『壹』 大數據都包括什麼
現在幾乎每個人都在談論大數據.那麼,你知道大數據嗎?你知道大數據包括什麼嗎?
流程處理
決策者感興趣的是緊固組織的命脈,取得實時結果.他們需要的是可以處理隨時發生的數據流的結構,目前的資料庫技術不適合數據流處理.
例如,計算一組數據的平均值可以通過傳統腳本實現.但是,關於移動數據平均值的計算,無論是到達、成長還是單元,都有更高效的演算法.如果你想建立一個數據倉庫,並執行任意絕腔的數據分析和統計,開源產品R或類似SAS的商業產品可以實現.但是,想要製作的是數據流統計集,逐漸添加或刪除數據塊,進行移動平均計算,資料庫不存在或不成熟.
數據流周邊的生態系統不發達.換句話說,如果你正在和供應商談判大數據項目,你必須知道數據流程處理對你的項目是否重要,供應商是否有能力提供轎慎.
並行化
大數據的定義有很多種,以下相對有用.小數據的情況類似於桌面環境,磁碟的存儲能力在1GB到10GB之間,中數據的數據量在100GB到1TB之間,大數據的分布式存儲在多台機器中,包括1TB到多個PB的數據.
如果您在分布式數並帆衫據環境中工作,在短時間內處理數據,則需要分布式處理.
並行處理在分布式數據中脫穎而出,Hadoop是分布式/並行處理領域廣為人知的例子.Hadoop包含大型分布式文件系統,支持分布式/並行查詢.
『貳』 大數據的應用領域有哪些
1.了解和定位客戶
這是大數據目前最廣為人知的應用領域。很多企業熱衷於社交媒體數據、瀏覽器日誌、文本挖掘等各類數據集,通過大數據技術創建預測模型,從而更全面地了解客戶以及他們的行為、喜好。
利用大數據,美國零售商Target公司甚至能推測出客戶何時會有Baby;電信公司可以更好地預測客戶流失;沃爾瑪可以更准確的預測產品銷售情況;汽車保險公司能更真實的了解客戶實際駕駛情況。
滑雪場利用大數據來追蹤和鎖定客戶。如果你是一名狂熱的滑雪者,想像一下,你會收到最喜歡的度假勝地的邀請;或者收到定製化服務的簡訊提醒;或者告知你最合適的滑行線路。。。。。。同時提供互動平台(網站、手機APP)記錄每天的數據——多少次滑坡,多少次翻越等等,在社交媒體上分享這些信息,與家人和朋友相互評比和競爭。
除此之外,政府競選活動也引入了大數據分析技術。一些人認為,奧巴馬在2012年總統大選中獲勝,歸功於他們團隊的大數據分析能力更加出眾。
2.
改善醫療保健和公共衛生
大數據分析的能力可以在幾分鍾內解碼整個DNA序列,有助於我們找到新的治療方法,更好地理解和預測疾病模式。試想一下,當來自所有智能手錶等可穿戴設備的數據,都可以應用於數百萬人及其各種疾病時,未來的臨床試驗將不再局限於小樣本,而是包括所有人!
蘋果公司的一款健康APP ResearchKit有效將手機變成醫學研究設備。通過收集用戶的相關數據,可以追蹤你一天走了多少步,或者提示你化療後感覺如何,帕金森病進展如何等問題。研究人員希望這一過程變得更容易、更自動化,吸引更多的參與者,並提高數據的准確度。
大數據技術也開始用於監測早產兒和患病嬰兒的身體狀況。通過記錄和分析每個嬰兒的每一次心跳和呼吸模式,提前24小時預測出身體感染的症狀,從而及早干預,拯救那些脆弱的隨時可能生命危險的嬰兒。
更重要的是,大數據分析有助於我們監測和預測流行性或傳染性疾病的暴發時期,可以將醫療記錄的數據與有些社交媒體的數據結合起來分析。比如,谷歌基於搜索流量預測流感爆發,盡管該預測模型在2014年並未奏效——因為你搜索「流感症狀」並不意味著真正生病了,但是這種大數據分析的影響力越來越為人所知。
3.提供個性化服務
大數據不僅適用於公司和政府,也適用於我們每個人,比如從智能手錶或智能手環等可穿戴設備採集的數據中獲益。Jawbone的智能手環可以分析人們的卡路里消耗、活動量和睡眠質量等。Jawbone公司已經能夠收集長達60年的睡眠數據,從中分析出一些獨到的見解反饋給每個用戶。從中受益的還有網路平台「尋找真愛」,大多數婚戀網站都使用大數據分析工具和演算法為用戶匹配最合適的對象。
4.
了解和優化業務流程
大數據也越來越多地應用於優化業務流程,比如供應鏈或配送路徑優化。通過定位和識別系統來跟蹤貨物或運輸車輛,並根據實時交通路況數據優化運輸路線。
人力資源業務流程也在使用大數據進行優化。Sociometric Solutions公司通過在員工工牌里植入感測器,檢測其工作場所及社交活動——員工在哪些工作場所走動,與誰交談,甚至交流時的語氣如何。美國銀行在使用中發現呼叫中心表現最好的員工——他們制定了小組輪流休息制度,平均業績提高了23%。
如果在手機、鑰匙、眼鏡等隨身物品上粘貼RFID標簽,萬一不小心丟失就能迅速定位它們。假想一下未來可能創造出貼在任何東西上的智能標簽。它們能告訴你的不僅是物體在哪裡,還可以反饋溫度,濕度,運動狀態等等。這將打開一個全新的大數據時代,「大數據」領域尋求共性的信息和模式,那麼孕育其中的「小數據」著重關注單個產品。
5.
