『壹』 數據可視化的基本流程
作者 | 向倩文
來源 | 數據產品手記
大多數人對數據可視化的第一印象,可能就是各種圖形,比如Excel圖表模塊中的柱狀圖、條形圖、折線圖、餅圖、散點圖等等,就不一一列舉了。以上所述,只是數據可視化的具體體現,但是數據可視化卻不止於此。
數據可視化不是簡單的視覺映射,而是一個以數據流向為主線的一個完整流程,主要包括數據採集、數據處理和變換、可視化映射、用戶交互和用戶感知。一個完整的可視化過程,可以看成數據流經過一系列處理模塊並得到轉化的過程,用戶通過可視化交互從可視化映射後的結果中獲取知識和靈感。
圖1 可視化的基本流程圖
可視化主流程的各模塊之間,並不僅僅是單純的線性連接,而是任意兩個模塊之間都存在聯系。例如,數據採集、數據處理和變換、可視化編碼和人機交互方式的不同,都會產生新的可視化結果,用戶通過對新的可視化結果的感知,從而又會有新的知識和靈感的產生。
下面,對數據可視化主流程中的幾個關鍵步驟進行說明。
01
數據採集
數據採集是數據分析和可視化的第一步,俗話說「巧婦難為無米之炊」,數據採集的方法和質量,很大程度上就決定了數據可視化的最終效果。
數據採集的分類方法有很多,從數據的來源來看,可以分為內部數據採集和外部數據採集。
1.內部數據採集:
指的是採集企業內部經營活動的數據,通常數據來源於業務資料庫,如訂單的交易情況。如果要分析用戶的行為數據、APP的使用情況,還需要一部分行為日誌數據,這個時候就需要用「埋點」這種方法來進行APP或Web的數據採集。
2.外部數據採集:
指的數通過一些方法獲取企業外部的一些數據,具體目的包括,獲取競品的數據、獲取官方機構官網公布的一些行業數據等。獲取外部數據,通常採用的數據採集方法為「網路爬蟲」。
以上的兩類數據採集方法得來的數據,都是二手數據。通過調查和實驗採集數據,屬於一手數據,在市場調研和科學研究實驗中比較常用,不在此次探討范圍之內。
02
數據處理和變換
數據處理和數據變換,是進行數據可視化的前提條件,包括數據預處理和數據挖掘兩個過程。
一方面,通過前期的數據採集得到的數據,不可避免的含有雜訊和誤差,數據質量較低;另一方面,數據的特徵、模式往往隱藏在海量的數據中,需要進一步的數據挖掘才能提取出來。
常見的數據質量問題包括:
1.數據收集錯誤,遺漏了數據對象,或者包含了本不應包含的其他數據對象。
2.數據中的離群點,即不同於數據集中其他大部分數據對象特徵的數據對象。
3.存在遺漏值,數據對象的一個或多個屬性值缺失,導致數據收集不全。
4.數據不一致,收集到的數據明顯不合常理,或者多個屬性值之間互相矛盾。例如,體重是負數,或者所填的郵政編碼和城市之間並沒有對應關系。
5.重復值的存在,數據集中包含完全重復或幾乎重復的數據。
正是因為有以上問題的存在,直接拿採集的數據進行分析or可視化,得出的結論往往會誤導用戶做出錯誤的決策。因此,對採集到的原始數據進行數據清洗和規范化,是數據可視化流程中不可缺少的一環。
數據可視化的顯示空間通常是二維的,比如電腦屏幕、大屏顯示器等,3D圖形繪制技術解決了在二維平面顯示三維物體的問題。
但是在大數據時代,我們所採集到的數據通常具有4V特性:Volume(大量)、Variety(多樣)、Velocity(高速)、Value(價值)。如何從高維、海量、多樣化的數據中,挖掘有價值的信息來支持決策,除了需要對數據進行清洗、去除雜訊之外,還需要依據業務目的對數據進行二次處理。
