❶ 有效的大數據業務應用有哪些
通過從分析到預測的過程,為企業管理中出現的問題提供實質性的幫助和解決方案。
這是有經驗的商業經理最擅長的,我不會在這里教你任何東西。在我看來,大數據的業務應用,通過將數據延伸到解決方案,應該著眼於數據的“結構”和“維度”。
1、有效的大數據業務應用——數據結構
它可以幫助我們更好地優化資源配置,同時也影響企業的性質。例如,BAT公司通常根據內部資源的側重點,在技術上重視網路,在運營上重視阿里巴巴,在產品上重視騰訊。我們可以根據市場需求和目標市場來調整企業的結構和重心。對於新產品的推出,要充分分析產品的成本結構,找出價值鏈中的關鍵因素,然後調整最優方案。在資源分配中,專業人員使用DEA模型,這是復雜的,如果有興趣可以研究。
2、有效的大數據業務應用——數據維數
分析特定於問題並與數據應用程序場景相關。當然,它更依賴於分析師的經驗,如企業市場部門對B的分析,更注重客戶維度和產品服務維度的數據。零售品牌更注重區域市場、渠道數據和品牌知名度。如果我們轉向電子商務,我們會關注流量、轉化率、DAU等方面。
有哪些有效的大數據業務應用?這才是大數據工程師要掌握的,就自己的理解而言,大數據的業務應用,通過將數據擴展到解決方案,應該關注數據的“結構”和“維度”。你能處理好嗎?如果您還擔心自己入門不順利,也可以點擊本站的其他文章進行學習。
❷ BAT三巨頭開始挖掘大數據
BAT三巨頭開始挖掘大數據
阿里巴巴CTO即阿里雲負責人王堅博士說過一句話:雲計算和大數據,你們都理解錯了。
實際上,對於大數據究竟是什麼業界並無共識。大數據並不是什麼新鮮事物。信息革命帶來的除了信息的更高效地生產、流通和消費外,還帶來數據的爆炸式增長。「引爆點」到來之後,人們發現原有的零散的對數據的利用造成了巨大的浪費。移動互聯網浪潮下,數據產生速度前所未有地加快。人類達成共識開始系統性地對數據進行挖掘。這是大數據的初心。數據積累的同時,數據挖掘需要的計算理論、實時的數據收集和流通通道、數據挖掘過程需要使用的軟硬體環境都在成熟。
概念、模式、理論很重要,但在最具實干精神的互聯網領域,行動才是最好的答案。國內互聯網三巨頭BAT坐擁數據金礦,已陸續踏上了大數據掘金之路。
BAT都是大礦主,但礦山性質不同
數據如同蘊藏能量的煤礦。煤炭按照性質有焦煤、無煙煤、肥煤、貧煤等分類,而露天煤礦、深山煤礦的挖掘成本又不一樣。與此類似,大數據並不在「大」,而在於「有用」。價值含量、挖掘成本比數量更為重要。
網路擁有兩種類型的大數據:用戶搜索表徵的需求數據;爬蟲和阿拉丁獲取的公共web數據。
阿里巴巴擁有交易數據和信用數據。這兩種數據更容易變現,挖掘出商業價值。除此之外阿里巴巴還通過投資等方式掌握了部分社交數據、移動數據。如微博和高德。
騰訊擁有用戶關系數據和基於此產生的社交數據。這些數據可以分析人們的生活和行為,從裡面挖掘出政治、社會、文化、商業、健康等領域的信息,甚至預測未來。
下面,就將三家公司的情況一一掃描與分析。
一、網路:含著數據出生且擁有挖掘技術,研究和實用結合
搜索巨頭網路圍繞數據而生。它對網頁數據的爬取、網頁內容的組織和解析,通過語義分析對搜索需求的精準理解進而從海量數據中找准結果,以及精準的搜索引擎關鍵字廣告,實質上就是一個數據的獲取、組織、分析和挖掘的過程。
除了網頁外,網路還通過阿拉丁計劃吸收第三方數據,通過業務手段與葯監局等部門合作拿到封閉的數據。但是,盡管網路擁有核心技術和數據礦山,卻還沒有發揮出最大潛力。網路指數、網路統計等產品算是對數據挖掘的一些初級應用,與Google相比,網路在社交數據、實時數據的收集和由數據流通到數據挖掘轉換上有很大潛力,還有很多事情要做。
2月底在北京出差時,寫了一篇《搜索引擎的大數據時代》發在虎嗅。創造了零回復的記錄。盡管如此,仍然沒有打消我對搜索引擎在大數據時代深層次變革的思考。 搜索引擎在大數據時代面臨的挑戰有:更多的暗網數據;更多的WEB化但是沒有結構化的數據;更多的WEB化、結構化但是封閉的數據。這幾個挑戰使得數據正在遠離傳統搜索引擎。不過,搜索引擎在大數據上畢竟具備技術沉澱以及優勢。
接下來,網路會向企業提供更多的數據和數據服務。前期網路與寶潔、平安等公司合作,為其提供消費者行為分析和挖掘服務,通過數據結論指導企業推出產品,是一種典型的基於大數據的C2B模式。與此類似的還有Netflix的《紙牌屋》美劇,該劇的男主角凱文·史派西和導演大衛·芬奇都是通過對網路數據挖掘之後,根據受歡迎情況選中的。
網路還會利用大數據完成移動互聯網進化。核心攻關技術便是深度學習。基於大數據的機器學習將改善多媒體搜索效果和智能搜索,如語音搜索、視覺搜索和自然語言搜索。這將催生移動互聯網的革命性產品的出現。盡管網路已經出發,其在大數據上可做的事情還有很多。
在數據收集方面,網路需要聚合更多高價值的交易、社交和實時數據。例如加強自己貼吧知道的社交能力、盡快讓地圖服務與O2O結合進而掌握交易數據,以及推進移動App、穿戴式設備等數據收集系統。
在數據處理技術上,網路成立深度學習研究院加強自己在人工智慧領域的探索,在多媒體和中文自然語言處理領域已經有一些進展;雲存儲、雲計算的基礎設施建設也在逐步完善。但深度學習仍然是一個巨大的挑戰,網路等探索者還有很多待解問題,如:無監督式學習、立體圖像識別。
在數據變現方面,網路需將數據挖掘能力、數據內容聚合和提取等形成標准化的服務和產品,進而開拓大數據領域的企業和開發者市場。而不僅僅是頗為個性化、定製化地為大型企業提供解決。
網路的優勢體現在海量的數據、沉澱十多年的用戶行為數據、自然語言處理能力和深度學習領域的前沿研究。在技術人才方面網路是聚集國內最多大數據相關領域頂尖人才的公司。聽說網路前段時間花五千萬挖了數據挖掘、自然語言處理、深度學習領域的十來位大牛,包括一些學者和教授。例如Facebook科學家徐偉。
在挖人上,捨得花錢不夠,還得用心。對於真正的大牛來說,錢只是一個影響因素。能否實現自己的夢想,公司的資源能否幫助自己的研究至關重要。徐偉在回國前就曾問過其他從矽谷回國工程師的意見,得到答案是積極的,最終促成他作出決定。
總體來看,網路擁有大數據也具備大數據挖掘的能力,並且正在進行積極地准備和探索。在加強面向未來的研究和人才布局的同時,也注重實用性的技術產出。
二、騰訊:數據為產品所用,自產自銷
微創新提出者金錯刀有個關於騰訊的故事。 1999年騰訊公司剛剛成立不久,天使投資人劉曉松決定向其注資的一個主要原因就是因為他發現,「當時雖然他們的公司還很小,但已經有用戶運營的理念,後台對於用戶的每一個動作都有記錄和分析。」而另一個投資人卻因為馬化騰在公司很小時就花錢在數據上表示不滿。此後騰訊的產品生產及運營、騰訊游戲的崛起都離不開對數據的重視。
騰訊擁有社交大數據,在企鵝帝國完成數據的製造、流通、消費和挖掘。 騰訊大數據目前釋放價值更多是改進產品。據騰訊Q1財報,增值服務占總收入的78.7%;電子商務業務佔14.1%;網路廣告收入佔6.3%。從廣告收入比例可以看出騰訊的大數據在精準營銷領域暫時還未大量釋放出價值。與其產品線對應的GMAIL、Google+的Google以及社交巨頭Facebook則通過廣告賺得盆滿缽滿。