改善城市和國家建設
大數據被用於改善我們城市和國家的方方面面。目前很多大城市致力於構建智慧交通。車輛、行人、道路基礎設施、公共服務場所都被整合在智慧交通網路中,以提升資源運用的效率,優化城市管理和服務。
加州長灘市正在使用智能水表實時檢測非法用水,幫助一些房主減少80%的用水量。洛杉磯利用磁性道路感測器和交通攝像頭的數據來控制交通燈信號,從而優化城市的交通流量。據統計目前已經控制了全市4500個交通燈,將交通擁堵狀況減少了約16%。
6.提升科學研究
大數據帶來的無限可能性正在改變科學研究。歐洲核子研究中心(CERN)在全球遍布了150個數據中心,有65,000個處理器,能同時分析30pb的數據量,這樣的計算能力影響著很多領域的科學研究。比如政府需要的人口普查數據、自然災害數據等,變的更容易獲取和分析,從而為我們的健康和社會發展創造更多的價值。
7.提升機械設備性能
大數據使機械設備更加智能化、自動化。例如,豐田普銳斯配備了攝像頭、全球定位系統以及強大的計算機和感測器,在無人干預的條件下實現自動駕駛。Xcel Energy在科羅拉多州啟動了「智能電網」的首批測試,在用戶家中安裝智能電表,然後登錄網站就可實時查看用電情況。「智能電網」還能夠預測使用情況,以便電力公司為未來的基礎設施需求進行規劃,並防止出現電力耗盡的情況。在愛爾蘭,雜貨連鎖店Tescos的倉庫員工佩戴專用臂帶,追蹤貨架上的商品分配,甚至預測一項任務的完成時間。
8.強化安全和執法能力
大數據在改善安全和執法方面得到了廣泛應用。美國國家安全局(NSA)利用大數據技術,檢測和防止網路攻擊(挫敗恐怖分子的陰謀)。警察運用大數據來抓捕罪犯,預測犯罪活動。信用卡公司使用大數據來檢測欺詐交易等等。
2014年2月,芝加哥警察局對大數據生成的「名單」——有可能犯罪的人員,進行通告和探訪,目的是提前預防犯罪。
9.
提高體育運動技能
如今大多數頂尖的體育賽事都採用了大數據分析技術。用於網球比賽的IBM SlamTracker工具,通過視頻分析跟蹤足球落點或者棒球比賽中每個球員的表現。許多優秀的運動隊也在訓練之外跟蹤運動員的營養和睡眠情況。NFL開發了專門的應用平台,幫助所有球隊根據球場上的草地狀況、天氣狀況、以及學習期間球員的個人表現做出最佳決策,以減少球員不必要的受傷。
還有一件非常酷的事情是智能瑜伽墊:嵌入在瑜伽墊中的感測器能對你的姿勢進行反饋,為你的練習打分,甚至指導你在家如何練習。
10.金融交易
大數據在金融交易領域應用也比較廣泛。大多數股票交易都是通過一定的演算法模型進行決策的,如今這些演算法的輸入會考慮來自社交媒體、新聞網路的數據,以便更全面的做出買賣決策。同時根據客戶的需求和願望,這些演算法模型也會隨著市場的變化而變化。
更多精彩:14_spark體系之分布式計算課程Spark 集群搭建+S
『叄』 大數據技術的發展趨勢有哪些
大數據技術目前已日趨成熟,日後會在系統研發、大數據應用開發和大數據分析方向上分類更加的精確和細致。
總的來說大數據有5個部分。數據採集,數據存儲,數據清洗,數據挖掘,數據可視化。數據採集有硬體採集,如OBD,有軟體採集,如滴滴,淘寶。數據存儲就包括NOSQL,hadoop等等。數據清洗包括語議分析,流媒體格式化等等。數據挖掘包括關聯分析,相似度分析,距離分析,聚類分析等等。數據可視化就是WEB的了。
『肆』 大數據能用來做什麼
大數據為我們提供了巨大的機遇,幫助我們開發新的創意產品和服務,例如手機APP或企業商業智能產品。它可以促進經濟的增長和就業機會,可以大大提高人們的生活質量。
一、 醫療:提高診斷和治療的水平
大數據為提高醫療信息處理效率提供了解決方案,從而為企業、公共部門和公民創造價值。對大型臨床數據集的分析可以優化新葯和治療的臨床和成本效益,患者可以受益於更及時和適當的護理。數據互操作性至關重要,因為數據來自不同的和異構的來源,如生物信號流、健康記錄、基因組學和臨床實驗室測試等。
二、 商業:企業無形資產,助力企業決策
如今,大數據非常重要,它可以直接影響企業的估值。大數據已經成為企業一種關鍵的無形資產,可以通過數據收集加以衡量,並計入估值。企業如何使用數據以及基於數據做出的決策也將影響企業決策的成功率。
三、 數據:數據市場的價值
在過去十幾年裡,信息技術直接或間接地推動了中國的經濟增長,數據的作用已經從簡單支持商業決策轉變為自身的價值存在。在新的網路經濟中,開放的數據市場已變得至關重要。
四、 交通:減少事故和交通堵塞
交通部門可以從道路感測器收集大量的數據。智能利用這些大數據,可以支持政府優化交通流管理。市民和公司可以通過使用路線規劃大大節約出行時間。
五、 環境:降低能源消耗
大數據革命帶來了應對環境挑戰的新方式。更好地利用全球可用的數據集有助於科學家開展研究,並使決策者能夠就洪水等自然災害作出知情和決策,以應對氣候變化和降低成本。智能城市還設有數據中心,根據可再生能源和其他有用指標的可用性,調整公共建築的電力消耗。
六、 農業:更安全的食品和更高的生產力