常用的數據處理方法包括:降維、數據聚類和切分、抽樣等統計學和機器學習中的方法。
03
可視化映射
對數據進行清洗、去噪,並按照業務目的進行數據處理之後,接下來就到了可視化映射環節。可視化映射是整個數據可視化流程的核心,是指將處理後的數據信息映射成可視化元素的過程。
可視化元素由3部分組成:可視化空間+標記+視覺通道
1.可視化空間
數據可視化的顯示空間,通常是二維。三維物體的可視化,通過圖形繪制技術,解決了在二維平面顯示的問題,如3D環形圖、3D地圖等。
圖2 可視化空間示例
2.標記
標記,是數據屬性到可視化幾何圖形元素的映射,用來代表數據屬性的歸類。
根據空間自由度的差別,標記可以分為點、線、面、體,分別具有零自由度、一維、二維、三維自由度。如我們常見的散點圖、折線圖、矩形樹圖、三維柱狀圖,分別採用了點、線、面、體這四種不同類型的標記。
圖3 標記類型示例
3.視覺通道
數據屬性的值到標記的視覺呈現參數的映射,叫做視覺通道,通常用於展示數據屬性的定量信息。
常用的視覺通道包括:標記的位置、大小(長度、面積、體積...)、形狀(三角形、圓、立方體...)、方向、顏色(色調、飽和度、亮度、透明度...)等。
圖3中的四個圖形示例,就很好的利用了位置、大小、顏色等視覺通道來進行數據信息的可視化呈現。
「標記」、「視覺通道」是可視化編碼元素的兩個方面,兩者的結合,可以完整的將數據信息進行可視化表達,從而完成可視化映射這一過程。
關於可視化編碼元素的優先順序,以及如何根據數據的特徵選擇合適的可視化表達,下次會專題來分享下。
04
人機交互
可視化的目的,是為了反映數據的數值、特徵和模式,以更加直觀、易於理解的方式,將數據背後的信息呈現給目標用戶,輔助其作出正確的決策。
但是通常,我們面對的數據是復雜的,數據所蘊含的信息是豐富的。
如果在可視化圖形中,將所有的信息不經過組織和篩選,全部機械的擺放出來,不僅會讓整個頁面顯得特別臃腫和混亂,缺乏美感;而且模糊了重點,分散用戶的注意力,降低用戶單位時間獲取信息的能力。
常見的交互方式包括:
1.滾動和縮放:當數據在當前解析度的設備上無法完整展示時,滾動和縮放是一種非常有效的交互方式,比如地圖、折線圖的信息細節等。但是,滾動與縮放的具體效果,除了與頁面布局有關系外,還與具體的顯示設備有關。
2.顏色映射的控制:一些可視化的開源工具,會提供調色板,如D3。用戶可以根據自己的喜好,去進行可視化圖形顏色的配置。這個在自助分析等平台型工具中,會相對多一點,但是對一些自研的可視化產品中,一般有專業的設計師來負責這項工作,從而使可視化的視覺傳達具有美感。
3.數據映射方式的控制:這個是指用戶對數據可視化映射元素的選擇,一般一個數據集,是具有多組特徵的,提供靈活的數據映射方式給用戶,可以方便用戶按照自己感興趣的維度去探索數據背後的信息。這個在常用的可視化分析工具中都有提供,如tableau、PowerBI等。
4.數據細節層次控制:比如隱藏數據細節,hover或點擊才出現。
05
用戶感知
可視化的結果,只有被用戶感知之後,才可以轉化為知識和靈感。
用戶在感知過程,除了被動接受可視化的圖形之外,還通過與可視化各模塊之間的交互,主動獲取信息。
如何讓用戶更好的感知可視化的結果,將結果轉化為有價值的信息用來指導決策,這個裡面涉及到的影響因素太多了,心理學、統計學、人機交互等多個學科的知識。
學習之路漫漫,一直在路上, 我們會持續分享數據可視化領域的知識,記得持續follow我們喲!