在筆者看來,騰訊的思路主要是補齊產品,注重QZONE、微信、電商等產品的後端數據打通。例如最近騰訊微博利用「大數據技術」實現好友關系自動分組、低質量信息自動過濾、優質信息分類閱讀等智能化功能。明顯的用數據改進產品的思路。 那麼如果騰訊要深入大數據挖掘缺少什麼呢?筆者認為其只需馬化騰「摁下啟動按鈕」。數據已經准備好了,就差模式,也就是找到需求或者能更深層次驅動大數據利用的產品,而不是用大數據改進自己的產品。騰訊還在觀望,等其他人去試錯驗證出一套模式或者產品後,自己可以「站在巨人肩上」。這是騰訊的典型思維。
在人才方面,騰訊很早便開始重金挖人。尤其是2010年在Google宣布退出中國後,Google圖片搜索創始人朱會燦、Google中國工程研究院副院長顏偉鵬、Google中日韓文搜索演算法的主要設計者,《浪潮之巔》及《數學之美》作者吳軍相繼加入騰訊。搜搜花了很多錢,但被認定為一款無法承載騰訊重託的產品,最後這些大牛都走了。大都回Google了。
騰訊在大數據領域也缺少技術帶頭人。其對公關也不重視。技術大牛很少出來做報告,更不會向網路、阿里那樣主動包裝宣傳技術大牛。其技術雖然低調,但執行力很強。據騰訊的程序員朋友說封閉開發、集體加班是常有的事情。但配套的重金激勵也能跟上。重金之下必有勇夫、騰訊用制度保障技術產出。另外騰訊在高校合作領先一步,在2010年便與清華大學合作成立了清華騰訊聯合實驗室。這么看騰訊的技術人才這塊似乎有短板。會不會到時候馬化騰按下啟動按鈕,發現沒數據挖掘能力呢?不會,騰訊搞不定數據挖掘,到時候依然可以挖到大牛,甚至讀論文來搞定這事兒。數據挖掘已較為成熟。數據挖掘實際是資料庫、統計學、機器學習三個領域的融合。在學術界已經發展多年。不過自然語言識別和深度學習等方面要趕上網路,就難了。除非將網路的數據和眾大牛一起倒騰過來。
總體來看,騰訊目前的大數據策略是先將產品補全,產品後台數據打通,形成穩定生態圈。本階段先利用大數據挖掘改進自己的產品。後期有成熟的模式合適的產品,則利用自家的社交及關系數據時,開展對大數據的進一步挖掘。
三、阿里巴巴:坐擁金數據,嘗試做面向未來的數據集市
阿里巴巴B2B出身,在外貿蓬勃的大環境下,依靠服務中小企業發家。淘寶、支付寶等toC的產品出生前,阿里並不依賴也不擅長技術。業界普遍認為阿里沒有技術基因。直到淘寶、支付寶以及天貓三個產品後,對海量用戶大並發量交易、海量貨架數據的管理、安全性等方面的嚴苛要求,阿里完成進化,在電商技術上取得不菲的成績。在一段時期阿里仍然浪費了手裡掌握的大量數據。這些數據還是「最值錢」的金數據。
數據挖掘無非是從原始數據提取價值。阿里現有的數據產品例如數據魔方、量詞統計、推薦系統、排行榜以及時光倒流相對來說是比較簡單的BI(商業智能),沒到大數據的階段。「大數據」浪潮襲來,阿里提出「數據、金融和平台」戰略。前所未有地重視起對數據的收集、挖掘和共享。馬雲在「退居」前動不動都對外提「數據」。有位阿里朋友甚至開玩笑說,馬雲英文名可以從Jack Ma改為Data Ma。阿里現CEO陸兆禧曾做過CDO,首席數據官。為了用數據來驅動阿里電商帝國,阿里還成立了橫跨各大事業部的「數據委員會」。
阿里的各項投資案也顯示其整合、利用和完善數據的野心:新浪微博的社交及媒體數據、高德的地圖數據和線下數據以及友盟的移動應用數據,都是其數據及平台戰略的一部分。數據戰略正在首席人工智慧官(CBO)車品覺領頭下逐步落地,王堅的雲為其提供基礎設施、基礎技術支撐。
就在馬雲退休之後,王堅對外透露其跟馬雲開玩笑說的一句話:阿里巴巴對數據的理解深度,不會超過蘇寧對電子商務的理解。估計馬雲不一定認同他這話。馬雲對大數據已經有著自己的理解和考量。馬雲曾經說過其對大數據的思考。大致意思是:現在從信息時代進入數據時代了。區別是信息時代更多的是精英玩的游戲。我比別人聰明,我能提取出信息出來;數據時代,別人比我聰明,將數據開放給更聰明的人處理,數據即資產,分析即服務。
計算機發展的過程是從象牙塔、到平民到草根。大數據也是這樣,一開始在象牙塔階段,少數精英公司才能玩;但到後面只要有數據就有價值。數據也有所有權,產生數據、流通數據、挖掘數據的都會獲得相應的價值。而阿里擅長的便是「建立市場」,建立一個數據交易市場。屆時任何個人和企業都可以將數據和挖掘服務拿上去,交易。初期阿里會將自己珍藏的電商和信用數據逐步放到上面。 有數據的人,拿上去賣,或者讓別人分析,分析即服務。沒有數據的人,即可以去買,也可以去幫別人挖掘,做礦工。
阿里並不是技術驅動,而是業務驅動的。因此在技術層面我們看到,基於前面提到的阿里大數據思路,其技術重心主要在系統層面。阿里擁有LVS(Linux Virtual Server,Linux虛擬伺服器)開源軟體創始人章文嵩,Linux Kernal、文件系統、大牛DBA等領域的大牛。從人才布局可以看到阿里擅長的技術領域,體現在對於並發訪問、電信級別的電商業務的支撐方面的得心應手。在去年雙十一期間,支撐了單日過億的訂單量。鐵道部奇葩網12306在日均40萬時已經不行了。
總體來看,阿里更多是在搭建數據的流通、收集和分享的底層架構。自己並不擅長似乎也不會著重來做數據挖掘的活兒。而是將自己擅長的「交易」生意擴展到數據。讓天下沒有難做的「數據生意」。
總結一下
移動互聯網浪潮下,現實世界正在加速數字化,每個人,每個物體、每件事情、每一個時間節點,都在向網上映射。空間和時間兩個維度的聯網,使得數字世界正在接近一步步模擬現實世界。歷史、現在和未來都會映射到網上。對大數據的挖掘正是對世界的二次發現和感知。BAT三巨頭已經出發。
❸ 如何選擇大數據應用程序
如何選擇大數據應用程序
選擇大數據軟體對於組織來說是一個復雜的過程,組織需要仔細評估其目標和供應商提供的解決方案。
如今可以確定的是,組織對大數據解決方案需求量很大。組織的管理者知道他們的大數據是不可忽視的最寶貴的資源之一。因此,他們正在尋找可幫助存儲、管理和分析其大數據的硬體和軟體。
根據調研機構IDC公司的調查,2017年組織在大數據和數據分析方面的支出為1508億美元,比去年增長12.4%。到2020年,這一支出可能會以每年11.9%的速度增長,2020年的收入可能高達2100億美元。
大部分收入都用於大數據應用。據IDC公司預測,到2020年,僅軟體開支就可能超過700億美元。非關系分析數據存儲(如NoSQL資料庫)的支出增長尤其迅速,每年可能增長38.6%,認知軟體平台(如人工智慧和機器學習能力的分析工具)每年可能增長23.3%。
為了充分利用大量的數據支出,供應商在各種不同的產品和服務上打上了「大數據」標簽。這種產品的擴散會使組織很難找到合適的大數據應用程序來滿足他們的需求。專家建議,企業開始選擇大數據應用程序的一個好方法是精確地確定自己所需要什麼類型的應用程序。
大數據應用的類型
企業軟體供應商提供了大量不同類型的大數據應用程序。適合企業的大數據應用將取決於其目標。
例如,如果企業只想更加詳細和深入地擴展現有的財務報告功能,那麼數據倉庫和商業智能解決方案可能已足以滿足其需求;如果企業的銷售和營銷團隊希望利用其大數據的發現增加收入和利潤的新機會,則可以考慮創建數據湖和/或投資數據挖掘解決方案;如果企業想創建一個數據驅動的文化,組織中的每個人都在使用數據來指導他們的決策,那麼企業可能需要數據湖和預測分析,內存資料庫,也可能是流分析。
這樣的事情將會變得更復雜,因為不同類型的工具之間的界限可能會有些模糊。一些商業智能工具具有數據挖掘和預測分析功能。一些預測分析工具包括流媒體功能。
