導航:首頁 > 網路數據 > 大數據時代人才

大數據時代人才

發布時間:2023-04-06 00:28:09

A. 大數據時代,主要需要什麼類型的人才

1、大數據系統研發工程師



負責大數據系統的研發,包括大規模非結構化數據業務模型構建、大數據存儲、資料庫構設、優化資料庫構架、解決資料庫中心設計等,同時,還要負責數據集群的日常運作和系統的監測等。



2、大數據應用開發工程師



負責搭建大數據應用平台以及開發分析應用程序,研發各種基於大數據技術的應用程序及行業解決方案。從不同的源頭抽取數據,轉換並導入數據倉庫以滿足企業的需要,將分散的、異構數據源中的數據如關系數據、平面數據文件等抽取到臨時中間層後進行清洗、轉換、集成,最後載入到數據倉庫,成為聯機分析處理、數據挖掘的基礎,為提取各類型的需要數據創造條件。



3、大數據分析師



從事數據挖掘工作,運用演算法來解決和分析問題,讓數據顯露出真相,並推動數據解決方案的不斷更新。



4、數據可視化工程師



負責在收集到的高質量數據中,利用圖形化的工具及手段的應用,清楚地揭示數據中的復雜信息,將其可視化,幫助用戶更好地進行大數據應用開發。



5、數據安全研發人才



負責企業內部大型伺服器、存儲、數據安全管理工作,並對網路、信息安全項目進行規劃、設計和實施。



關於大數據時代,主要需要什麼類型的人才,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。


以上是小編為大家分享的關於大數據時代,主要需要什麼類型的人才?的相關內容,更多信息可以關注環球青藤分享更多干貨

B. 大數據人才培養

01

大數據的重點

大數據是為了解決具體的問題,例如,科學研究問題,商業決策問題,政府管理問題等,基於數據驅動的智能化解決問題。

02

大數據人才培養的重點

大數據的人才培養時一定以問題和目標為導向,研究和選擇合適的技術加以應用,怎麼快速組合、快速搭積木、快速產出的問題。

不同的業務領域需要不同方向理論、技術和工具的支持,是業務決定技術和工具,而不是根據技術、工具來考慮業務。

03

大數據人才的思維方式

大數據人才的「數據驅動」與「數據閉環」思維方式。

數據閉環是指構造起包括數據採集、建模分析、效果評估到反饋修正各個環節在內的完整「數據閉環」,從而能夠不斷地自我升級,螺旋上升;

數據驅動是指經營管理決策可以自下而上地由數據來驅動。

大數據人才需要涉及交叉學科和交叉領域,通過完整的培訓體系培養大數據人才的全局觀、大局觀,既可以自頂向下的通過業務探索數據背後蘊含的商業價值,又可以自底向上的去實現數據獲取、數據挖掘、以及數據決策的全流程,以適應大數據時代的發展。

C. 在新時期,如何利用大數據成為不可或缺的人才

感謝悟空的邀請!

 

在新時期,談起大數據,相信很多人都不陌生了吧!其實大數據已經悄無聲息的走入了我們的生活,大數據也是未來互聯網發展的重要方向。

那麼在新時期,大數據對人才的能力有何要求?如何利用大數據成為新時代不可多得的人才?下面帶你詳細分析下:

大家都知道,其實現在的中國市場,最缺乏的就是復合型的大數據開發人才,我認為,在新時代,要想成為大數據人才,應該從以下幾方面著手:

1、大數據人才首先要擁有技術

大數據自然離不開人才,要想成為大數據不可或缺的人才 ,就必須要擁有相關大數據技能。大家都知道,大數據對人才的能力提出了更加高的要求,技術能力上大數據人才要具備java、大數據開發、大數據架構、軟體開發工程等技術背景,會用大數據分析工具,了解統計模型相關知識;在一定程度上掌握Python等一類通用型編程語言,特別是編程方面一定要精通,沒有哪一種大數據不需熟練掌握一門編程語言的。

 

2、大數據人才需要強大的跨學科學習

隨著大數據向各行業的滲透,大數據從業者往往身兼數職,需要同時掌握數據技術和業務知識。一個好的大數據人才,必須具備強大的數據分析、數據挖掘的能力,而一個既能做業務數據分析,又懂機器學習和工程開發的分析師就是數據科學家。

 

3、  大數據人才需要堅持

     任何技術的掌握都不是一朝一夕的事情,當然大數據也不例外。大數據人才對人提出了更高的需要,不僅需要掌握相關的編程語言,還需要掌握數據分析能力,這就要求我們想要全方位提升自己的大數據業務水平,必須要堅持學習,只有具備大數據知識了,我們才能投入到大數據行業添磚加瓦。