『貳』 大數據系統有哪些
大數據可視化系統(一)思邁特軟體Smartbi
思邁特軟體Smartbi是一款商業智能BI工具,做數據分析和可視化數據展現,以分析為主,提供多種數據接入方式,可視化功能強大,平台更適合掌握分析方法了解分析的思路的用戶,其他用戶的使用則依賴於分析師的結果輸出。
Smartbi也是小編找了很久感覺很不錯的一款大數據可視化系統。其中還有很多對數據處理的公式和方法,圖表也比較全面。相對於網路的echarts,Smartbi還是一款比較容易入手的數據分析工具。最後,Smartbi提供了免費的版本,功能齊全,更加適合個人對數據分析的學習和使用。
大數據可視化系統(二)ChartBlocks
ChartBlocks是一款網頁版的大數據可視化系統,在線使用。通過導入電子表格或者資料庫來構建可視化圖表。整個過程可以在圖表的向導指示下完成。它的圖表在HTML5的框架下,使用強大的JavaScript庫D3js來創建圖表。
圖表是響應式的,可以和任何的屏幕尺寸及設備兼容。還可以將圖表嵌入任何網頁中。
大數據可視化系統(三)Tableau
Tableau公司將數據運算與美觀的圖表完美地嫁接在一起。它的程序很容易上手,各公司可以用它將大量數據拖放到數字」畫布」上,轉眼間就能創建好各種圖表。這一軟體的理念是,界面上的數據越容易操控,公司對自己在所在業務領域里的所作所為到底是正確還是錯誤,就能了解得越透徹。
它們都是為與大數據有關的組織設計的。企業使用這個工具非常方便,而且提供了閃電般的速度。還有一件事對這個工具是肯定的,Tableau具有用戶友好的特性,並與拖放功能兼容。但是在大數據方面的性能有所缺陷,每次都是實時查詢數據,如果數據量大,會卡頓。
大數據可視化系統(四)AntV
AntV是螞蟻金服的大數據可視化系統,主要包含專註解決流程與關系分析的圖表庫G6、適於對性能、體積、擴展性要求嚴苛場景下使用的移動端圖表庫F2以及一套完整的圖表使用指引和可視化設計規范。
已為阿里集團內外2000+個業務系統提供數據可視化能力,其中不乏日均千萬UV級的產品。
『叄』 數據可視化的設計步驟有哪些
1、需求分析
需求分析是大數據可視化項目開展的前提,要描述項目背景與目的、業務目標、業務范圍、業務需求和功能需求等內容,明確實施單位對可視化的期望和需求。包括需要分析的主題、各主題可能查看的角度、需要發泄企業各方面的規律、用戶的需求等內容。
2、建設數據倉庫/數據集市的模型
數據倉庫/數據集市的模型是在需求分析的基礎上建立起來的。數據倉庫/數據集市建模除了資料庫的ER建模和關系建模,還包括專門針對數據倉庫的維度建模技術。
3、數據抽取、清洗、轉換、載入(ETL)
數據抽取是指將數據倉庫/集市需要的數據從各個業務系統中抽離出來,因為每個業務系統的數據質量不同,所以要對每個數據源建立不同的抽取程序,每個數據抽取流程都需要使用介面將元數據傳送到清洗和轉換階段。
4、建立可視化場景
建立可視化場景是對數據倉庫/集市中的數據進行分析處理的成果,用戶能夠藉此從多個角度查看企業/單位的運營狀況,按照不同的主題和方式探查企業/單位業務內容的核心數據,從而作出更精準的預測和判斷。
『肆』 大數據可視化遵循什麼原則
1.理解數據源
確保了解你工作的數據。這是理解數據至關重要的第一步。你需要對宏觀的全局有所理解:為什麼收集這些數據?公司對於這些數據賦予什麼樣的價值?用戶是誰?如何能讓數據作用最大化?深入理解這些問題,能為創造出既有意義又人性化的可視化信息,打下重要的基礎。
2.明確你要講的故事
好的數據可視化不僅僅是一張美麗的圖片,它還能講述一個任何人都能明白的故事。因此,至關重要的是,你首先需明確你想講的故事,然後將數據作為一種潤色故事的方式。