最好的辦法是組織一開始就清楚地確定自己的目標,然後去尋找能夠幫助其實現這些目標的產品。
選擇大數據應用程序時的關鍵決策
無論企業選擇哪種類型的大數據應用程序,都需要做出一些關鍵決策,以幫助企業縮小選擇范圍。以下是一些最重要的考慮事項:
(1)內部部署數據中心與基於雲計算的大數據應用程序
企業需要做出的第一個重大決策是要在自己的數據中心託管大數據軟體,還是希望採用基於雲計算的解決方案。
目前,更多的組織似乎正在選擇雲計算。分析機構Forrester公司副總裁兼首席分析師BrianHopkins在2017年8月的一篇博客文章中寫道:「通過雲訂閱在大數據解決方案上的全球支出將增長快近7.5倍。此外,根據數據分析專業人員的2016和2017調查,公有雲是大數據的頭號技術優先事項。」
基於雲計算的大數據應用受到歡迎有多種原因,其中包括可擴展性和易管理性。主要的雲計算供應商也在人工智慧和機器學習研究方面處於領先地位,這使得他們可以在解決方案中添加高級功能。
但是,雲計算對於組織來說並不總是最好的選擇。對合規性或安全性要求較高的組織有時會發現他們需要將敏感數據保留在內部部署的數據中心。此外,一些組織已經在現有的本地數據解決方案上進行投資,並且他們發現繼續在本地部署數據中心運行大數據應用程序或使用混合方法會更具成本效益。
(2)私有vs開源的大數據應用程序
一些最流行的大數據工具(包括Hadoop生態系統)可以在開源許可下獲得。 Forrester公司指出,「2017年,企業將在Hadoop軟體和相關服務上投入8億美元。」
Hadoop和其他開源軟體最大的吸引力之一是降低總體擁有成本。盡管專有解決方案需要支付高昂的許可費,並且可能需要昂貴的專用硬體,但Hadoop沒有許可費,並且可以在標準的硬體上運行。
然而,企業有時發現很難獲得開源的解決方案,以滿足他們的需要。他們可能需要購買支持或咨詢服務,組織在計算總擁有成本時需要考慮這些費用。
(3)批處理vs流式傳輸大數據應用程序
最早的大數據解決方案(如Hadoop)只是處理批量數據,但企業越來越多地發現他們希望實時分析數據。這引發了對Spark、Storm、Samza等流媒體解決方案的更多興趣。
許多分析師表示,即使組織認為他們現在不需要處理流式數據,流媒體功能也可能在不久的將來成為標准操作流程。出於這個原因,許多組織正在向Lambda體系結構邁進,這是一種既能處理實時數據又能批處理數據的數據處理體系結構。
在大數據應用中尋找特性
一旦企業縮小了選項范圍,就需要評估其正在考慮的大數據應用程序。以下包括一些最重要的需要考察的因素。
與傳統技術集成 - 大多數組織已經在數據管理和分析技術方面進行現有投資。完全替代該技術可能代價高昂並且具有破壞性,因此組織通常會選擇尋找可以與現有工具一起使用的解決方案,或者可以增加現有軟體。
績效 - 2017年Talend研究發現,實時分析功能是商業領袖的首要IT優先事項之一。如果要從這些洞察中獲益,管理人員和工作人員需要能夠及時獲取見解。這意味著投資可以提供他們所需速度的技術。
可擴展性 - 大數據存儲的規模每天都會變得更大。組織需要快速執行的大數據應用程序,隨著數據存儲量以指數級增長,這些應用程序可以繼續快速執行。這種對可擴展性的需求是基於雲計算的大數據應用變得非常流行的主要原因之一。
可用性 - 組織還應該考慮他們打算購買的任何大數據應用程序的「學習曲線」。易於部署、易於配置、界面直觀和/或與組織已經使用的工具相似或集成的工具可以提供巨大的價值。
可視化 - BI-Survey.com表示,「針對商業用戶的可視化和探索性數據分析(稱為數據發現)已經演變成當今市場上最熱門的商業智能和分析主題。」在圖表中呈現數據可以使人類的大腦更容易發現趨勢和異常值,加快識別可操作見解的過程。
靈活性 – 企業如今所需要的大數據可能與其在一兩年前的需求大不相同。這就是為什麼許多企業選擇尋找能夠滿足各種不同目標的工具,而不是很好地執行單一功能的原因。
安全性 - 這些大數據存儲中包含的大部分數據都是敏感信息,這對於競爭對手、國家機構或黑客都是非常有價值的。組織需要確保他們的大數據具有足夠的保護,以防止成為頭條新聞報道的大量數據泄露事件。這意味著組織需要尋找具有內置安全功能(如加密和強身份驗證)的工具,或者尋找與現有安全解決方案集成的工具。
支持 - 即使有經驗的IT專業人員有時也會發現難以部署、維護和使用復雜的大數據應用程序。不要忘記考慮各供應商提供的支持的質量和成本。
生態系統 - 大多數組織需要多種不同的應用程序來滿足他們所有的大數據需求。這意味著要尋找一個大數據平台,與其他許多流行工具以及與其他提供商有強大合作關系的供應商進行整合。
自助服務能力 - 2017年畢馬威公司針對組織的CIO調查發現,60%的CIO持續報告指出數據分析人才短缺,而大數據和分析是最需要的技能組合。由於沒有足夠的數據科學家去解決,組織正在尋找其他商業專業人士可以獨立使用的工具。調研機構Gartner公司最近的博客文章指出,通常在一個組織中,大約32%的員工正在使用商業智能和分析。
總體擁有成本 - 大數據應用的前期成本只是其中的一小部分。組織需要確保他們考慮相關硬體成本,正在採用的許可或訂購費用、員工時間、支持成本,以及與本地部署應用程序的物理空間相關的任何費用。不要忘記要考慮到雲計算成本隨著時間的推移普遍下降的事實。
預計價值的時間 - 另一個重要的財務考慮因素是企業能夠以多快的速度啟動並運行特定的解決方案。大多數公司都希望在幾天或幾周內,而不是幾個月或幾年內從他們的大數據項目中受益。
人工智慧和機器學習 - 最後,考慮各種大數據應用供應商的創新。人工智慧和機器學習的研究正在以驚人的速度發展,並成為大數據分析的主流部分。據Forrester公司預測,「企業在2017年對於人工智慧的投資增加了三倍,因為企業需要將客戶數據轉換為個性化體驗。」如果企業選擇的供應商在這項研究沒有處於行業前沿,那麼可能會發現自己落後於競爭對手。
選擇大數據應用程序的提示
很明顯,選擇正確的大數據應用程序是一個復雜的過程,這涉及諸多因素。已成功部署大數據軟體的專家和組織提供以下建議:
理解自己的目標–企業在選擇大數據應用程序時,需要知道自己想完成什麼是至關重要的。如果不確定為什麼要投資某項技術,那麼其項目不太可能成功。
從小規模開始-如果企業可以通過小規模的大數據分析項目取得成功,那麼企業對使用該工具將會產生更多的興趣。
採取整體方法-盡管小規模項目可以幫助企業獲得技術方面的經驗和專業知識,但選擇最終可用於整個業務的應用程序非常重要。Gartner公司建議:「為了支持無處不在的數據和分析世界,IT專業人員需要創建一個新的端到端體系結構,為敏捷、規模和實驗而構建。如今,技術學科正在融合,數據和分析的方法正在變得更加整體化,涵蓋整個業務。」
協同工作–Gartner公司的這篇博客文章還指出:「建議數據和分析領導者積極主動地在他們的組織中傳播分析,以便從啟用數據驅動業務操作中獲得最大的收益。」許多組織正試圖構建數據驅動文化,這需要業務和IT領導者之間的大量合作。
病毒式傳播–前面提到的自助服務功能還可以幫助創建數據驅動的文化。Gartner公司建議:「讓分析在企業內部和外部真正發揮作用。通過培養實用的自助服務方法,並通過在交互和流程中的數據攝入點上嵌入分析功能,使更多的業務用戶能夠執行分析。」
❹ 大數據開發和數據分析哪個前景更好哪個薪資高