 

4、 堅持學習的能力

大數據人才要有較強的溝通協調能力、學習能及推動能力、善於執行和監控,有較強的組織和責任意識,還需要強大的邏輯思維能力、歸納演繹能力幫助理解業務,能快速學習全新領域的商業模式和生態。

5、心態很重要

學習大數據的時候,一定要有良好的心態,大數據學習是一個枯燥的國產。要想學有所成,心態極其重要,不是什麼東西一學就會的。

 

總結:在新時期,目前大數據人才已經成為市場上不可或缺的人才,大數據已經悄無聲息的進入到很多行業了。但學習大數據不是一朝一夕的事情,需要有規劃有計劃的學習、要有堅持學習的能力,只有這樣,才會在新時期,成為新時代所需要的大數據不可多得的人才…

大數據是我的主要研究方向之一,同時也在帶大數據、機器學習方向的研究生,所以我來回答一下這個問題。

首先,當前正處在大數據時代,大數據未來將創造出一個巨大的新價值領域,而這個領域的核心就是圍繞數據價值化的一系列環節。從目前大數據領域所形成的初步產業鏈來看,涉及到數據採集、數據整理、數據存儲、數據安全、數據分析和數據引用,目前數據分析是比較常見的落地應用之一。所以,要想利用大數據成為不可或缺的人才應該從大數據產業鏈入手。

對於當前沒有進入職場的大學生來說,根據自身的知識結構來掌握相應的大數據技術能夠在一定程度上提升自身的職場競爭力。比如具備數學基礎的同學可以考慮學習一下大數據分析技術,未來對於大量的職場人來說,數據分析將是日常工作的一部分。對於動手能力比較強的同學,可以考慮學習一下大數據運維的相關技術,包括數據採集、大數據平台部署等。隨著大數據逐漸開始落地到傳統行業,大數據分析、大數據運維、大數據開發等崗位將有大量的人才需求。

對於當前的職場人來說,要想通過大數據成為不可或缺的人才,需要從三個方面入手,其一是掌握大數據技術;其二是把大數據技術與行業相結合;其三是能夠通過大數據技術創造出源源不斷的價值。

學習大數據技術要根據自身的知識結構來學習,對於職場人來說,可以從大數據分析工具開始學習,基本的學習路線是Excel、BI工具、資料庫、Python編程。大數據與行業的結合有多種不同的方式,目前場景大數據分析是比較常見的落地應用。要想通過大數據技術來創造出價值,一個重要的出發點就是通過大數據完成各自決策的制定,大數據不是目的,通過大數據完成各自決策才是目的。大數據一方面是給人力崗位使用,另一方面是給智能體使用,未來智能體的應用空間將非常廣闊。

我是從以前做淘寶天貓的,今年不做的。在我看來大數據有點類似淘寶的生意參謀,它會給您提供行業各種數據,只是現在應該這個數據維度更豐富了。比如這個行業同行的轉化率,有些行業的轉化率,進店訪客等等;在電商平台都是可以看到的,但是實體以前是做不到的。

現在隨著數字技術的發展,以及實體行業對消費反饋收集困難等原因,才有了大數據的概念。比如現在好多行業面臨的問題是自己設計的產品,消費者不喜歡,賣不出去。可以如果有了大數據,你就知道你的客戶男女比例多少,年齡分布、喜好什麼價位的產品等等,讓你設計的產品更精準。

其實在我看來,你成為數字化的運營高手,你就可以成為不可或缺的人才。

大數據在我看來就是「1+1=N」。

怎麼說呢,比如大數據提供給您行業轉化率是多少,你的實體轉化率是多少?等等,你想成為不可或缺的人才,那你就要有通過這些數據知道我公司現在問題出現在什麼地方了?是什麼因素刺激的出現了這種情況的能力,比如這周你店鋪成交額漲了多少?這是數據給您能提供的,但是為什麼漲了,數據給您提供不了,這你要自己分析,是有節氣,還是因為你做了一個什麼活動等,並針對現有數據對下一周做出計劃。

數據給你的是「1+1=N」你要做的就是把這個數據反映到實物上,並進行分析,並制定下一步公司運作計劃。

比如現在是數據給你1+1=3,那你就要分析為什麼是3,不是2或者1甚至0呢?是什麼刺激這個數據的增長了,是因為你在某些方面優化了還是因為有節氣等,下一步什麼安排等,也就是說你的每一步都能從數據反映出來,並能分析數據,做出下一步的安排等。

好了就說這么多吧,說太細我怕我理解的不準確,誤導人。

對於一個企業來說,大數據可以拓寬產品的銷售渠道和提升服務質量。有利於獲取市場的動態和了解分析用戶需求體驗。

大數據如何才能發揮其作用,最重要的還是得有相對應的人才為它進行分析整理。

大數據可以讓業內的情況變得清晰明了,是事實的支撐,通過數據可以知道業內的最新動態,根據數據分析,及時做出方案調整 有利於企業的發展。

大數據的工作中最重要的是什麼?