例如,我們最近幫助瑞典某移動運營商重新設計了之前經常讓用戶混淆的月度手機賬單,使其以用戶為中心便於用戶使用。該公司希望設計出更為有效易用的話單,而不是繼續呈現給用戶難懂的一串號碼。
3.簡單法則
數據可視化是用來告知用戶,而非讓用戶接收不需要的過載信息。作用一名設計者,你的角色就是專注簡單,將復雜或者零散的信息變得切實可行,易於理解,極具意義和更人性化的信息。記住,越簡單,用戶才能越明白。
『伍』 如何實現大數據可視化
1.考慮用戶
管理咨詢公司Aspirent視覺分析實踐主管Dan Gastineau表示,企業應使用顏色、形狀、大小和布局來顯示可視化的設計和使用。
Aspirent使用顏色來突出希望用戶關注的分析方面。而大小可有效說明數量,但過多使用不同大小來傳遞信息可能會導致混亂。這里應該有選擇地使用大小,即在咨詢團隊成員想要強調的地方。
2.講述連貫的故事
與你的受眾溝通,保持設計的簡單和專注性。顏色到圖表數量等細節可幫助確保儀錶板講述連貫的故事。MicroStrategy產品管理高級副總裁Saurabh Abhyankar說:“儀錶板就像一本書,它需要考慮讀者的設計元素,而不僅僅是強制列出所有可訪問的數據。”儀錶板的設計將成為推動部署的因素。
3.迭代設計
應不斷從視覺分析用戶獲得反饋意見。隨著時間的推移,數據探索會引發新的想法和問題,而隨時間和部署推移提高數據相關性會使用戶更智能。
從你的受眾徵求並獲取反饋意見可改善體驗。谷歌雲端數據工作室首席產品經理Nick Mihailovski表示,快速構建概念、快速獲取反饋意見並進行迭代可更快獲得更好的結果。另外,還可將調查和表格整合到精美的報告中,也可以幫助確保大數據的可視化結果確實有助於目標受眾。
4.個性化一切
應確保儀錶板向最終用戶顯示個性化信息,並確保其相關性。並且,還應確保可視化在設計上反映其所在的設備,並為最終用戶提供離線訪問,這將讓可視化走得更長遠。Mihailovski說,通過精心設計的互動式可視化來吸引觀眾以及傳播數據文化,這會使分析具有吸引力和富有樂趣。
5.從分析目標開始
應確保數據類型和分析目標可反映所選的可視化類型。Mihailovski稱:“人們通常會採用相反的方法,他們先看到整潔或模糊的可視化類型,然後試圖使其數據相匹配。”對於大數據項目的可視化,簡單的表格或條形圖有時可能是最有效的。
關於如何實現大數據可視化,青藤小編就和您分享到這里了。如果你對大數據工程有濃厚的興趣,希望這篇文章能夠對你有所幫助。如果您還想了解更多數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
『陸』 大數據可視化設計到底是啥,該怎麼用
大數據可視化是個熱門話題,在信息安全領域,也由於很多企業希望將大數據轉化為信息可視化呈現的各種形式,以便獲得更深的洞察力、更好的決策力以及更強的自動化處理能力,數據可視化已經成為網路安全技術的一個重要趨勢。
文章目錄
一、什麼是網路安全可視化
1.1 故事+數據+設計 =可視化
1.2 可視化設計流程
二、案例一:大規模漏洞感知可視化設計
2.1整體項目分析
2.2分析數據
2.3匹配圖形
2.4確定風格
2.5優化圖形
2.6檢查測試
三、案例二:白環境蟲圖可視化設計
3.1整體項目分析
3.2分析數據
3.3 匹配圖形
3.4優化圖形
3.5檢查測試
一、什麼是網路安全可視化
攻擊從哪裡開始?目的是哪裡?哪些地方遭受的攻擊最頻繁……通過大數據網路安全可視化圖,我們可以在幾秒鍾內回答這些問題,這就是可視化帶給我們的效率 。 大數據網路安全的可視化不僅能讓我們更容易地感知網路數據信息,快速識別風險,還能對事件進行分類,甚至對攻擊趨勢做出預測。可是,該怎麼做呢?