在農業領域智能地使用大數據,可以同時提高生產率、糧食安全和農民收入。通過對感測器和地球觀測數據的智能和廣泛使用,可以有效改善我們今天的耕作方式。這包括可以在我們的農業實踐中更有效地利用自然資源(包括水或陽光)。有了先進的技術,農民也可以獲得他們的農業機械正在如何工作的實時數據,以及歷史上的天氣模式、地形和作物表現。
『伍』 什麼是大數據
大數據是舶來詞,原文Big Data。
指人類社會進入互聯網時代後,萬物皆可數據化。移動互聯網(智能手機)普及後,特別是線上支付、LBS(Location Based Service)地理定位服務、IoT物聯網普及後,無論是個人出行、就餐、購物、娛樂、工作,幾乎每個層面,均可通過數據化方式表現並記錄至相關數據中心。最終形成的數據以海量形式呈現,即大數據。
大數據用途很多,主要是量化分析得出趨勢指標,在此不做過多贅述。
『陸』 大數據技術的發展趨勢有哪些
大數據技術目前已日趨成熟,日後會在系統研發、大數據應用開發和大數據分析方向上分類更加的精確和細致。
總的來說大數據有5個部分。數據採集,數據存儲,數據清洗,數據挖掘,數據可視化。數據採集有硬體採集,如OBD,有軟體採集,如滴滴,淘寶。數據存儲就包括NOSQL,hadoop等等。數據清洗包括語議分析,流媒體格式化等等。數據挖掘包括關聯分析,相似度分析,距離分析,聚類分析等等。數據可視化就是WEB的了。
『柒』 大數據適合去哪些城市發展
機架規模競爭分析:「北上廣」三城略微領先
機架是數據中心運營的基礎設施,因此,機架規模是衡量IDC產業競爭力有效指標之一。據ODCC披露的數據顯示,2019年,從城市分布來看,北京市及周邊的數據中心機架規模最大,達65萬架,佔比約27%;而上海及周邊地區的機架規模為62萬架,位列第二,佔比約25%。總的來看,我國一線城市的數據中心機架規模較為集中,資源優勢明顯。
——以上數據及分析請參考於前瞻產業研究院《中國IDC(互聯網數據中心)行業市場前瞻與投資戰略規劃分析報告》。
『捌』 大數據是做什麼的
問題一:大數據能做什麼 如果說砍樹是一個職業,那你手中的斧頭就是大數據。大數據是一種覆蓋政商等領域的超大型平台,你可以用大數據來瞄準你所關心領域的長短點並很快很准地得出預判,升華概念,你能通過數據預測未來,行業的未來你能掌握了,就能賺錢。
問題二:大數據可以做什麼 用處太多了
首先,精準化定製。
主要是針對供需兩方的,獲取需方的個性化需求,幫助供方定準定位目標,然後依據需求提 *** 品,最終實現供需雙方的最佳匹配。
具體應用舉例,也可以歸納為三類。
一是個性化產品,比如智能化的搜索引擎,搜索同樣的內容,每個人的結果都不同。或者是一些定製化的新聞服務,或者是網游等。
第二種是精準營銷,現在已經比較常見的互聯網營銷,網路的推廣,淘寶的網頁推廣等,或者是基於地理位置的信息推送,當我到達某個地方,會自動推送周邊的消費設施等。
第三種是選址定位,包括零售店面的選址,或者是公共基礎設施的選址。
這些全都是通過對用戶需求的氏鬧大數據分析,然後供方提供相對定製化的服務。
應用的第二個方向,預測。
預測主要是圍繞目標對象,基於它過去、未來的一些相關因素和數據分析,從而提前做出預警,或者是實時動態的優化。
從具體的應用上,也大概可以分為三類。
一是決策支持類的,小到企業的運營決策,證券投資決策,醫療行業的臨床診療支持,以及電子政務等。
二是風險預警類的,比如疫情預測,日常健康管理的疾病預測,設備設施的運營維護,公共安全,以及金融業的信用風險管理等。
第三種是實時優化類的,比如智能線路規劃,實時定價等。
問題三:什麼是大數據,大數據可以做什麼 大數據,指無法在可承受的時間范圍內用常規軟體工具進行捕捉、管理和處理的數據 *** ,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力來適應海量、高增長率和多樣化的信息資產。
大數據可以對;數據進行收集和存儲,在這基礎上,再進行分析和應用,形成我們的產品和服務,而產品和服務也會產生新的數據,這些新數據會循環進入我們的流程中。
當這整個循環體系成為一個智能化的體系,通過機器可以實現自動化,那也許就會成為一種新的模式,不管是商業的,或者是其他。
問題四:大數據是做什麼的 大數據(Big Data)是指「無法用現有的軟體工具提取、存儲、搜索、共享、分析和處理的海量的、復雜的數據 *** 。」帆配業界通常用4個V(即Volume、Variety、Value、Velocity)來概括大數據的特徵。
數據體量巨大(Volume)。截至目前,人類生產的所有印刷材料的數據量是200PB,而歷史上全人類說過的所有的話的數據量大約是5EB(1EB=210PB)。
數據類型繁多(Variety)。相對於以往便於存儲的以文本為主的結構化數據,非結構化數據越來越多,包括網路日誌、音頻、視頻、圖片、地理位置信息等,這些多類型的數據對數據的處理能力提出了更高要求。
價值密度低(Value)。價值密度的高低與數據總量的大小成反比。如何通過強大的機器演算法更迅速地完成數據的價值「提純」成為目前大數據背景下亟待解決的難題。