1. 細致精準的數據採集;

2. 同時具備邏輯性與適用性;

3. 數據標簽的規劃切實可行(務實);

4. 具備行業垂直度的商業性思維能力;

5. 能夠做到更強的擴展性構架。

總結來說,商業化的大數據最重要的價值便是邏輯性與適用性,而擴展性也能保證在實踐中更有競爭力,最後便是務實和思維能力的支撐。

任何時代的任何職業都需要面對競爭,所以能夠產生的價值決定了我們被需求的程度,如想成為那個不可或缺的人,不僅要具備能力,還要具備務實的心態!

感謝悟空邀請回答。當今世界是 科技 高速發展的時代,也同樣是大數據時代,競爭也是十分的激烈,要想成為大數據不可或缺的人才,必須要保證自己的專業知識過硬,這是一個看技術的活,弱者會被淘汰只有強者才能生存!

大數據可以拓寬產品的銷售渠道和提升服務質量。有利於獲取市場的動態和了解分析用戶需求體驗。

大數據如何才能發揮其作用,最重要的還是得有相對應的人才為它進行分析整理。

大數據可以讓業內的情況變得清晰明了,是事實的支撐,通過數據可以知道業內的最新動態,根據數據分析,及時做出方案調整 有利於企業的發展。

D. 大數據人才發展與就業前景,你了解多少



2023年,教育部再次公布關於2023年度普通高等學校本姿賀科專業備案和審批結果,兩百多所高校新增備案「數據科學與大數據技術」專業。這是從16年教育部公布15年新增備案開始,大數據類專業持續新增獲批的第四年,截至目前,全國已有四百多所高校獲批並爭相開設大數據類專業,其次是人工智慧類專業:機器人工程、智能科學與技術、智能製造工程,及網路空間安全等專業。

市場對人才需求迫切

大數據與人工智慧不僅在互聯網公司的戰略規劃中頻繁出現,同時在我國國務院和其他國家的政府報告中多次被提及。大數據、物聯網、人工智慧、網路安全等新領域人才雖是剛性需求,但供給仍嚴重不足。

據職業社交平台LinkedIn發布的《2023年中國互聯網最熱職位人才報告》顯示,研發工程師、產品經理、人力資源、市場營銷、運營、數據分析是當下中國互聯網行業需求最旺盛的六類人才職位。其中研發工程師需求量最大,而數據分析人才最為稀缺。

根據中國商業聯合會數據分析專業委員會統計,未來中國基礎性數據分析人才缺口將達到1400萬,而在BAT企業招聘的職位里,60%以上都在招大數據人才。

大數據的應用范圍廣泛,將近50%的企業將大數據運用在企業工商信息管理方面,社會保障占據33.9%、勞動就業占據32.7%、市政管理占據29.4%、教育科研方面分別占據29%,發展形勢一片大好,在各行業都有應用。


大數據行業方向學習

數據存儲和管理

大數據都是從數據存儲開始。這意味著從大數據框架Hadoop開始。它是由ApacheFoundation開發的開源軟體框架,用在計算機集群上分布式存儲非常大的數據集。

顯然,存儲對於大數據所需的大量信息至關重要。但更重要的是,需要有一種方式來將所有這些數據集中到某種形成/管理結構中,以產生洞察力。因此,大數據存儲和管理是真正的基礎,而沒有這樣的分析平台是行不通的。在某些情況下,這些解決方案包括員工培訓。

數據清理

在企業真正處理大量數據以獲取洞察信息之前,先需要對其進行清理、轉換並將其轉變為可遠程檢索的內容。大數據往往是非結構化和無組織的,因此需要進行某種清理或轉換。

在這個時代,數據的清理變得更加必要,因為數據可以來自任何地方:移動網路、物聯網、社交媒體。並不是所有這些數據都容易被「清理」,以產生其見解,因此一個良好的數據清理工具可以改變所有的差異。事實上,在未來的幾年中,將有效清理的數據視為是一種可接受的大數據系統與真正出色的數據系統之間的競爭優勢。