1.1 故事+數據+設計 =可視化
做可視化之前,最好從一個問題開始,你為什麼要做可視化,希望從中了解什麼?是否在找周期性的模式?或者多個變數之間的聯系?異常值?空間關系?比如政府機構,想了解全國各個行業漏洞的分布概況,以及哪個行業、哪個地區的漏洞數量最多;又如企業,想了解內部的訪問情況,是否存在惡意行為,或者企業的資產情況怎麼樣。總之,要弄清楚你進行可視化設計的目的是什麼,你想講什麼樣的故事,以及你打算跟誰講。
有了故事,還需要找到數據,並且具有對數據進行處理的能力,圖1是一個可視化參考模型,它反映的是一系列的數據的轉換過程:
我們有原始數據,通過對原始數據進行標准化、結構化的處理,把它們整理成數據表。
將這些數值轉換成視覺結構(包括形狀、位置、尺寸、值、方向、色彩、紋理等),通過視覺的方式把它表現出來。例如將高中低的風險轉換成紅黃藍等色彩,數值轉換成大小。
將視覺結構進行組合,把它轉換成圖形傳遞給用戶,用戶通過人機交互的方式進行反向轉換,去更好地了解數據背後有什麼問題和規律。
最後,我們還得選擇一些好的可視化的方法。比如要了解關系,建議選擇網狀的圖,或者通過距離,關系近的距離近,關系遠的距離也遠。
總之,有個好的故事,並且有大量的數據進行處理,加上一些設計的方法,就構成了可視化。
1.2 可視化設計流程
一個好的流程可以讓我們事半功倍,可視化的設計流程主要有分析數據、匹配圖形、優化圖形、檢查測試。首先,在了解需求的基礎上分析我們要展示哪些數據,包含元數據、數據維度、查看的視角等;其次,我們利用可視化工具,根據一些已固化的圖表類型快速做出各種圖表;然後優化細節;最後檢查測試。
具體我們通過兩個案例來進行分析。
二、案例一:大規模漏洞感知可視化設計
圖2是全國范圍內,各個行業漏洞的分布和趨勢,橙黃藍分別代表了漏洞數量的高中低。
2.1整體項目分析
我們在拿到項目策劃時,既不要被大量的信息資料所迷惑而感到茫然失措,也不要急於完成項目,不經思考就盲目進行設計。首先,讓我們認真了解客戶需求,並對整體內容進行關鍵詞的提煉。可視化的核心在於對內容的提煉,內容提煉得越精確,設計出來的圖形結構就越緊湊,傳達的效率就越高。反之,會導致圖形結構臃腫散亂,關鍵信息無法高效地傳達給讀者。
對於大規模漏洞感知的可視化項目,客戶的主要需求是查看全國范圍內,各個行業的漏洞分布和趨勢。我們可以概括為三個關鍵詞:漏洞量、漏洞變化、漏洞級別,這三個關鍵詞就是我們進行數據可視化設計的核心點,整體的圖形結構將圍繞這三個核心點來展開布局。
2.2分析數據
想要清楚地展現數據,就要先了解所要繪制的數據,如元數據、維度、元數據間關系、數據規模等。根據需求,我們需要展現的元數據是漏洞事件,維度有地理位置、漏洞數量、時間、漏洞類別和級別,查看的視角主要是宏觀和關聯。涉及到的視覺元素有形狀、色彩、尺寸、位置、方向,如圖4。
2.3匹配圖形
2.4確定風格
匹配圖形的同時,還要考慮展示的平台。由於客戶是投放在大屏幕上查看,我們對大屏幕的特點進行了分析,比如面積巨大、深色背景、不可操作等。依據大屏幕的特點,我們對設計風格進行了頭腦風暴:它是實時的,有緊張感;需要新穎的圖標和動效,有科技感;信息層次是豐富的;展示的數據是權威的。
最後根據設計風格進一步確定了深藍為標准色,代表科技與創新;橙紅藍分別代表漏洞數量的高中低,為輔助色;整體的視覺風格與目前主流的扁平化一致。
2.5優化圖形
有了圖形後,嘗試把數據按屬性繪制到各維度上,不斷調整直到合理。雖然這里說的很簡單,但這是最耗時耗力的階段。維度過多時,在信息架構上廣而淺或窄而深都是需要琢磨的,而後再加上交互導航,使圖形更「可視」。