處理速度快(Velocity)。大數據區分於傳統數據挖掘的最顯著特徵。根據IDC的「數字宇宙」的報告,預計到2020年,全球數據使用量將達到35.2ZB。
-------------------------------------------
社交網路,讓我們越來越多地從數據中觀察到人類社會的復雜行為模式。社交網路,為大數據提供了信息匯集、分析的第一手資料。從龐雜的數據背後挖掘、分析用戶的行為習慣和喜好,找出更符合用戶「口味」的產品和服務,並結合用戶需求有針對性地調整和優化自身,就是大數據的價值。
所以,建立在上述的概念上我們可以看到大數據的產業變化:
1 大數據飛輪效應所帶來的產業融合和新產業驅動
2 信息獲取方式的完全變化帶來的新式信息聚合
3 信息推送方式的完全變化帶來的新式信息推廣
4 精準營銷
5 第三方支付 ―― 小微信貸,線上眾籌為代表的互聯網金融帶殲轎罩來的全面互聯網金融改革
6 產業垂直整合趨勢以及隨之帶來的產業生態重構
7 企業改革以及企業內部價值鏈重塑,擴大的產業外部邊界
8 *** 及各級機構開放,透明化,以及隨之帶來的集中管控和內部機制調整
9 數據創新帶來的新服務
問題五:大數據是什麼?大數據可以做什麼?大數據實際做了什麼?大數據要怎麼做 大數據(big data),或稱巨量資料,指的是所涉及的資料量規模巨大到無法通過目前主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。 大數據分析的標配是商業智能(BI)軟體,傳統數據分析的繁雜之處主要體現在兩個方面,一是技術人員需要花費大量時間准備數據;二是業務人員基於數據偶得的一些分析需求實現過程復雜。 FineBI的Data Service模塊,特有的分析設計模式和指標影響因素智能分析模塊,能夠幫助用戶解決傳統BI數據准備時間長,偶得數據分析過程復雜等問題,讓技術人員准備數據時無需任何代碼和復雜的設置過程,讓非IT人員能夠輕松自在得進行分析。
問題六:大數據可以做什麼 可以用幾個關鍵詞對大數據做一個界定。
首先,「規模大」,這種規模可以從兩個維度來衡量,一是從時間序列累積大量的數據,二是在深度上更加細化的數據。
其次,「多樣化」,可以是不同的數據格式,如文字、圖片、視頻等,可以是不同的數據類別,如人口數據,經濟數據等,還可以有不同的數據來源,如互聯網、感測器等。
第三,「動態化」。數據是不停地變化的,可以隨著時間快速增加大量數據,也可以是在空間上不斷移動變化的數據。
這三個關鍵詞對大數據從形象上做了界定。
但還需要一個關鍵能力,就是「處理速度快」。如果這么大規模、多樣化又動態變化的數據有了,但需要很長的時間去處理分析,那不叫大數據。從另一個角度,要實現這些數據快速處理,靠人工肯定是沒辦法實現的,因此,需要藉助於機器實現。
最終,我們藉助機器,通過對這些數據進行快速的處理分析,獲取想要的信息或者應用的整套體系,才能稱為大數據。
問題七:大數據公司具體做什麼? 主要業務包括數據採集,數據存儲,數據分析,數據可視化以及數據安全等,這些是依託已有數據的基礎上展開的業務模式,其他大數據公司是依靠大數據工具,對市場需求,為市場帶來創新方案並推動技 術發展。這類公司里天雲大數據在市場應用里更加廣泛
問題八:大數據應用到底是做什麼的? 對於「大數據」,研究機構Gartner給出了這樣的定義。「大數據」是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。 *** 的定義,大數據是指無法在可承受的時間范圍內用常規軟體工具進行捕捉、管理和處理的數據 *** 。
從技術上看,大數據與雲計算的關系就像一枚硬幣的正反面一樣密不可分。大數據必然無法用單台的計算機進行處理,必須採用分布式架構。它的特色在於對海量數據進行分布式數據挖掘,但它必須依託雲計算的分布式處理、分布式資料庫和雲存儲、虛擬化技術。隨著雲時代的來臨,大數據也吸引了越來越多的關注。
大數據技術的戰略意義不在於掌握龐大的數據信息,而在於對這些含有意義的數據進行專業化處理。換言之,如果把大數據比作一種產業,那麼這種產業實現盈利的關鍵,在於提高對數據的「加工能力」,通過「加工」實現數據的「增值」。
問題九:在未來大數據能做什麼? 是的,通過網路進行收集數據,將採集到的數據進行加工處理、分析,前提是 要通信的,大數據是指 一個 當今現代化的一個流行化概念名詞,二三十年前就有人提出來了,特指 海量信息,可以永久性存儲在伺服器中,誰採集到的數據,誰管理,數據是在變化的,隨著人類的活動,國內 掀起一場互聯網金融,每個行業 都有自己 獨特的 數據 分類信息,進行數據挖掘,有用的數據 撈取出來 ,那麼它就是有意義 的
問題十:大數據營銷具體是什麼呢? 大數據營銷是基於多平台的大量數據,依託大數據技術的基礎上,應用於互聯網廣告行業的營銷方式。陽眾互動認為大數據營銷真正的核心在於讓網路廣告在合適的時間,通過合適的載體,以合適的方式,投給合適的人,說到底就是以自身掌握的數據或者說信息對客戶進行精準的定位,以最好、最快的滿足目標群體的需求。
『玖』 大數據的內容是什麼
問題一:大數據都包括什麼內容? 你好,
第一,你可以直接網路搜索。