數據挖掘

一旦數據被清理並准備好進行檢查,就可以經由數據挖掘開始搜索過程。這就是企業進行實際發現、決策和預測的過程。

數據挖掘在很多方面都是大數據流程的真正核心。數據挖掘解決方案通常非常復雜,但力求提供一個令人關注和用戶友好的用戶界面,這說起來容易做起來難。數據挖掘工具面臨的另一個挑戰是:它們的確需要工作人員開發查詢,所以數據挖掘工具的能力並不比使用它的專業人員強。

數據可視化

數據可視化是企業的數據以可讀的格式顯示的方式。這是企業查看圖表和圖形以及將數據放入透視圖中的方法。

數據的可視化與科學一樣,是一種藝術形式。而大數據公司將擁有越來越多的數據科學家和高級管理人員,很重要的一點是可以為員工提供更加廣泛的可視化服務。銷售代表、IT支持、中層管理等這些團隊中的每一個成員都需要理解它,因此重點在於可用性。但是,易於閱讀的可視化有時與深度特徵集的讀取不一致,這成為了數據可視化工具的一個主要挑戰。


大數據的就業前景了解

由於大數據所創造的價值非常大,也將讓企業更加願意為相關的人才付出更高的薪資。目前,具備一年缺攔工作經驗的從業者月薪已經達到15k左右。具備3-5年經驗的從業者年薪已經達到30-50萬左右。大數據的就業前景非常值得期待,入行大數據也需要趁早。

大數據的就業方向有許多,主要可分為三大類:

1.大數據開發方向:大數據工程師,大數據開發工程師,大數據維護工程師,大數據研發工程師,大數據架構師等

2.數據挖掘,數據分析和機器學習方向:大數據分析師,大數據高級工程師,大數據分析師專家,大數據挖掘師,大數據演算法師等

3.大數據運維和雲計算方向:大數據運維工程師等

當下正是金九銀十的求職季,作為高薪的大數據行業,以下就業崗位與伏冊胡相對薪酬可作為有意願從事大數據行業人員的從業參考。

1、ETL研發

ETL,是英文Extract-Transform-Load的縮寫,用來描述將數據從來源端經過萃取(extract)、轉置(transform)、載入(load)至目的端的過程。ETL一詞較常用在數據倉庫,但其對象並不限於數據倉庫。

所需技能:ETL工程師是從事系統編程、資料庫編程與設計,要掌握各種常用的編程語言的專業技術人員。因此從事ETL研發首先一定要具有優秀的編程能力,其次要熟悉主流資料庫技術,如oracle、Sqlserver、PostgeSQL等。並且得會數據etl開發工具,如Datastage,Congos,Kettle等。

2、Hadoop開發

Hadoop的核心是HDFS和MapRece.HDFS提供了海量數據的存儲,MapRece提供了對數據的計算。Hadoop開發人員利用Hadoop來對數據進行必要的處理。

所需技能:

E. 大數據技術與應用專業就業前景怎麼樣

大數據技術與應用專業或相關專業就業前景相當廣闊。

近幾年來,互聯網行業發展風起雲涌,而移動碰指互聯網、電子商務、物聯網以及社交媒體的快速發展更促使我們快速進入了大數據時代。截止到目前,人們日常生活中的數據量已經從TB(1024GB=1TB)級別一躍升到PB(1024TB=1PB)、EB(1024PB=1EB)乃至ZB(1024EB=1ZB)級別,數據將逐漸成為重要的生產因素,人們對於海量數據的運用將預示著新一波生產率增長和消費者盈餘浪潮的到來。大數據時代,專業的大數據人才必將成為人才市場上的香餑餑。

因此,當下大數據從業人員的兩個主要趨勢是:

  1. 大數據領域從業人員的薪資將繼續增長

  2. 大數據人才供不應求。

另外,大數據專業畢業生就業崗位非常多,比如:Java大數據分布式程序開發、大數據集成平台的應用與開發、大數據平台運維、Java海量數據分布式編程、大數據架構設計、大數據分析、Java大數據分布式開發、基於大數據平台的程序開發、數據可視化、大數據挖掘、Java海量數據分布式編程、大數據架構設計森伍等。

F. 我國5年來。數據人才的需求量

未來3到5年,中國需要180萬數據人才
中國的數據量將佔全球數據總量的20%,成為世界第一大數據資源大國、全球數據中心。大數據藍海即將到來,但我國大數據發展仍存在技術創新滯後、大數據發展行業應用不夠深入、大數據人才嚴重不足等問題。中國工程院院士、中科院計算所研究員倪光南表示,大數念顫據歸根結底是靠人去推動,尤其大數據應用需要大量的人才。清華大學計算機系教授伍永衛表示,未來3到5年,中國需要180萬數州舉據人才,但截至目前,中國大數據從業人員只有約30萬仔跡敗人。