大數據就業兩大方向:
1、大數據開發工程師
數據工程師建設和優化系統。更多的專是朝著軟體開發屬能力上學習和提升。
2、大數據分析師
一般工作包括數據清洗,執行分析和數據可視化。核心職責是幫助其他人追蹤進展,和優化目標。
大數據工程師主要工作在後端。持續的提升數據管道來保證數據的精確和可獲取,好的工程師會為組織節省很多的時間和精力。
大數據分析師一般用數據工程師提供的現成的介面來抽取新的數據,然後取發現數據中的趨勢,同時也要分析異常情況。
數據分析師中的數據挖掘技術方向,門檻較高,需要扎實的演算法能力和代碼能力,同時薪資待遇也更好。
❺ BAT搶灘大數據風控,為何瞄向了銀行業
完成了對C端市場的瓜分之後,BAT等互聯網巨頭們還是瞄向了B端市場。
在2016年及之前,BAT、網易、京東等互聯網巨頭們已經在雲計算、人工智慧等領域推出了諸多針對企業級市場的服務,從如今的趨勢來看,被暢談許久的大數據或將是BAT們爭奪的又一塊價值窪地。
日前,網路雲傳出消息為民生銀行提供信貸企業的風險管理和預警的雲服務。在尋找大數據布局切口的問題上,風控和銀行成為BAT們的共同選擇。
風控是銀行業的七寸,也是大數據的練武場
顧名思義,風控即風險控制,通過建模的方法對借款人進行風險控制和風險提示,消滅或減少風險事件發生的各種可能性,或減少風險事件發生時造成的損失。
現在的商業銀行在本質上屬於經營風險的特殊企業,通過承擔風險,轉化風險,並將風險植入金融產品和服務中再加工風險。在國內外商業銀行的發展史中,因風險管理不當、資產質量低下而導致倒閉、被政府接管的不乏其例。如何有效的管理風險、規避風險成為商業銀行生存與發展的靈魂。
銀監會在去年7月份發布的《中國銀行業信息科技「十三五」發展規劃監管指導意見》成為大數據風控加速落地的催化劑,比如說在服務和應用層面強調基於大數據的營銷、風控應用的推廣。
動作敏銳的互聯網金融早早完成了大數據風控的布局,看起來有些傳統的銀行業在節奏上似乎有些遲緩。
對於線上的純數據和信用類貸款平台而言,引入大數據風控產品並沒有太多門檻。對於商業銀行卻不然,尤其是中小銀行,對大數據風控技術的應用尚不成熟,其風控模式更多關注的是靜態的風險預判,這和中小銀行科技水平和風控能力相對較低、數據信息的數量和質量存在缺陷等不無關系。
一般來說,大數據風控有著三個核心要素,即風控模型、場景和資金。商業銀行仍然擁有著低成本資金優勢,在線下場景也有著長期客戶積累,大數據和海量風控因子恰恰是很多商業銀行所欠缺的。
反觀BAT等互聯網巨頭,在海量數據、金融雲、用戶畫像、信用體系等方面有著先天的優勢,特別是在銀行逐漸實現業務電子化、金融監管收緊的情況下,BAT與商業銀行在大數據風控方面的合作似乎是水到渠成的。
背靠大數據金庫的BAT,如何開局?
BAT在大數據風控方面有著相似的邏輯,依靠自身積累的大數據體系,利用技術打造風控能力,再將這種能力開放給銀行等金融客戶。
以網路雲和民生銀行合作的風險預警項目為例,依靠網路雲的大數據收集、分析和計算建模能力,為民生銀行提供海量非結構化數據的加工處理,和目標企業進行關聯,並藉助風險識別模型判斷產生風險信號,再通過網路雲bos服務和API對接銀行內部業務,以實現對授信企業的風險監測。其中涉及了網路雲在大數據方面的三層應用:
數據挖掘:作為國內最大的搜索引擎,網路擁有大量的公共數據和需求數據,且在樣本數據的復雜性、廣度、多樣性等方面占據優勢。尤其在金融領域的數據涵蓋了支付、貸款、理財、保險、證券、銀行、徵信、基金、眾籌等各個領域。而銀行不良貸款率的增加和信息的不對稱有很大的關系,網路在數據層面較於銀行自身的積累有著不可比擬的優勢。舉個例子來說,通過網路的大數據可以對銀行的借貸用戶進行全方位的追蹤,包括搜索習慣、交易信息、個人信用、地理位置等等,將風險控制到最低。
數據處理:網路雲推出了「天算」平台,基於網路的大數據和人工智慧技術,為企業提供從數據收集、存儲、處理分析到應用場景的一站式服務。比如針對金融風控行業的特點,「天算」制定了相應的解決方案,通過網路搜索、地圖、社交、交易、政府等各類數據的收集,以人工智慧技術、深度學習技術、大數據能力為支撐,實現了對各類金融客戶深度場景的定製,如購車貸款、企業貸款、教育貸款、家裝貸款等,為金融機構提供安全高效的風控服務。此外網路雲BOS提供的雲存儲服務,實現了銀行內部數據和外部大數據的打通。
風控模型:相比於市場上很多紙上談兵的風控模型,網路的優勢在於搭建了已經應用於實戰的風控模型,具體體現在網路金融的主動預警捕捉高危行為。網路金融打通了「人+手機+設備+IP」等關聯緯度,基於全網行為進行監測,捕捉高危行為特徵,在貸前准入方面就開始排查風險,進行反欺詐識別,生產黑名單,對借款人的行為進行預測。並在貸款後對借款人貸後行為進行跟蹤和監測,只要觸發預警規則,也會激發提醒。由此可以看出,為網路金融提供技術能力和風控能力的網路雲,在風控模型上的能力不可小覷。
與此同時,阿里和騰訊也打起了大數據風控的主意,典型的就是螞蟻金服、微眾銀行等也在試圖對外進行技術開放。但網路的做法給行業帶來了新的啟示,以雲服務的姿態進行大數據能力的輸出,和第三方平台純粹的大數據風控體系相比,雲計算、人工智慧、大數據結合的服務模式無疑更具備優勢。
從大數據農民到大數據商人
覬覦銀行業的不只有BAT,還有形形色色的創業者,畢竟百萬億規模的銀行業是一個不可多得的蛋糕。不過,民生銀行作為股份制銀行將雲服務應用到貸後管理和信貸決策領域,卻給行業帶來了更多值得解讀的信號。從雲服務的角度來講,金融雲在安全層面又一次刷新了歷史,但從大數據的角度來看,BAT正從自給自足的「農民」轉型成為大數據「商人」。
其實從2014年開始,BAT就開始加速大數據的應用,比如騰訊的社交大數據、阿里的電商大數據以及網路的搜索數據。不過這個階段,BAT扮演更多的是大數據「農民」的角色,阿里應用大數據進行用戶畫像主要在電商層面,網路用大數據來改善廣告和營銷效果,騰訊用大數據來改善運營等等。雲服務的大規模應用為大數據的開放提供了良好的「媒介」,BAT也開始進行角色轉變。
但在當前的大數據格局中,除了政府所掌握的數據,BAT等互聯網巨頭成為大數據資源的壟斷者之一。可即便如此,數據孤島仍是圍困BAT在大數據方面想像力的重要原因,正如阿里對於社交數據的缺失,騰訊在生活場景數據方面的不足。同樣的困局還存在於銀行業,目前央行個人徵信記錄覆蓋率僅為35%,這一數字在某種程度上甚至不及BAT所搭建的信用體系和風控模型,尤其體現在數據的維度上。從這個角度或許也能夠解釋,為何BAT把大數據風控的潛在客戶指向了銀行業。
大數據應用的雲服務化或是結束數據割裂最行之有效的方式,比如說網路雲和民生銀行的合作方式在服務的標准化和可復制方面並沒有太大的門檻,這就意味著未來將適用於更多的企業,而作為雲服務的供應方也將從更多維度獲取到數據。
數據顯示,目前國內大數據的市場份額已經達到了1000億人民幣,預測到2025年中國的大數據產業會是一萬億元的規模,有著近十倍的增長。數據的流通勢必將以指數級的形式加速大數據產業的發展,但在誘人的前景背後也面臨著標准化、規范化、安全性、公平性等一系列亟待解決的問題。
結語
30多年前,世界著名未來學家阿爾文·托夫勒就在《第三次浪潮》一書中預言,大數據極有可能是繼農業革命和工業革命後的「第三次浪潮」。或許其中的過程有些曲折,從銀行業和大數據風控身上,我們看到了未來的希望。