第二,根據我的理解,所有你在互聯網上留下的痕跡就是大數據。
比如很多購物網站,會根據你以前的購買記錄,在你再次到該網站的時候,在頁面底部出現「猜你喜歡」,推薦幾個你可能喜歡的東西。比如淘寶、天貓、京東這些購物網站。
有時候,還會定期發郵件給你,推薦你一些商品,比如做的比較好的,像亞馬遜。
希望能對你有所幫助,有什麼問題我們可以繼續交流
問題二:什麼是大數據?大數據是什麼意思? 「大數據」是近年來IT行業的熱詞,大數據在各個行業的應用逐漸變得廣泛起來,如2014年的兩會,我們聽得最多的也是大數據分析,那麼,什麼是大數據呢,大數據時代怎麼理解呢,一起來看看吧。
大數據的定義。大數據,又稱巨量資料,指的是所涉及的數據資料量規模巨大到無法通過人腦甚至主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。
大數據的特點。數據量大、數據種類多、 要求實時性強、數據所蘊藏的價值大。在各行各業均存在大數據,但是眾多的信息和咨詢是紛繁復雜的,我們需要搜索、處理、分析、歸納、總結其深層次的規律。
大 數據的採集。科學技術及互聯網的發展,推動著大數據時代的來臨,各行各業每天都在產生數量巨大的數據碎片,數據計量單位已從從Byte、KB、MB、 GB、TB發展到PB、EB、ZB、YB甚至BB、NB、DB來衡量。大數據時代數據的採集也不再是技術問題,只是面對如此眾多的數據,我們怎樣才能找到 其內在規律。
大數據的挖掘和處理。大數據必然無法用人腦來推算、估測,或者用單台的計算機進行處理,必須採用分布式計算架構,依託雲計算的分布式處理、分布式資料庫、雲存儲和虛擬化技術,因此,大數據的挖掘和處理必須用到雲技術。
互聯網是個神奇的大網,大數據開發也是一種模式,你如果真想了解大數據,可以來這里,這個手機的開始數字是一八七中間的是三兒零最後的是一四二五零,按照順序組合起來就可以找到,我想說的是,除非你想做或者了解這方面的內容,如果只是湊熱鬧的話,就不要來了。
大 數據的應用。大數據可應用於各行各業,將人們收集到的龐大數據進行分析整理,實現資訊的有效利用。舉個本專業的例子,比如在奶牛基因層面尋找與產奶量相關 的主效基因,我們可以首先對奶牛全基因組進行掃描,盡管我們獲得了所有表型信息和基因信息,但是由於數據量龐大,這就需要採用大數據技術,進行分析比對, 挖掘主效基因。例子還有很多。
大數據的意義和前景。總的來說,大數據是對大量、動態、能持續的數據,通過運 用新系統、新工具、新模型的挖掘,從而獲得具有洞察力和新價值的東西。以前,面對龐大的數據,我們可能會一葉障目、可見一斑,因此不能了解到事物的真正本 質,從而在科學工作中得到錯誤的推斷,而大數據時代的來臨,一切真相將會展現在我么面前。
商業智能的技術體系主要有數據倉庫(Data Warehouse,DW)、聯機分析處理(OLAP)以及數據挖掘(Data Mining,DM)三部分組成。
數據倉庫是商業智能的基礎,許多基本報表可以由此生成,但它更大的用處是作為進一步分析的數據源。所謂數據倉庫(DW)就是面向主題的、集成的、穩定的、不同時間的數據 *** ,用以支持經營管理中的決策制定過程。多維分析和數據挖掘是最常聽到的例子,數據倉庫能供給它們所需要的、整齊一致的數據。
在線分析處理(OLAP)技術則幫助分析人員、管理人員從多種角度把從原始數據中轉化出來、能夠真正為用戶所理解的、並真實反映數據維特性的信息,進行快速、一致、交互地訪問,從而獲得對數據的更深入了解的一類軟體技術。
數據挖掘(DM)是一種決策支持過程,它主要基於AI、機器學習、統計學等技術,高度自動化地分析企業原有的數據,做出歸納性的推理,從中挖掘出潛在的模式,預測客戶的行為,幫助企業的決策者調整市場策略,減少風險,做出正確的決策。
商業智能的應用范圍
1.采購管理
2.財務管理
3.人力資源管理
4.客戶服務
5.配銷管......>>
問題三:什麼是大數據 大數據是一個體量特別大,數據類別特別大的數據集,並且這樣的數據集無法用傳統資料庫工具對其內容進行抓取、管理和處理。 大數據首先是指數據體量(volumes)?大,指代大型數據集,一般在10TB?規模左右,但在實際應用中,很多企業用戶把多個數據集放在一起,已經形成了PB級的數據量;其次是指數據類別(variety)大,數據來自多種數據源,數據種類和格式日漸豐富,已沖破了以前所限定的結構化數據范疇,囊括了半結構化和非結構化數據。接著是數據處理速度(Velocity)快,在數據量非常龐大的情況下,也能夠做到數據的實時處理。最後一個特點是指數據真實性(Veracity)高,隨著社交數據、企業內容、交易與應用數據等新數據源的興趣,傳統數據源的局限被打破,企業愈發需要有效的信息之力以確保其真實性及安全性。
數據採集:ETL工具負責將分布的、異構數據源中的數據如關系數據、平面數據文件等抽取到臨時中間層後進行清洗、轉換、集成,最後載入到數據倉庫或數據集市中,成為聯機分析處理、數據挖掘的基礎。
數據存取:關系資料庫、NOSQL、SQL等。
基礎架構:雲存儲、分布式文件存儲等。