G. 大數據就業崗位有哪些

大數據方面的就業主要有三大方向:

一是數據分析類大數據人才,二是系統研發類大數據人才,三是應用開發類大數據人才。他們的基礎崗位分別是大數據系統研發工程師、大數據應用開發工程師、大數據分析師。

2大數據熱門專業

1、Hadoop開發 隨著數據規模不斷增大,傳統BI的數據處理成本過高企業負擔加重。而Hadoop廉價的數據處理能力被重新挖掘,企業需求持續增長。並成為大數據人才必須掌握的一種技術。

2、信息架構開發 大數據重新激發了主數據管理的熱潮。充分開發利用企業數據並支持決策需要非常專業的技能。信息架構師必須了解如何定義和存檔關鍵元素,確保以十分有效的方式進行數據管理和利用。信息架構師的關鍵技能包括主數據管理、業務知識和數據建模等。

3、數據安全研究 數據安全這一職位,主要負責企業內部大型伺服器、存儲、數據安全管理工作,並對網路、信息安全項目進行規劃、設計和實施。

4、ETL研發 企業數據種類與來源的不斷增加,對數據進行整合與處理變得越來越困難,企業迫切需要一種有數據整合能力的人才。ETL開發者這是在此需求基礎下而誕生的一個職業崗位。ETL人才在大數據時代炙手可熱的原因之一是:在企業大數據應用的早期階段,Hadoop只是窮人的ETL。

H. 大數據就業方向

大數據主要的三大就業方向:

  1. 大數據系統研發類人才;

  2. 大數據應用開發類人才;

  3. 大數據分析類人才。

大數據十大就業職位:

一、ETL研發

隨著數據種類的不斷增加,企業對數據整合專業人才的需求越來越旺盛。ETL開發者與不同的數據來源和組織打交道,從不同的源頭抽取數據,轉換並導入數據倉庫以滿足企業的需要。

ETL研發,主要負責將分散的、異構數據源中的數據如關系數據、平面數據文件等抽取到臨時中間層後進行清洗、轉換、集成,最後載入到數據倉庫或數據集市中,成為聯機分析處理、數據挖掘的基礎。

目前,ETL行業相對成熟,相關崗位的工作生命周期比較長,通常由內部員工和外包合同商之間通力完成。ETL人才在大數據時代炙手可熱的原因之一是:在企業大數據應用的早期階段,Hadoop只是窮人的ETL。

二、Hadoop開發

Hadoop的核心是HDFS和MapRece.HDFS提供了海量數據的存儲,MapRece提供了對數據的計算。隨著數據集規模不斷增大,而傳統BI的數據處理成本過高,企業對Hadoop及相關的廉價數據處理技術如Hive、HBase、MapRece、Pig等的需求將持續增長。如今具備Hadoop框架經驗的技術人員是最搶手的大數據人才。

三、可視化(前端展現)工具開發

海量數據的分析是個大挑戰,而新型數據可視化工具如Spotifre,Qlikview和Tableau可以直觀高效地展示數據。

可視化開發就是在可視開發工具提供的圖形用戶界面上,通過操作界面元素,由可視開發工具自動生成應用軟體。還可輕松跨越多個資源和層次連接您的所有數據,經過時間考驗,完全可擴展的,功能豐富全面的可視化組件庫為開發人員提供了功能完整並且簡單易用的組件集合,以用來構建極其豐富的用戶界面。

過去,數據可視化屬於商業智能開發者類別,但是隨著Hadoop的崛起,數據可視化已經成了一項獨立的專業技能和崗位。

四、信息架構開發

大數據重新激發了主數據管理的熱潮。充分開發利用企業數據並支持決策需要非常專業的技能。信息架構師必須了解如何定義和存檔關鍵元素,確保以最有效的方式進行數據管理和利用。信息架構師的關鍵技能包括主數據管理、業務知識和數據建模等。

五、數據倉庫研究

數據倉庫是為企業所有級別的決策制定過程提供支持的所有類型數據的戰略集合。它是單個數據存儲,出於分析性報告和決策支持的目的而創建。為企業提供需要業務智能來指導業務流程改進和監視時間、成本、質量和控制。

數據倉庫的專家熟悉Teradata、Neteeza和Exadata等公司的大數據一體機。能夠在這些一體機上完成數據集成、管理和性能優化等工作。

六、OLAP開發

隨著資料庫技術的發展和應用,資料庫存儲的數據量從20世紀80年代的兆(M)位元組及千兆(G)位元組過渡到現在的兆兆(T)位元組和千兆兆(P)位元組,同時,用戶的查詢需求也越來越復雜,涉及的已不僅是查詢或操縱一張關系表中的一條或幾條記錄,而且要對多張表中千萬條記錄的數據進行數據分析和信息綜合。聯機分析處理(OLAP)系統就負責解決此類海量數據處理的問題。