Alter,互聯網觀察者,長期致力於對智能硬體、雲計算、VR等行業的觀察研究。
❻ 大數據十大商業應用場景
大數據十大商業應用場景
大數據時代,在未來的幾十年裡,大數據都將會是一個重要都話題。大數據影響著每一個人,並在可以預見的未來繼續影響著。大數據沖擊著許多主要行業,包括零售業、金融行業、醫療行業等等,大數據也在徹底地改變著我們的生活。現在我們就來看看大數據給中國帶來的十商業應用場景,未來大數據產業將會是一個萬億市場。
1、智慧城市
如今,世界超過一半的人口生活在城市裡,到2050年這一數字會增長到75%。政府需要利用一些技術手段來管理好城市,使城市裡的資源得到良好配置。既不出現由於資源配置不平衡而導致的效率低下以及騷亂,又要避免不必要的資源浪費而導致的財政支出過大。大數據作為其中的一項技術可以有效幫助政府實現資源科學配置,精細化運營城市,打造智慧城市。
城市的道路交通,完全可以利用GPS數據和攝像頭數據來進行規劃,包括道路紅綠燈時間間隔和關聯控制,包括直行和左右轉彎車道的規劃、單行道的設置。利用大數據技術實施的城市交通智能規劃,至少能夠提高30%左右的道路運輸能力,並能夠降低交通事故率。在美國,政府依據某一路段的交通事故信息來增設信號燈,降低了50%以上的交通事故率。機場的航班起降依靠大數據將會提高航班管理的效率,航空公司利用大數據可以提高上座率,降低運行成本。鐵路利用大數據可以有效安排客運和貨運列車,提高效率、降低成本。
城市公共交通規劃、教育資源配置、醫療資源配置、商業中心建設、房地產規劃、產業規劃、城市建設等都可以藉助於大數據技術進行良好規劃和動態調整。
大數據技術可以了解經濟發展情況,各產業發展情況,消費支出和產品銷售情況,依據分析結果,科學地制定宏觀政策,平衡各產業發展,避免產能過剩,有效利用自然資源和社會資源,提高社會生產效率。大數據技術也能幫助政府進行支出管理,透明合理的財政支出將有利於提高公信力和監督財政支出。大數據及大數據技術帶給政府的不僅僅是效率提升、科學決策、精細管理,更重要的是數據治國、科學管理的意識改變,未來大數據將會從各個方面來幫助政府實施高效和精細化管理,具有極大的想像空間。
2、金融行業
大數據在金融行業應用范圍較廣,典型的案例有花旗銀行利用IBM沃森電腦為財富管理客戶推薦產品,美國銀行利用客戶點擊數據集為客戶提供特色服務。中國金融行業大數據應用開展得較早,但都是以解決大數據效率問題為主,很多金融行業建立了大數據平台,對金融行業的交易數據進行採集和處理。
金融行業過去的大數據應用以分析自身財務數據為主,以提供動態財務報表為主,以風險管理為主。在大數據價值變現方面,開展的不夠深入,這同金融行業每年上萬億的凈利潤相比是不匹配的。現在已經有一些銀行和證券開始和移動互聯網公司合作,一起進行大數據價值變現,其中招商銀行、平安集團、興業銀行、國信證券、海通證券和Talking Data在移動大數據精準營銷、獲客、用戶體驗等方面進行了不少的嘗試,大數據價值變現效果還不錯,大數據正在幫助金融行業進行價值變現。大數據在金融行業的應用可以總結為以下五個方面:
(1)精準營銷:依據客戶消費習慣、地理位置、消費時間進行推薦
(2)風險管控:依據客戶消費和現金流提供信用評級或融資支持,利用客戶社交行為記錄實施信用卡反欺詐
(3)決策支持:利用抉策樹技術進抵押貸款管理,利用數據分析報告實施產業信貸風險控制
(4)效率提升:利用金融行業全局數據了解業務運營薄弱點,利用大數據技術加快內部數據處理速度
(5)產品設計:利用大數據計算技術為財富客戶推薦產品,利用客戶行為數據設計滿足客戶需求的金融產品
3、醫療行業
醫療行業擁有大量病例、病理報告、醫療方案、葯物報告等。如果這些數據進行整理和分析,將會極大地幫助醫生和病人。在未來,藉助於大數據平台我們可以收集疾病的基本特徵、病例和治療方案,建立針對疾病的資料庫,幫助醫生進行疾病診斷。
如果未來基因技術發展成熟,可以根據病人的基因序列特點進行分類,建立醫療行業的病人分類資料庫。在醫生診斷病人時可以參考病人的疾病特徵、化驗報告和檢測報告,參考疾病資料庫來快速幫助病人確診。在制定治療方案時,醫生可以依據病人的基因特點,調取相似基因、年齡、人種、身體情況相同的有效治療方案,制定出適合病人的治療方案,幫助更多人及時進行治療。同時這些數據也有利於醫葯行業開發出更加有效的葯物和醫療器械。
醫療行業的數據應用一直在進行,但是數據沒有打通,都是孤島數據,沒有辦法起大規模應用。未來需要將這些數據統一收集起來,納入統一的大數據平台,為人類健康造福。政府是推動這一趨勢的重要動力,未來市場將會超過幾千億元。
4、農牧業
農產品不容易保存,合理種植和養殖農產品對農民非常重要。藉助於大數據提供的消費能力和趨勢報告,政府將為農牧業生產進行合理引導,依據需求進行生產,避免產能過剩,造成不必要的資源和社會財富浪費。大數據技術可以幫助政府實現農業的精細化管理,實現科學決策。在數據驅動下,結合無人機技術,農民可以採集農產品生長信息,病蟲害信息。
農業生產面臨的危險因素很多,但這些危險因素很大程度上可以通過除草劑、殺菌劑、殺蟲劑等技術產品進行消除。天氣成了影響農業非常大的決定因素。過去的天氣預報僅僅能提供當地的降雨量,但農民更關心有多少水分可以留在他們的土地上,這些是受降雨量和土質來決定的。Climate公司利用政府開放的氣象站的數據和土地數據建立了模型,他們可以告訴農民可以在哪些土地上耕種,哪些土地今天需要噴霧並完成耕種,哪些正處於生長期的土地需要施肥,哪些土地需要5天後才可以耕種,大數據技術可以幫助農業創造巨大的商業價值。
5、零售行業
零售行業比較有名氣的大數據案例就是沃爾瑪的啤酒和尿布的故事,以及Target通過向年輕女孩寄送尿布廣告而告知其父親,女孩懷孕的故事。
零售行業可以通過客戶購買記錄,了解客戶關聯產品購買喜好,將相關的產品放到一起增加來增加產品銷售額,例如將洗衣服相關的化工產品例如洗衣粉、消毒液、衣領凈等放到一起進行銷售。根據客戶相關產品購買記錄而重新擺放的貨物將會給零售企業增加30%以上的產品銷售額。
零售行業還可以記錄客戶購買習慣,將一些日常需要的必備生活用品,在客戶即將用完之前,通過精準廣告的方式提醒客戶進行購買。或者定期通過網上商城進行送貨,既幫助客戶解決了問題,又提高了客戶體驗。
電商行業的巨頭天貓和京東,已經通過客戶的購買習慣,將客戶日常需要的商品例如尿不濕,衛生紙,衣服等商品依據客戶購買習慣事先進行准備。當客戶剛剛下單,商品就會在24小時內或者30分鍾內送到客戶門口,提高了客戶體驗,讓客戶連後悔等時間都沒有。
利用大數據的技術,零售行業將至少會提高30%左右的銷售額,並提高客戶購買體驗。
6、大數據技術產業
進入移動互聯網之後,非結構化數據和結構化數據呈指數方式增長。現在人類社會每兩年產生的數據將超過人類歷史過去所有數據之和。進入到2015年,人類社會所有的數據之和有望突破5澤B(5ZB),這些數據如何存儲和處理將會成為很大的問題。
這些大數據為大數據技術產業提供了巨大的商業機會。據估計全世界在大數據採集、存儲、處理、清晰、分析所產生的商業機會將會超過2000億美金,包括政府和企業在大數據計算和存儲,數據挖掘和處理等方面等投資。中國2014年大數據產業產值已經超過了千億人民幣,本屆貴陽大數據博覽會就吸引了400多家廠商來參展,充分說明大數據產業的未來的商業價值巨大。