數據處理:自然語言處理(NLP,NaturalLanguageProcessing)是研究人與計算機交互的語言問題的一門學科。處理自然語言的關鍵是要讓計算機理解自然語言,所以自然語言處理又叫做自然語言理解(NLU,NaturalLanguage Understanding),也稱為計算語言學(putational Linguistics。一方面它是語言信息處理的一個分支,另一方面它是人工智慧(AI, Artificial Intelligence)的核心課題之一。
統計分析:假設檢驗、顯著性檢驗、差異分析、相關分析、T檢驗、方差分析、卡方分析、偏相關分析、距離分析、回歸分析、簡單回歸分析、多元回歸分析、逐步回歸、回歸預測與殘差分析、嶺回歸、logistic回歸分析、曲線估計、因子分析、聚類分析、主成分分析、因子分析、快速聚類法與聚類法、判別分析、對應分析、多元對應分析(最優尺度分析)、bootstrap技術等等。
數據挖掘:分類 (Classification)、估計(Estimation)、預測(Prediction)、相關性分組或關聯規則(Affinity grouping or association rules)、聚類(Clustering)、描述和可視化、Description and Visualization)、復雜數據類型挖掘(Text, Web ,圖形圖像,視頻,音頻等)
模型預測:預測模型、機器學習、建模模擬。
結果呈現:雲計算、標簽雲、關系圖等。
要理解大數據這一概念,首先要從大入手,大是指數據規模,大數據一般指在10TB(1TB=1024GB)規模以上的數據量。大數據同過去的海量數據有所區別,其基本特徵可以用4個V來總結(Vol-ume、Variety、Value和Veloc-ity),即體量大、多樣性、價值密度低、速度快。
第一,數據體量巨大。從TB級別,躍升到PB級別。
第二,數據類型繁多,如前文提到的網路日誌、視頻、圖片、地理位置信息,等等。
第三,價值密度低。以視頻為例,連續不間斷監控過程中,可能有用的數據僅僅有一兩秒。
第四,處理速度快。1秒定律。最後這一點也是和傳統的......>>
問題四:什麼是大數據 大數據是什麼意思 「大數據」不是「數據分析」的另一種說法!大數據具有規模性、高速性、多樣性、而且無處不在等全新特點,具體地說,是指需要通過快速獲取、處理、分析和提取有價值的、海量、多樣化的交易數據、交互數據為基礎,針對企業的運作模式提出有針對性的方案。由於物聯網和智能可穿戴的普及帶來的,生產線上普通的藍領員工,前台電話員,等企業內的低階員工也成為產生大數據的數據內容的一部分,數據的產生除了來自社交網路,網站,電子商務網站,郵箱外,智能手機,各種感測器,和物聯網,智能可穿戴設備。
大數據營銷與傳統營銷最顯著的區別是大數據可以深入到營銷的各個環節,使營銷無處不在。如用戶的偏好?上網的時間段?上網主要瀏覽頁?對頁面和產品的點擊次數?網站上的用戶評價對他的影響?他會在哪些地方分享對產品和購物過程的體驗?這些都是對用戶網上消費和品牌關注度的深入分析,可以直接影響用戶消費的傾向等商業效果。
大數據徹底改變企業內部運作模式,以往的管理是「領導怎麼說?」現在變成「大數據的分析結果」,這是對傳統領導力的挑戰,也推動企業管理崗位人才的定義。不僅懂企業的業務流程,還要成為數據專家,跨專業的要求改變過去領導力主要體現在經驗和過往業績上,如今熟練掌握大數據分析工具,善於運用大數據分析結果結合企業的銷售和運營管理實踐是新的要求。
當然大數據對企業的作用一個不可迴避的關鍵因素是數據的質量,有句話叫「垃圾進,垃圾出」指的是如果採集的是大量垃圾數據會導致出來的分析結果也是毫無意義的垃圾。此外,企業內部是否會形成一個個孤立的數據孤島,數據是否會成就企業內某些人或團隊新的權力,導致數據不能得到實時有效地分享,這些都會是阻礙大數據在企業中有效應用的因素。
而隨著大數據時代的到來,對大數據商業價值的挖掘和利用逐漸成為行業人士爭相追捧的利潤焦點。業內人士稱,電商企業通過大數據應用,可以探索個人化、個性 化、精確化和智能化地進行廣告推送和推廣服務,創立比現有廣告和產品推廣形式性價比更高的全新商業模式。同時,電商企業也可以通過對大數據的把握,尋找更 多更好地增加用戶粘性,開發新產品和新服務,降低運營成本的方法和途徑。
問題五:大數據到底是什麼東西? 基於大數據→企業網上支付與結算
基於大數據→銀行的融資參考依據
基於大數據→優化庫存周轉
基於大數據→按需按量按地定產,高效自營
