則(大數法則)又稱"大數定律"或"平均法則"。
人們在長期的實踐中發現,在隨機現象的大量重復中往往出現幾乎必然的規律,即大數法則。概率論的大數法則是保險人計算保險費率的基礎,只有承保大量的風險單位,大數法則才能顯示其作用。
此法則的意義是:風險單位數量愈多,實際損失的結果會愈接近從無限單位數量得出的預期損失可能的結果。據此,保險人就可以比較精確的預測危險,合理的釐定保險費率,使在保險期限內收取的保險費和損失賠償及其它費用開支相平衡。
保險公司正是利用在個別情形下存在的不確定性將在大數中消失的這種規則性,來分析承保標的發生損失的相對穩定性。按照大數法則,保險公司承保的每類標的數目必須足夠大,否則,缺少一定的數量基礎,就不能產生所需要的數量規律。但是,任何一家保險公司都有它的局限性,即承保的具有同一風險性質的單位是有限的,這就需要通過再保險來擴大風險單位及風險分散面。