未來中國的大數據產業將會呈幾何級數增長,在5年之內,中國的大數據產業將會形成萬億規模的市場。不僅僅是大數據技術產品的市場,也將是大數據商業價值變現的市場。大數據將會在企業的精準營銷、決策分析、風險管理、產品設計、運營優化等領域發揮重大的作用。
大數據技術產業將會解決大數據存儲和處理的問題,大數據服務公司將利用自身的數據將解決大數據價值變現問題,其所帶來的市場規模將會超過千億人民幣。中國目前擁有大數據,並提供大數據價值變現服務的公司除了我們眾所周知的BAT和移動運營商之外,360、小米、京東、Talking Data、九次方等都會成為大數據價值變現市場的有力參與者,市場足夠大,期望他們將市場做大,幫助所有企業實現大數據價值變現。
7、物流行業
中國的物流產業規模大概有5萬億左右,其中公里物流市場大概有3萬億左右。物流行業的整體凈利潤從過去的30%以上降低到了20%左右,並且下降的趨勢明顯。物流行業很多的運力浪費在返程空載、重復運輸、小規模運輸等方面。中國市場最大等物流公司所佔的市場份額不到1%。因此資源需要整合,運送效率需要提高。
物流行業藉助於大數據,可以建立全國物流網路,了解各個節點的運貨需求和運力,合理配置資源,降低貨車的返程空載率,降低超載率,減少重復路線運輸,降低小規模運輸比例。通過大數據技術,及時了解各個路線貨物運送需求,同時建立基於地理位置和產業鏈的物流港口,實現貨物和運力的實時配比,提高物流行業的運輸效率。藉助於大數據技術對物流行業進行的優化資源配置,至少可以增加物流行業10%左右的收入,其市場價值將在5000億左右。
8、房地產業
中國房地產業發展的高峰已經過去,其面臨的挑戰逐漸增加,房地產業正從過去的粗放發展方式轉向精細運營方式,房地產企業在拍賣土地、住房地產開發規劃、商業地產規劃方面也將會謹慎進行。
藉助於大數據,特別是移動大數據技術。房地產業可以了解開發土地所在范圍常駐人口數量、流動人口數量、消費能力、消費特點、年齡階段、人口特徵等重要信息。這些信息將會幫助房地商在商業地產開發、商戶招商、房屋類型、小區規模進行科學規劃。利用大數據技術,房地產行業將會降低房地產開發前的規劃風險,合理制定房價,合理制定開發規模,合理進行商業規劃。大數據技術可以降低土地價格過高,實際購房需求過低的風險。已經有房地產公司將大數據技術應用於用戶畫像、土地規劃、商業地產開發等領域,並取得了良好的效果。
9、製造業
製造業過去面臨生產過剩的壓力,很多產品包括家電、紡織產品、鋼材、水泥、電解鋁等都沒有按照市場實際需要生產,造成了資源的極大浪費。利用電商數據、移動互聯網數據、零售數據,我們可以了解未來產品市場都需求,合理規劃產品生產,避免生產過剩。
例如依據用戶在電商搜索產品的數據以及物流數據,可以推測出家電產品和紡織產品未來的實際需求量,廠家將依據這些數據來進行生產,避免生產過剩。移動互聯網的位置信息可以幫助了解當地人口進出的趨勢,避免生產過多的鋼材和水泥。
大數據技術還可以根據社交數據和購買數據來了解客戶需求,幫助廠商進行產品開發,設計和生產出滿足客戶需要的產品。
10、互聯網廣告業
2014年中國互聯網廣告市場迎來發展高峰,市場規模預計達到1500億元左右,較2013年增長56.5%。數字廣告越來越受到廣告主的重視,其未來市場規模越來越大。2014年美國的互聯網廣告市場規模接近500億美元,參考中國的人口消費能力,其市場規模會很快達到2000億人民幣左右。
過去到廣告投放都是以好的廣告渠道+廣播式投放為主,廣告主將廣告交給廣告公司,由廣告公司安排投放,其中SEM廣告市場最大,其他的廣告投放方式也是以頁面展示為主,大多是廣播式廣告投放。廣播式投放的弊端是投入資金大,沒有針對目標客戶,面對所有客戶進行展示,廣告的轉化率較低,並存在數字廣告營銷陷阱等問題。
大數據技術可以將客戶在互聯網上的行為記錄下來,對客戶的行為進行分析,打上標簽並進行用戶畫像。特別是進入移動互聯網時代之後,客戶主要的訪問方式轉向了智能手機和平台電腦,移動互聯網的數據包含了個人的位置信息,其360度用戶畫像更加接近真實人群。360度用戶畫像可以幫助廣告主進行精準營銷,廣告公司可以依據用戶畫像的信息,將廣告直接投放到用戶的移動設備,通過用戶經常使用的APP進行廣告投放,其廣告的轉化可以大幅度提高。利用移動互聯網大數據技術進行的精準營銷將會提高十倍以上的客戶轉化率,廣告行業的程序化購買正在逐步替代廣播式廣告投放。大數據技術將幫助廣告主和廣告公司直接將廣告投放給目標用戶,其將會降低廣告投入,提高廣告的轉化率。
目前,影響大數據產業發展主要有兩個大問題,一個是大數據應用場景,一個是大數據隱私保護問題。
大數據商業價值的應用場景,大數據公司和企業正在尋找,目前在移動互聯網的精準營銷和獲客、360度用戶畫像、房地產開發和規劃、互聯網金融的風險管理、金融行業的供應鏈金融,個人徵信等方面已經取得了進步,擁有了很多經典案例。
但在有關大數據隱私保護以及大數據應用過程中個人信息保護方面還停滯不前,大家都在摸石頭過河,不知道哪些事情可以做,哪些事情不可以做。國家在大數據隱私保護方面正在進行立法,估計不久的將來,大數據服務公司和企業將會了解大數據隱私保護方面的具體要求。在沒有明確有關大數據隱私保護法規前,我們可以參考國外的隱私法,嚴格遵守國際上通用的個人隱私保護法,在實施大數據價值變現的過程中,充分保護所有相關方的個人利益。
最後縱觀人類歷史,在任何領域,如果我們可以拿到數據進行分析,我們就會取得進步。如果我們拿不到數據,無法進行分析,我們註定要落後。我們過去因數據不足導致的錯誤遠遠好過那些根本不用數據的錯誤,因此我們需要掌握大數據這個武器,利用好它,幫助人類社會加速進化,幫助企業實現大數據的價值變現。
以上是小編為大家分享的關於大數據十大商業應用場景的相關內容,更多信息可以關注環球青藤分享更多干貨
❼ BAT的互聯網大數據應用有何不同
從數據類型看,騰訊數據最為全面,這與其互聯網業務全面相關,其最為突出的是社交數據和游戲數據,其中:社交數據最為核心的是關系鏈數據、用戶間的互動數據、用戶產生的文字、圖片和視頻內容;游戲數據主要包括大型網游數據、網頁游戲數據和手機游戲數據,游戲數據中最為核心的是游戲的活躍行為數據和付費行為數據,騰訊的數據最大的特點是基於社交的各種用戶行為和娛樂數據。阿里最為突出的是電商數據,尤其是用戶在淘寶和天貓上的商品瀏覽、搜索、點擊、收藏和購買等數據,其數據最大特點是從瀏覽到支付形成的用戶漏斗式轉化數據。網路的數據以用戶搜索的關鍵詞、爬蟲抓取的網頁、圖片和視頻數據為主,網路的數據特點是通過搜索關鍵詞更直接反映用戶興趣和需求,網路的數據以非結構化數據更多。
網路、阿里巴巴和騰訊的數據應用場景
網路、阿里巴巴和騰訊的數據應用場景都有共同的體系,該體系一共分為七層,代表了企業不同層面的數據價值應用場景,形成了企業運營的數據價值金字塔:
(1)數據基礎平台層。金字塔的最底層也是整個金字塔的基礎層,如果基礎層搭建不好,上面的應用層也很難在企業運營中發揮效果,這一層的技術目標是實現數據的有效存儲、計算和質量管理;業務目標是把企業的所有用戶(客戶)數據用唯一的ID串起來,包括用戶(客戶)的畫像(如性別、年齡等)、行為以及興趣愛好等,以達到全面的了解用戶(客戶)的目的;
(2)業務運營監控層。這一層首要的是搭建業務運營的關鍵數據體系,在此基礎上通過智能化模型開發出來的數據產品,監控關鍵數據的異動,通過各種分析模型等可以快速定位數據異動的原因,輔助運營決策;