問題六:大數據時代:大數據是什麼? 大數據是什麼?是一種運營模式,是一種能力,還是一種技術,或是一種數據 *** 的統稱?今天我們所說的「大數據」和過去傳統意義上的「數據」的區別又在哪裡?大數據的來源又有哪些?等等。當然,我不是專家學者,我無法給出一個權威的,讓所有人信服的定義,以下所談只是我根據自己的理解進行小結歸納,只求表達出我個人的理解,並不求全面權威。先從「大數據」與「數據」的區別說起吧,過去我們說的「數據」很大程度上是指「數字」,如我們所說的客戶量,業務量,營業收入額,利潤額等等,都是一個個數字或者是可以進行編碼的簡單文本,這些數據分析起來相對簡單,過去傳統的數據解決方案(如資料庫或商業智能技術)就能輕松應對;而今天我們所說的「大數據」則不單純指「數字」,可能還包括「文本,圖片,音頻,視頻……」等多種格式,其涵括的內容十分豐富,如我們的博客,微博,輕博客,我們的音頻視頻分享,我們的通話錄音,我們位置信息,我們的點評信息,我們的交易信息,互動信息等等,包羅萬象。用正規的語句來概括就是,「數據」是結構化的,而「大數據」則包括了「結構化數據」「半結構化數據」和「非結構化數據」。關於「結構化」「半結構化」「非結構化」可能從字面上比較難理解,在此我試著用我的語言看能否形象點地表達出來:由於數據是結構化的,數據分析可以遵循一定現有規律的,如通過簡單的線性相關,數據分析可以大致預測下個月的營業收入額;而大數據是半結構化和非結構化的,其在分析過程中遵循的規律則是未知的,它通過綜合方方面面的信息進行模擬,它以分析形式評估證據,假設應答結果,並計算每種可能性的可信度,通過大數據分析我們可以准確找到下一個市場熱點。 基於此,或許我們可以給「大數據」這樣一個定義,「大數據」指的是收集和分析大量信息的能力,而這些信息涉及到人類生活的方方面面,目的在於從復雜的數據里找到過去不容易昭示的規律。相比「數據」,「大數據」有兩個明顯的特徵:第一,上文已經提到,數據的屬性是包括結構化、非結構化和半結構化數據;第二,數據之間頻繁產生交互,大規模進行數據分析,並實時與業務結合進行數據挖掘。解決了大數據是什麼,接下來還有一個問題,大數據的來源有哪些?或者這個問題這樣來表達會更清晰「大數據的數據來源有哪些?」對於企業而言,大數據的數據來源主要有兩部分,一部分來自於企業內部自身的信息系統中產生的運營數據,這些數據大多是標准化、結構化的。(若繼續細化,企業內部信息系統又可分兩類,一類是「基幹類系統」,用來提高人事、財會處理、接發訂單等日常業務的效率;另一類是「信息類系統」,用於支持經營戰略、開展市場分析、開拓客戶等。)傳統的商業智能系統中所用到的數據基本上數據該部分。而另外一部分則來自於外部,包括廣泛存在於社交網路、物聯網、電子商務等之中的非結構化數據。這些非結構化數據由源於 Facebook、Twitter、LinkedIn 及其它來源的社交媒體數據構成,其產生往往伴隨著社交網路、移動計算和感測器等新的渠道和技術的不斷涌現和應用。具體包括了:如,呼叫詳細記錄、設備和感測器信息、GPS 和地理定位映射數據、通過管理文件傳輸協議傳送的海量圖像文件、Web 文本和點擊流數據、科學信息、電子郵件等等。由於來源不同,類型不同的數據透視的是同一個事物的不同的方面,以消費客戶為例,消費記錄信息能透視客戶的消費能力,消費頻率,消費興趣點等,渠道信息能透視客戶的渠道偏好,消費支付信息能透視客戶的支付渠道情況,還有很多,如,客戶會否在社交網站上分享消費情況,消費前後有否在搜索引擎上搜索過相關的關鍵詞等等,這些信息(或說數據)......>>
問題七:大數據是什麼,干什麼用的?包含哪些內容?哪些技術?解決什麼問題? 大數據指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據 *** ,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。通過大數據分析,可以預測交通路況實況,比如網路地圖的實時公交,了解客戶信用,比如支付寶實名認證大數據背後的花唄借唄信用積累大數據研究顯示,我國的數據總量正在以年均50%以上的速度持續增長,預計到2020年在全球的佔比將達到21%。產業新形態不斷出現,催生了個性化定製、智慧醫療、智能交通等一大批新技術新應用新業態。大數據主要的三大就業方向:大數據系統研發類人才、大數據應用開發類人才和大數據分析類人才。
問題八:大數據可以做什麼 用處太多了
首先,精準化定製。
主要是針對供需兩方的,獲取需方的個性化需求,幫助供方定準定位目標,然後依據需求提 *** 品,最終實現供需雙方的最佳匹配。
具體應用舉例,也可以歸納為三類。
一是個性化產品,比如智能化的搜索引擎,搜索同樣的內容,每個人的結果都不同。或者是一些定製化的新聞服務,或者是網游等。
第二種是精準營銷,現在已經比較常見的互聯網營銷,網路的推廣,淘寶的網頁推廣等,或者是基於地理位置的信息推送,當我到達某個地方,會自動推送周邊的消費設施等。
第三種是選址定位,包括零售店面的選址,或者是公共基礎設施的選址。
這些全都是通過對用戶需求的大數據分析,然後供方提供相對定製化的服務。
應用的第二個方向,預測。
預測主要是圍繞目標對象,基於它過去、未來的一些相關因素和數據分析,從而提前做出預警,或者是實時動態的優化。
從具體的應用上,也大概可以分為三類。
一是決策支持類的,小到企業的運營決策,證券投資決策,醫療行業的臨床診療支持,以及電子政務等。
二是風險預警類的,比如疫情預測,日常健康管理的疾病預測,設備設施的運營維護,公共安全,以及金融業的信用風險管理等。
第三種是實時優化類的,比如智能線路規劃,實時定價等。