在這個任務中,圖形經過很多次修改,圖7是我們設計的過程稿,深底,高亮的地圖,多顏色的攻擊動畫特效,營造緊張感;地圖中用紅、黃、藍來呈現高、中、低危的漏洞數量分布情況;心理學認為上方和左方易重視,「從上到下」「從左至右」的「Z」字型的視覺呈現,簡潔清晰,重點突出。
完成初稿後,我們進一步優化了維度、動效和數量。維度:每個維度,只用一種表現,清晰易懂;動效:考慮時間和情感的把控,從原來的1.5ms改為3.5ms;數量:考慮了太密或太疏時用戶的感受,對圓的半徑做了統一大小的處理。
2.6檢查測試
最後還需要檢查測試,從頭到尾過一遍是否滿足需求;實地投放大屏幕後,用戶是否方便閱讀;動效能否達到預期,色差是否能接受;最後我們用一句話描述大屏,用戶能否理解。
三、案例二:白環境蟲圖可視化設計
如果手上只有單純的電子表格(左),要想找到其中IP、應用和埠的訪問模式就會很花時間,而用蟲圖(右)呈現之後,雖然增加了很多數據,但讀者的理解程度反而提高了。
3.1整體項目分析
當前,企業內部IT系統復雜多變,存在一些無法精細化控制的、非法惡意的行為,如何精準地處理安全管理問題呢?我們的主要目標是幫助用戶監測訪問內網核心伺服器的異常流量,概括為2個關鍵詞:內網資產和訪問關系,整體的圖形結構將圍繞這兩個核心點來展開布局。
3.2分析數據
接下來分析數據,案例中的元數據是事件,維度有時間、源IP、目的IP和應用,查看的視角主要是關聯和微觀。
3.3 匹配圖形
根據以往的經驗,帶有關系的數據一般使用和弦圖和力導向布局圖。最初我們採用的是和弦圖,圓點內部是主機,用戶要通過3個維度去尋找事件的關聯。通過測試發現,用戶很難理解,因此選擇了力導向布局圖(蟲圖)。第一層級展示全局關系,第二層級通過對IP或埠的鑽取進一步展現相關性。
3.4優化圖形
優化圖形時,我們對很多細節進行了調整: – 考慮太密或太疏時用戶的感受,只展示了TOP N。 – 弧度、配色的優化,與我們UI界面風格相一致。 – IP名稱超長時省略處理。 – 微觀視角中,源和目的分別以藍色和紫色區分,同時在線上增加箭頭,箭頭向內為源,向外是目的,方便用戶理解。 – 交互上,通過單擊鑽取到單個埠和IP的信息;滑鼠滑過時相關信息高亮展示,這樣既能讓畫面更加炫酷,又能讓人方便地識別。
3.5檢查測試
通過調研,用戶對企業內部的流向非常清楚,視覺導向清晰,鑽取信息方便,色彩、動效等細節的優化幫助用戶快速定位問題,提升了安全運維效率。
四、總結
總之,藉助大數據網路安全的可視化設計,人們能夠更加智能地洞悉信息與網路安全的態勢,更加主動、彈性地去應對新型復雜的威脅和未知多變的風險。
可視化設計的過程中,我們還需要注意:1、整體考慮、顧全大局;2、細節的匹配、一致性;3、充滿美感,對稱和諧。
『柒』 大數據分析中,有哪些常見的大數據分析模型
來看看我們公司的大數據平台
我們的DataZ具備高性能實時和離線計算能力,豐富的統計、薯睜答分析、挖掘模型,為行業全流程、全周期的生產運營活動提供商業智能支持,並能可視化您的數據,高效挖掘數據深層次信息。可以應用於金融大數據風控。
系統架構圖System Architecture Diagram
大數據可視化Data Visualization
快速收集、篩選、分析、歸納、展現決策者所需要的信息,並根據新增的數據進行實時更新。可以實現決策支持、財務分析、預警分析、儀錶板、績效分析、經營分析等各類數據分析應用。
可視化設計平台
豐富的數據可視化組件庫
快速簡易的BI實施平台
支持多終端展現
『捌』 大數據可視化大屏圖表設計經驗,教給你!