OLAP在線聯機分析開發者,負責將數據從關系型或非關系型數據源中抽取出來建立模型,然後創建數據訪問的用戶界面,提供高性能的預定義查詢功能。

七、數據科學研究

這一職位過去也被稱為數據架構研究,數據科學家是一個全新的工種,能夠將企業的數據和技術轉化為企業的商業價值。隨著數據學的進展,越來越多的實際工作將會直接針對數據進行,這將使人類認識數據,從而認識自然和行為。因此,數據科學家首先應當具備優秀的溝通技能,能夠同時將數據分析結果解釋給IT部門和業務部門領導。

總的來說,數據科學家是分析師、藝術家的合體,需要具備多種交叉科學和商業技能。

八、數據預測(數據挖掘)分析

營銷部門經常使用預測分析預測用戶行為或鎖定目標用戶。預測分析開發者有些場景看上有有些類似數據科學家,即在企業歷史數據的基礎上通過假設來測試閾值並預測未來的表現。

九、企業數據管理

企業要提高數據質量必須考慮進行數據管理,並需要為此設立數據管家職位,這一職位的人員需要能夠利用各種技術工具匯集企業周圍的大量數據,並將數據清洗和規范化,將數據導入數據倉庫中,成為一個可用的版本。然後,通過報表和分析技術,數據被切片、切塊,並交付給成千上萬的人。擔當數據管家的人,需要保證市場數據的完整性,准確性,唯一性,真實性和不冗餘。

十、數據安全研究

數據安全這一職位,主要負責企業內部大型伺服器、存儲、數據安全管理工作,並對網路、信息安全項目進行規劃、設計和實施。數據安全研究員還需要具有較強的管理經驗,具備運維管理方面的知識和能力,對企業傳統業務有較深刻的理解,才能確保企業數據安全做到一絲不漏。