問題九:大數據的內容和基本含義? 「大數據」是近年來IT行業的熱詞,大數據在各個行業的應用逐漸變得廣泛起來,如2014年的兩會,我們聽得最多的也是大數據分析,那麼,什麼是大數據呢,什麼是大數據概念呢,大數據概念怎麼理解呢,一起來看看吧。
1、大數據的定義。大數據,又稱巨量資料,指的是所涉及的數據資料量規模巨大到無法通過人腦甚至主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。
2、大數據的採集。科學技術及互聯網的發展,推動著大數據時代的來臨,各行各業每天都在產生數量巨大的數據碎片,數據計量單位已從從Byte、KB、MB、GB、TB發展到PB、EB、ZB、YB甚至BB、NB、DB來衡量。大數據時代數據的採集也不再是技術問題,只是面對如此眾多的數據,我們怎樣才能找到其內在規律。
3、大數據的特點。數據量大、數據種類多、 要求實時性強、數據所蘊藏的價值大。在各行各業均存在大數據,但是眾多的信息和咨詢是紛繁復雜的,我們需要搜索、處理、分析、歸納、總結其深層次的規律。
4、大數據的挖掘和處理。大數據必然無法用人腦來推算、估測,或者用單台的計算機進行處理,必須採用分布式計算架構,依託雲計算的分布式處理、分布式資料庫、雲存儲和虛擬化技術,因此,大數據的挖掘和處理必須用到雲技術。
5、大數據的應用。大數據可應用於各行各業,將人們收集到的龐大數據進行分析整理,實現資訊的有效利用。舉個本專業的例子,比如在奶牛基因層面尋找與產奶量相關的主效基因,我們可以首先對奶牛全基因組進行掃描,盡管我們獲得了所有表型信息和基因信息,但是由於數據量龐大,這就需要採用大數據技術,進行分析比對,挖掘主效基因。例子還有很多。
6、大數據的意義和前景。總的來說,大數據是對大量、動態、能持續的數據,通過運用新系統、新工具、新模型的挖掘,從而獲得具有洞察力和新價值的東西。以前,面對龐大的數據,我們可能會一葉障目、可見一斑,因此不能了解到事物的真正本質,從而在科學工作中得到錯誤的推斷,而大數據時代的來臨,一切真相將會展現在我么面前。
問題十:大數據具體學習內容是啥? HADOOPP 是一個能夠對大量數據進行分布式處理的軟體框架。但是HADOOPP 是以一種可靠、高效、可伸縮的方式進行處理的。HADOOPP 是可靠的,因為它假設計算元素和存儲會失敗,因此它維護多個工作數據副本,確保能夠針對失敗的節點重新分布處理。HPCC高性能計算與 通信」的報告。開發可擴展的計算系統及相關軟體,以支持太位級網路傳輸性能,開發千兆比特網路技術,擴展研究和教育機構及網路連接能力。Storm是自由的開源軟體,一個分布式的、容錯的實時計算系統。Storm可以非常可靠的處理龐大的數據流,用於處理HADOOPP的批量數據。為了幫助企業用戶尋找更為有效、加快HADOOPP數據查詢的方法,Apache軟體基金會近日發起了一項名為「Drill」的開源項目。RapidMiner是世界領先的數據挖掘解決方案,在一個非常大的程度上有著先進技術。它數據挖掘任務涉及范圍廣泛,包括各種數據藝術,能簡化數據挖掘過程的設計和評價。Pentaho BI 平台不同於傳統的BI 產品,它是一個以流程為中心的,面向解決方案(Solution)的框架。其目的在於將一系列企業級BI產品、開源軟體、API等等組件集成起來,方便商務智能應用的開發。IT JOB
『拾』 大數據技術包括哪些
大數據技術包括數據收集、數據存取、基礎架構、數據處理、統計分析、數據挖掘、模型預測、結果呈現。
1、數據收集:在大數據的生命周期中,數據採集處於第一個環節。根據MapRece產生數據的應用系統分類,大數據的採集主要有4種來源:管理信息系統、Web信息系統、物理信息系統、科學實驗系統。
2、數據存取:大數據的存去採用不同的技術路線,大致可以分為3類。第1類主要面對的是大規模的結構化數據。第2類主要面對的是半結構化和非結構化數據。第3類面對的是結構化和非結構化混合的大數據,
3、基礎架構:雲存儲、分布式文件存儲等。
4、數據處理:對於採集到的不同的數據集,可能存在不同的結構和模式,如文件、XML 樹、關系表等,表現為數據的異構性。對多個異構的數據集,需要做進一步集成處理或整合處理,將來自不同數據集的數據收集、整理、清洗、轉換後,生成到一個新的數據集,為後續查詢和分析處理提供統一的數據視圖。
5、統計分析:假設檢驗、顯著性檢驗、差異分析、相關分析、T檢驗、方差分析、卡方分析、偏相關分析、距離分析、回歸分析、簡單回歸分析、多元回歸分析、逐步回歸、回歸預測與殘差分析、嶺回歸、logistic回歸分析、曲線估計、因子分析、聚類分析、主成分分析、因子分析、快速聚類法與聚類法、判別分析、對應分析、多元對應分析(最優尺度分析)、bootstrap技術等等。
6、數據挖掘:目前,還需要改進已有數據挖掘和機器學習技術;開發數據網路挖掘、特異群組挖掘、圖挖掘等新型數據挖掘技術;突破基於對象的數據連接、相似性連接等大數據融合技術;突破用戶興趣分析、網路行為分析、情感語義分析等面向領域的大數據挖掘技術。
7、模型預測:預測模型、機器學習、建模模擬。
8、結果呈現:雲計算、標簽雲、關系圖等。