自從跟大家分享第一篇 《大數據可視化大屏設計經驗,教給你!》 ,很多小夥伴都會問我一些相關的問題,看了小夥伴給我發的視覺稿,整體都還不錯,但是發現圖表的設計都有一些問題,大家可能對數據可視化的圖表設計經驗少一些,所以這篇文章就挖掘一下圖表的細節表現,分享我曾經遇到過的坑和對圖表設計的理解。
圖表設計
圖表設計概念
圖表設計是數據可視化的一個分支領域,是對數據進行二次加工,用統計圖表的方式進行呈現,也是數據可視化的核心表現,圖表設計既要保證圖表本身數據清晰准確、直觀易懂,又要在找准用戶關注的核心內容進行適當的突顯,幫助用戶通過數據進行決策。
下面分析三種常用的可視化圖表設計:
折線圖
折線圖常用於表示數據的變化和趨勢,坐標軸的不同對折線的變化幅度有很大的影響。
左圖坐標軸設定的太低,折線變化過於陡峭,圖中數值區間為(10-34)數據可視化的表現過於誇大了折線變化的趨勢。
右圖坐標軸的數值設定的太高,則折線變化過於平緩,無法清晰的表現折線的變化。
合理的折線圖應當占據圖表的三分之二的茄卜位置,圖表的X軸數值范圍應根據折線的數值增減變化而變化,這需要跟前端小哥哥小姐姐說明,做成動態計算。
折線圖的折線粗細要合理,過細的折線會降低數據表現,過粗的折線會損失折線中的大納孝數據波動細節,視覺上較難精準找到折線點的相應數值!我通常用兩個像素的線,看起來比較合適!
右圖刻度線顏色過重,影響圖表數據的表現,零基線跟圖表內的刻度線對比不夠明顯,整體很亂。零基線是強調起始位置的,一般要比圖表內的線顏色凸出一些。
條形圖/柱狀圖
理想很豐滿,現實很骨感。這個案例是我之前在工作中遇到的問題,數據進來後,被嚇到了,問題的原因是沒有跟前端小哥姐溝通好,他們把X軸寫死,導致出現這種問題,其實應該情況要把這些圖表的取值范圍寫成動態計算的。
例如,以現在數值范圍為例,數據的最高值為18,X軸最高數值應該為25,當數據又上升一定的高度後,X軸再上升到相應的數值高度,這滾稿樣避免了如右圖的問題。
坐標軸的標簽文字最好能水平排列, 當X軸標簽文字過多時,不建議傾斜排列、上下排列、換行排列 文字多了這樣的展示大大降低了閱讀性!下圖給出兩個解決方案,大大提高標簽文字的閱讀性!
解決方案
柱子之間過於分散就會失去數據之間的關聯性,過密就會變得數據之間沒有獨立性更不利於舒適閱讀。
當柱子為n時,柱子直接的距離建議與n相差不要太大,柱子靠邊的距離,最好是柱子之間的一半的距離,這樣視覺上最為舒適。
餅圖
左1圖,不建議在餅圖內與百分比數值一起顯示,餅圖本身的形狀和大小,文字過多時容易溢出,如果出現一個2%一個1%,就很難辨別圖形指向,這樣也就失去了數據可視化的意義,PPT通常有這樣的設計樣式,因為是個死圖。
左3圖,人的閱讀習慣是從左到右,從上到下,所以數據從大到小排列,更有助於閱讀,圖形也更具美感!
當餅圖為檢出率,或者一些重要信息檢測的重點關注數據,就不建議大小數據順時針排列,左1圖這種情況一般很少出現,因為關注的是檢出數值,展示未檢出數據實為雞肋,可能是極少情況的需要吧!