(3)用戶/客戶體驗優化層。這一層主要是通過數據來監控和優化用戶/客戶的體驗問題。這裡面既運用了結構化的數據來監控,也運用非結構化的數據(如文本)來監控體驗的問題。前者更多的是應用各種用戶(客戶)體驗監測的模型或者工具來實現,後者更多的是通過監測微博、論壇和企業內部的客戶反饋系統的文本來發現負面的口碑,以及時的優化產品或服務;
(4)精細化運營和營銷層。這一層主要通過數據驅動業務精細化運營和營銷。主要可以分為四方面:第一,構建基於用戶的數據提取和運營工具,以方便運營和營銷人員通過人群定向把客戶提取出來,從而對客戶進行營銷或運營活動;第二方面,通過數據挖掘的手段提升客戶對活動的響應;第三,通過數據挖掘的手段進行客戶生命周期管理;第四,主要是用個性化推薦演算法基於用戶不同的興趣和需求推薦不同的商品或者產品,以實現推廣資源效率和效果最大化,如淘寶商品的個性化推薦;
(5)數據對外服務和市場傳播層面。數據對外服務一般為服務該互聯網企業的客戶或用戶,如網路通過提供網路輿情、網路代言人、網路指數等服務其廣告主客戶;淘寶通過數據魔方、淘寶情報和在雲端等產品服務其客戶;騰訊通過騰訊分析和騰訊雲分析等服務其開放商客戶。在市場傳播層面,主要通過有趣的數據信息圖譜和數據可視化產品來實現(如淘寶指數、網路指數、網路春節遷徙地圖)。
(6)經營分析層面。主要通過分析師對大數據進行統計,形成經驗分析周報、月報和季度報告等,對用戶經營情況和收入完成等情況進行分析,發現問題,優化經營策略。
(7)戰略分析層面。這方面既要結合內部的大數據形成決策層的數據視圖,也要結合外部數據尤其是各種競爭情報監控數據、國外趨勢研究數據來輔助決策層進行戰略分析。
雖然網路、阿里巴巴和騰訊在企業運營的數據價值的應用體繫上有共同的特點,但由於企業的商業模式以及數據資產不同,他們在整體的大數據發展策略也有顯著的不同。
網路大數據策略
網路大數據最重要的是來源是通過爬蟲搜集的100多個國家的近萬億網頁數據,數據量是在EB級的規模。網路的數據非常多樣化,其收集的數據既有為非結構化的或者半結構化的數據,包括網頁數據、視頻和圖片等數據,也有結構化的數據,如用戶的點擊行為數據,廣告客戶的付費行為數據等。
網路大數據主要服務三類人群:一類是互聯網網民,通過大數據和自然語言處理技術讓網民的搜索更加准確;第二類是廣告主,通過大數據讓廣告主的廣告和搜索關鍵詞的匹配度更高,或者和網民正在看的網頁內容匹配度更高;第三類是,也是在重點推進的網路大數據引擎,重點是服務傳統行業擁有一定規模數據的企業。
網路大數據引擎代表了互聯網企業數據服務能力開放和合作的趨勢,網路大數據引擎由以下三方面構成:
開放雲:網路的大規模分布式計算和超大規模存儲雲,開放雲大數據開放的是基礎設施和硬體能力。過去的網路雲主要面向開發者,大數據引擎的開放雲則是面向有大數據存儲和處理需求的「大開發者」。據網路相關人員稱,網路開放雲還擁有CPU利用率高、彈性高、成本低等特點。網路是全球首家大規模商用ARM伺服器的公司,而ARM架構的特徵是能耗小和存儲密度大,同時網路還是首家將GPU(圖形處理器)應用在機器學習領域的公司,實現了能耗節省的目的。
數據工廠:數據工廠為網路將海量數據組織起來的軟體能力,與資料庫軟體的作用類似,不同的是數據工廠是被用作處理TB級甚至更大的數據。網路數據工廠支持超大規模異構數據查詢,支持SQL-like以及更復雜的查詢語句,支持各種查詢業務場景。同時網路數據工廠還將承載對於TB級別大表的並發查詢和掃描,大查詢、低並發時每秒可達百GB。
網路大腦:網路大腦將網路此前在人工智慧方面的能力開放出來,主要是大規模機器學習能力和深度學習能力。此前它們被應用在語音、圖像、文本識別,以及自然語言和語義理解方面,並通過網路Inside等平台開放給了智能硬體。現在這些能力將被用來對大數據進行智能化的分析、學習、處理、利用,並對外開放。
網路將基礎設施能力、軟體系統能力以及智能演算法技術打包在一起,通過大數據引擎開放出來之後,擁有大數據的行業可以將自己的數據接入到這個引擎進行處理。從架構來看,企業或組織也可以只選擇三件套中的一種來使用,例如數據存放在自己的雲,但要運用網路大腦的一些智能演算法或者數據存放在網路雲,自己寫演算法。
網路大數據引擎的作用
我們可以從兩方面來具體看網路大數據引擎的作用:
(1)對於政府機構:如交通部門有車聯網、物聯網、路網監控、船聯網、碼頭車站監控等地方的大數據,如果這些數據與網路的搜索記錄、全網數據、LBS數據結合,在利用網路大數據引擎的大數據能力,則可以實現智能路徑規劃和運力管理;衛生部門擁有流感法定報告數據、全國流感樣病例哨點監測和病原學監測數據,如果和網路的搜索記錄及全網數據結合,便可進行流感預測、疫苗接種指導。
(2)對於企業:很多企業也擁有海量大數據,不過很多企業的大數據處理和挖掘能力比較弱,如果應用網路大數據引擎,則可以對海量數據進行可靠低成本的存儲,進行智能化的由淺入深的價值挖掘。如在2014年4月的網路技術開放日上,中國平安便介紹了如何利用網路的大數據能力加強消費者理解和預測,細分客戶群制定個性化產品和營銷方案。
阿里巴巴大數據策略
阿里巴巴大數據整體發展方向是以激活生產力為目的的DT(data technology,數據技術驅動)數據時代發展。阿里巴巴大數據未來將由「基於雲計算的數據開放+大數據工具化應用」組成:
(1)基於雲計算的數據開放。雲計算使中小企業可以在阿里雲上獲得數據存儲、數據處理服務,也可以構建自己的數據應用。雲計算是數據開放的基礎,雲計算可以為全球的數據開發者提供數據工作平台,阿里分布式的存儲平台和在這個平台上的演算法工具,可以更好的為數據開發者所用;同時,阿里巴巴還需要做好數據的脫敏,把數據的商業定義,每個標簽打得足夠清晰,能夠讓全球的數據開發者在阿里巴巴平台展開數據思維,讓數據為政府所用、消費者所用以及行業所用。阿里的大數據開放之後,線上線下的數據能夠串聯起來,所有人都是數據提供方,也是數據的使用者。
(2)在大數據應用上,馬雲已經在整個數據應用上確定了兩個方針:
第一個方針:從IT到DT(數據技術),DT就是點燃整個數據和激發整個數據的力量,被管理所用,被社會所用,被銷售所用,為製造業所用,為消費者信用所用。前文已經分析道,阿里巴巴的數據資產是以電商為主,其中,淘寶和天貓每天會產生豐富多樣的數據,阿里巴巴已經沉澱了包括交易、金融、生活服務等多種類型的數據。這些數據能夠幫助阿里巴巴進行數據化運營(如下圖)。
另外一個其最為重要的應用是金融領域——小微金融。在小微金融企業融資領域。由於銀行無法掌握小微企業真實的經營數據,不僅導致很多企業無法拿到貸款,還因為數據類型的不足導致整個判斷流程過長,阿里已經通過其電商數據中的交易、信用、SNS等多種數據來決定是否可以發放貸款以及放貸的額度。
第二個方針:讓阿里巴巴的數據、讓阿里巴巴的工具能夠成為中國商業的基礎設施。阿里巴巴已經開始在轉型,阿里將由自己直接面對消費者變成支持網商面對消費者,阿里會根據其已有的運營和數據經驗,開發更多的工具,幫助網商成長,讓網商們更懂得用最好的工具、服務去服務好消費者。正如馬雲所言「我相信沒有一個網商不希望擁有自己的客戶,沒有一個網商不希望知道客戶對自己的體驗到底好還是壞,如何持久的擁有這些客戶,我們覺得一個國家的經濟,應該讓給企業家群體去做,我們覺得淘寶網商未來的經濟,是應該留給網商們去決定,而不是我們去做決定」。