I. 大數據時代十大熱門IT崗位

大數據時代十大熱門IT崗位

大數據時代十大熱門IT崗位 ,新的想法誕生新的技術,從而造出許多新詞,雲計算、大數據、BYOD、社交媒體、3D列印機、物聯網……在互聯網時代,各種新詞層出不窮,令人應接不暇。這些新的技術、新興應用和對應的IT發展趨勢,使得IT人必須了解甚至掌握最新的IT技能。另一方面,雲計算和大數據乃至其他助推各個行業發展的IT基礎設施的新一輪部署與運維,都將帶來更多的IT職位和相關技能技術的要求。
毫無疑問,這些新趨勢的到來,會誕生一批新的工作崗位,比如數據挖掘專家、移動應用開發和測試、演算法工程師,商業智能分析師等,同時,也會強化原有崗位的新生命力,比如網路工程師、系統架構師、咨詢顧問、資料庫管理與開發等等。下面分別為大家介紹著十大IT技能所體現的工作崗位:
一、演算法工程師
何萬青博士曾經介紹把一件事做快做好的三種方法,其中就提到過「提高流水線效率、更好的演算法和更短的代碼關鍵路徑。」可以看出演算法在系統效率中的重要地位。演算法是讓機器按照人類設想的方式去解決問題,演算法很大程度上取決於問題類型和工程師對機器編程的理解,其效率的高低與演算法息息相關。
在數學和計算機科學之中,演算法(Algorithm)為一個計算的具體步驟,常用於計算、數據處理和自動推理。在大數據時代,演算法的功能和作用得到進一步凸顯。比如針對公司搜索業務,開發搜索相關性演算法、排序演算法。對公司海量用戶行為數據和用戶意圖,設計數據挖掘演算法。
演算法工程師,根據研究領域來分主要有音頻/視頻演算法處理、圖像技術方面的二維信息演算法處理和通信物理層、雷達信號處理、生物醫學信號處理等領域的一維信息演算法處理。另外數據挖掘、互聯網搜索演算法這些體現大數據發展方向的演算法,在近幾年越來越流行,而且演算法工程師也逐漸朝向人工智慧的方向發展。
二、商業智能分析師
演算法工程師延伸出來的商業智能,尤其是在大數據領域變得更加火熱。IT職業與咨詢服務公司Bluewolf曾經發布報告指出,IT職位需求增長最快的是移動、數據、雲服務和面向用戶的技術人員,其中具體的職位則包括有商業智能分析師一項。
商業智能分析師往往需要精通資料庫知識和統計分析的能力,能夠使用商業智能工具,識別或監控現有的和潛在的客戶。收集商業情報數據,提供行業報告,分析技術的發展趨勢,確定市場未來的產品開發策略或改進現有產品的銷售。
商業智能和邏輯分析技能在大數據時代顯得特別重要,擁有商業知識以及強大的數據和數學分析背景的IT人才,在將來的IT職場上更能獲得大型企業的青睞。不過這些技能並不是一般人都能掌握的,一些公司目前正在招聘統計學家並教授他們有關技術和商業的知識。
三、數據挖掘工程師
數據挖掘工程師,也可以叫做「數據挖掘專家」。數據挖掘是通過分析每個數據,從大量數據中尋找其規律的技術。數據挖掘是一種決策支持過程,它主要基於人工智慧、機器學習、模式識別、統計學、資料庫、可視化技術等,高度自動化地分析企業的數據,做出歸納性的推理,從中挖掘出潛在的模式,幫助決策者調整市場策略,減少風險,做出正確的決策。
數據挖掘專家或者說數據挖掘工程師掌握的技能,能夠為其快速創造財富。當年亞馬遜的首位數據挖掘工程師大衛·賽林格(David Selinger)創辦的數據挖掘公司,將類似於亞馬遜的產品推薦引擎系統銷售給在線零售和廣告銷售商,而這種產品推薦引擎系統,也成為亞馬遜有史以來最賺錢的工具。數據挖掘的價值由此可見一斑。
四、咨詢顧問(專家)
任何業務部門和任何行業企業,都有IT系統在背後默默無聞地支撐著。在雲計算大數據時代,業務面臨的挑戰和機遇也會給IT系統帶來更多要求。在這種情況下,IT系統的規劃部署和運維,都要有更為精通的專業人士才能勝任,並滿足面向未來大數據分析、雲計算服務應用的需要。
紐約蒙特法沃醫療中心(montefioremedical center)的副主席傑克-沃夫(JackWolf)曾經表示,他尋求不僅會建立和使用系統而且還會給予其他員工技術支持的新員工,他說:"新的系統意味著你必須有更多的咨詢台來處理更多的咨詢量。"當然,這里體現的主要是某個系統的技術支持的功能,但管中規豹我們不難發現,無論是部署初期的物料采購還是運維過程中的金玉良言,都凸顯出這種技術咨詢顧問的重要性。
五、網路工程師
網路工程師可以說是一個「綠色長青」的職業,網路技術一直以來就處於急需之中,美國人力資源公司羅勃海佛國際(Robert Half International)第三季度IT招聘指數和技能報告指出,網路管理占總需求技能排名中的第二位。對於雲計算時代來說,網路在雲資源池中(計算、存儲、網路)更是扮演著更為重要的作用。
另一方面, IPv6 標准、物聯網、移動互聯等蓬勃發展,使得對於網路工程師尤其是新型網路工程師(移動、IPv6、雲計算方向)的人才和技能要求也越來越多。網路工程師也因此而可以細分成多個發展方向,相應的技能要求其側重也有所不同。比如網路安全、網路存儲、架構設計、移動網路等等。
六、移動應用開發工程師
移動應用開發,會隨著移動互聯網時代的到來變得更受追捧。截至2012年底我國已經有10億手機用戶,移動智能終端用戶超過4億,在移動支付、移動購物、移動旅遊、移動社交等方面涌現了大量的移動互聯網游戲、應用和創業公司。
移動平台智能系統較多,但真正有影響力的也不外乎iOS、Android、WP、Blackberry等。大量原來PC和互聯網上的信息化應用、互聯網應用均已出現在手機平台上,一些前所未見的新奇應用也開始出現,並日漸增多。
移動應用開發,由於存有多個平台系統,因此不同的平台開發者其所面臨的機遇和挑戰也不盡相同。一個很明顯的例子就是,當初由Google公司和開放手機聯盟領導及開發的基於Linux的安卓系統,在開源之後就給廣大開發者(商)帶來巨大商機,而堅定選擇iOS平台的的開發工程師,也通過蘋果生態系統的不斷擴建和智能設備的高市場佔有,使得較早的一批開發者都賺得盆滿缽滿。不過在國內由於用戶習慣、產業環境和版權保護的問題,移動應用開發者並沒有因此而獲得相應的收益。
七、軟體工程設計師
近年IT業界逐漸涌現出一股軟體定義網路(SDN)、軟體定義數據中心、軟體定義存儲(SDS)和軟體定義伺服器(MoonShot)等浪潮,大有軟體定義未來一切IT基礎設施的趨勢。
PaaS、SaaS、數據挖掘和分析、數據管理和監控、虛擬化、應用開發等等,都是軟體工程師大展身手的好舞台。相應的,這些技術領域也對軟體工程師的要求會更高,尤其是虛擬化和面向BYOD、雲計算、大數據等應用的開發和管理,都需要有更高深的技術支撐。
和演算法工程師有點類似的地方在於,軟體工程師也需要注重設計模式的使用,一位優秀的工程師通常能識別並利用模式,而不是受制於模式。工程師不應讓系統去適應某種模式,而是需要發現在系統中使用模式的時機。
八、資料庫開發和管理
資料庫開發和管理在大數據時代顯得尤為重要,相關的資料庫管理、運維和開發技術,將成為廣大BI、大型企業和咨詢分析機構特別看重的技能體現。代表著更多類型(尤其是非結構化類型)的海量數據的涌現,要求我們實時採集、分析、傳輸這些數據集,在對基礎設施提出嚴峻挑戰的同時,也特別強調了資料庫開發和管理人員的挑戰。
比如分布式的、面向海量數據管理的資料庫系統之一NoSQL,就是面向大數據領域的非關系型資料庫的流行平台,高可用、大吞吐、低延遲、數據安全性高等應用特點成為了很多企業的看重的特點,並希望有足夠多的優秀IT開發人員深度開發NoSQL系統,解決對存儲的擴容、宕機時長、平滑擴容、故障自動切換等問題的困惱。
另外,更為知名的Hadoop分布式資料庫HBase的數據管理,需要藉助HRegion、HMaster、HClient組成的體系結構從整體上管理數據。這些也都需要有對Hadoop深刻理解和業務的精通才能勝任。而除此以外的大數據的存儲管理、內存計算、包括基於這些應用上的平台開發等等,也得會越來越受市場歡迎。
九、系統架構師
去年三星首席系統架構師吉姆·莫加德(Jim Mergard)跳槽至蘋果,屬於近期比較大的系統架構師人事變動,這種變動也說明了當今對於系統架構師的高度重視和認可。
眾所周知,雲計算和大數據的出現,使得傳統的數據中心基礎設施難以勝任;另一方面,日益激烈的市場競爭和移動互聯等商機的出現,勢必會給企業業務帶來深刻變革。這種變革和IT架構轉型,都會牽扯到IT系統架構這個核心問題。相比之前介紹的那些IT技能和所對應的崗位,系統架構師的規劃部署能力顯得尤為重要,它牽扯的是整個面而不是某個領域某個點的痛點。
十、系統安全師
同樣的,網路、計算、存儲還是系統架構,也都需要關注安全問題,而安全在現在的雲計算環境下,個人隱私和企業敏感數據的保護也不斷被強化。
在當前很多企業都收縮IT安全預算開支後,還不斷面臨著增強的合規要求等問題。企業們都在考慮是否應當將某些IT運營交給雲端服務提供商處理。實際上,每個人都深感壓力,預算不夠地情況下還要盡力防護數據地安全,特別是中小型企業,這也就意味著企業需要將部分IT運轉外包給第三方以減少資金和人力 方面地投資。
即使不採用外包的形式,無論個人還是企業都會更加註重安全,因為「安全」本身是沒有行業限制和劃分的,尤其是企業在構建雲計算環境、提交或者收集海量數據進行處理分析、存儲和傳輸等等一系列環節,都會面臨新的挑戰。這種挑戰勢必會需要有更多更專業的技術人才幫助解決這些問題。相比傳統來說,系統安全師將更多的會結合具體的業務展開,而根植於系統平台和底層基礎設施的系統安全,則更多的會出現在運營

閱讀全文

與大數據時代人才相關的資料

熱點內容
java讀取文件指定路徑 瀏覽:754
linux系統ghost 瀏覽:538
大數據跟編程哪個難 瀏覽:693
電腦文件內容怎麼多選 瀏覽:589
機頂盒共享文件夾 瀏覽:286
網路語我什麼 瀏覽:672
生死狙擊金幣修改器視頻教程 瀏覽:154
漢字編程語言有哪些 瀏覽:49
access合並多個文件 瀏覽:562
為什麼微信的文件要用第三方打開 瀏覽:591
華為手機有什麼可以編程的軟體 瀏覽:169
北京通app能放什麼 瀏覽:796
在職網站有哪些 瀏覽:934
nodejs怎麼跑起來 瀏覽:945
jsp中顯示當前時間 瀏覽:236
紅米note4設備代碼 瀏覽:460
iPad已越獄忘記密碼 瀏覽:723
如何用sql語句關閉資料庫 瀏覽:27
mac如何卸載程序 瀏覽:526
原版安裝鏡像文件路徑 瀏覽:602

友情鏈接