騰訊大數據策略
騰訊的大數據目前更多的是為騰訊企業內部運營服務,相對於阿里和網路,數據開放程度並不高。因此,對於騰訊我們主要重點介紹騰訊大數據在服務企業內部的應用場景和服務。
騰訊90%以上的數據已經實現集中化管理,數據集中在數據平台部,有超過100多個產品的數據已經集中管理起來,而且是集中存儲在騰訊自研數據倉庫(TDW)。騰訊大數據從數據應用的不同環節可以分為四個層面,包括數據分析、數據挖掘、數據管理和數據可視化:
(1)數據分析層有四個產品:自助分析、用戶畫像、實時多維度分析和異動智能定位工具。自助分析可以幫助非技術人員通過簡單的條件配置實現數據的統計和展示功能;用戶畫像則是對某一群用戶或者某一業務的用戶實現自動化的人群畫像;實時多維度分析工具則是可以對某一指標可以實現實時的多個維度的切分,方便分析人員從不同角度對某一指標進行多維度分析;異動智能定位工具則實現數據異動問題的智能化定位。
(2)數據挖掘層面的產品應用有:精準廣告系統、用戶個性化推薦引擎和客戶生命周期管理。精準廣告系統如廣點通,是基於騰訊大社交平台的海量數據為基礎,通過精準推薦演算法,以智能定向推廣位導向實現廣告精準投放;用戶個性化推薦引擎根據每位用戶的興趣和喜好,通過個性化推薦演算法(協同過濾、基於內容推薦、圖演算法、貝葉斯等),實現產品的個性化推薦需求;客戶生命周期管理系統,則是基於大數據,根據用戶/客戶的所處的不同生命周期進行數據挖掘,建立預測、預警和用戶特徵模型,以根據用戶/客戶所處的不同生命周期特點進行精細化運營和營銷。
(3)在數據管理層面則有:TDW(騰訊數據倉庫)、TDBank(數據銀行)、元數據管理平台和任務調度系統和數據監控。這一層面主要是實現數據的高效集中存儲、數據的業務指標定義管理、數據質量管理、計算任務的及時調度和計算以及數據問題的監控和告警。
(4)在數據可視化層面有:自助報表工具、騰訊羅盤、騰訊分析和騰訊雲分析等工具。自助報表工具可以自助化的實現結構相對簡單和邏輯相對簡單的報表。騰訊羅盤分為內部版和外部版,內部版則是服務於騰訊內部用戶(產品經理、運營人員和技術人員等)的高效報表工具,外部版則是服務於騰訊合作夥伴如開發商的報表工具。騰訊分析是網站分析工具,幫助網站主進行網站的全方位分析。騰訊雲分析則是幫助應用開發商決策和運營優化的分析工具。
總的來看,網路、阿里巴巴和騰訊三大互聯網企業都擁有大數據,三大互聯網巨頭的數據都用來優化自己業務的運營效果,從這個層面看,其數據價值應用場景比較類似。但由於其業務和商業模式的不同決定了三者數據資產的不同,也決定了三者未來大數據策略的不同,尤其是基於大數據的開放和合作角度看,網路和阿里巴巴相對更加開放。對於重視大數據開放和合作的互聯網企業,他們最為期待的是借著大數據開放的策略,與更多的傳統行業交換更多的數據,從而更好的豐富其在線下數據,形成線上和線下數據的協同,從中拓展新的商業模式,如智能硬體和大數據健康。
❽ 大數據可視化工具都有什麼
蛛網系統,BI報表展現和圖形化界面都是通過拖拽零代碼就可以搞定!
❾ BAT的金融大數據到底是如何運作的
1、大數據徵信:在個人徵信領域,目前是金融行業面臨的最大問題。基於用戶在互聯網上的消費行為、社交行為、搜索行為等產生的海量數據,其價值並未被充分挖掘,個人徵信在大數據的採集和信息挖掘上面仍有很大的想像空間。阿里的芝麻信用在其中算是最會玩的。芝麻信用幾乎打通了用戶的身份特質,行為偏好,人脈關系,信用歷史,履約能力等各類信息。這恰恰是因為接入了電商、支付、社交等各類數據維度。
2、大數據風控:大數據風控目前應該是前沿技術在金融領域的最成熟應用,相對於智能投顧、區塊鏈等還在初期的金融科技應用,大數據風控目前已經在業界逐步普及。目前,美國基本上都用三大徵信局的信息,最傳統的評分基本上都是用FICO來做的。各家平台會嘗試著用機器學習、神經網路等大數據處理方法。
國內市場對於大數據風控的嘗試還是比較積極。特別是大公司,可以將移動互聯網的行為和貸款申請人聯繫到一起展開大數據風控。網路在風控層面上的進展還是比較突出,網路安全每天要處理數十億網民搜索請求,保護數億用戶的終端安全,保護十萬網站的安全,因此積累了大量的數據。
一個很具體的案例就是,通過海量互聯網行為數據,比如監測相關設備ID在哪些借貸網站上進行注冊、同一設備是否下載多個借貸App,可以實時發現多頭貸款的徵兆,把風險控制到最低。
3、大數據消費金融:消費金融對大數據的依賴是天然形成的。比如說消費貸、工薪貸、學生貸,這些消費型的金融貸款很依賴對用戶的了解。所以必須對用戶畫像進行分析提煉,通過相關模型展開風險評估,並根據模型及數據從多維度為用戶描繪一個立體化的畫像。
網路金融的優勢在於,通過基於大數據和人工智慧技術為基礎的合作商戶管理平台,為合作商戶提供涵蓋營銷和金融服務的全面管理方案,降低獲客成本,解決細分行業的微小需求。一方面可以降低風險,另一方面也能提升金融的安全度。
在大數據消費金融的領域中,騰訊和阿里的優勢很大程度上是在渠道層面上的。正如前文所說的,阿里以電商-支付-信用為三級跳板,針對性很強支付寶接入消費金融產品之後會有較強的渠道作用。而在去年12月,騰訊的「微粒貸」已經接入到了微信支付當中。在消費金融的發展速度上,騰訊速度也不差。
4、大數據財富管理:財富管理是近些年來在我國金融服務業中出現的一個新業務。主要為客戶提供長期的投顧服務,實現客戶資產的優化配置。這方面業務在傳統金融機構中存在的比較多。不過因為技術能力不足,大數據財富管理在傳統金融機構中相對弱勢。
財富管理在互聯網公司的業務中也非常流行。螞蟻金服一開始最為簡單的財富管理方式就是余額寶,後來逐漸演化成經過大數據計算智能推薦給用戶的各種標准化的「寶寶」理財產品。網路金融相對來說更進一步,是依託「網路大腦」通過互聯網人工智慧、大數據分析等手段,精準識別和刻畫用戶,提供專業的「千人千面」的定製化財富管理服務。
金融大數據的孿生兄弟金融雲是地基,未來更具看點
大數據和雲計算永遠都是相伴相隨的一對孿生兄弟。金融大數據核心工作包括三方面,即獲取數據、建立模型、模型在實踐中優化、迭代。而對於金融大數據而言,金融雲才是它的地基。
打個不恰當的比方,前文中說大數據是煤礦,而金融雲其實就是礦井。礦井的安全行、可靠性決定了挖煤的效率和結果。
金融雲把底層技術很多問題都解決了。大量金融模型都是金融雲所引入的,如客戶模型、產品模型、賬務模型等。同時金融雲關注金融本身的嚴謹性和周密性、安全性的考慮。
2016年7月,「騰訊雲+未來」峰會上,騰訊雲和騰訊金融雲都已成為最重點部署的業務。同年9月,網路世界大會金融科技分論壇上,網路金融雲正式向業界開放。據時任網路金融研發負責人沈抖表示,網路金融雲將通過人工智慧、安全防護、智能獲客、大數據風控、IT系統、支付等六大技術能力給合作夥伴賦能。10月,阿里雲棲大會上,阿里金融雲負責人則是提出將會和生態合作夥伴、服務聯盟為金融行業量身定製推出雲增強服務。
大數據必須要跑在雲端,而金融大數據更需要和業內其他企業展開數據、支付、業務等一系列的合作。金融雲對可用性、安全性的要求嚴格,比如說對一個高度可控可信的雲安全體系而言,基礎環境安全、風控與審計、數據安全三者缺一不可。而金融雲在未來的競爭中將發揮越來越重要的作用。
?