右圖對於類似檢出率的數據最為合適,直觀清晰,沒有無用數據干擾!
當餅圖的標簽維度過多時,就不適合把數據圍繞餅圖一周展示,會很亂,不易閱讀,解決方案如右圖!
圖表分類圖
分享一張圖表分類大全,保存起來,設計數據可視化產品,會有重要參考價值!
這張圖由設計師Abela對圖表的各種特徵進行了大致的概括總結。
『玖』 大數據的數據可視化是什麼樣的
DCV作為新一代數據中心可視化管理平台,讓管理人員可以清晰直觀地掌握IT運營中的有效信息,實現透明化與可視化管理,進而有效提升資產管理與監控管理的效率,實現立體式、可視化的新一代數據中心運行管理網頁鏈接
CampusBuilder (模模搭)提供了一個完整的、 網路化、 可視化的三維虛擬環境設計編輯平台,操作簡便,高效易用,用戶可使用滑鼠拖動的方式繪制各種結構及添加各種對象模型,即可立即創建數據中心機房的三維模型,還可以導入機房CAD圖紙輔助繪制,用戶可快速高效地設計數據中心機房,實現房間結構生成、裝飾調整、設備擺放和場景創建的工作,生成實際可用的數據中心三維虛擬模擬場景。
1、環境可視化
沙盤、展板、圖紙等傳統管理手段缺乏交互性,吸引力弱,信息傳遞效果不佳。Tarsier的環境可視化管理採用3D虛擬模擬技術,實現數據中心的園區、樓宇、機房等環境的可視化瀏覽,清晰完整地展現整個數據中心。同時配合監控可視化模塊,可以與安防、消防、樓宇自控等系統集成,為以上系統提供可視化管理手段,實現數據中心園區環境的跨系統集中管理,提高對數據中心園區的掌控能力和管理效率。
功能特性:
地理園區的虛擬模擬、建築外觀的虛擬模擬、建築內部結構的虛擬模擬。
2、
管線可視化
通過傳統的平面圖紙和跳線表方式難以看清密集管線的信息。Tarsier的管線可視化管理以3D可視化手段梳理數據中心日益密集的電氣管道與網路線路,讓數據中心運維人員從平面圖紙及跳線表格中解脫出來,更加直觀地掌握數據中心的管線分布及走線情況,從而快速排查及修復管線類故障,提高管線管理水平和故障解決效率。
功能特性:
園區管網3D可視化、建築電氣管路3D可視化、建築空調管路3D可視化、機房設備布線3D可視化。
3、資產可視化
數據中心內設備資產數量龐大,種類眾多,傳統的列表式管理方式效率低、實用性差。Tarsier的資產可視化管理模塊採用創新的三維互動技術實 現對數據中心資產配置信息的可視化管理,可與各類IT資產配置管理資料庫集成,也支持各種資產台賬表格直接導入,讓呆板的資產和配置數據變得鮮 活易用,大大提升了資產數據的實用性和易用性。
功能特性:
分級瀏覽可視化、設備上下架3D可視化、全設備虛擬模擬、快速模糊查詢、強大模型庫支持。
4、容量可視化
傳統管理軟體對機房容量情況缺乏有效的信息檢索手段,查詢困難。Tarsier的容量可視化管理模塊提供以機櫃為單位的數據中心容量管理,以樹形結構和3D可視化展現兩種方式全面表現機房和機櫃整體使用情況,對於空間容量、電力容量、承重容量等進行精確統計和展現,幫助運維人員高效的管理機房的容量資源,讓機房各類資源的負荷更加均衡,提升數據中心資源使用效率。
功能特性:
地理園區的虛擬模擬、建築外觀的虛擬模擬、建築內部結構的虛擬模擬。
5、監控可視化
監控可視化管理整合數據中心內各種專業監控工具(如動環監控、安防監控、網路監控、主機監控、應用監控等),把多種監控數據融為一體,建立統一監控窗口,解決監控數據孤島問題,實現監控工具、監控數據的價值最大化。同時,基於T3D圖形引擎強大的可視化能力,提供豐富的可視化手段,扭轉由於二維信息維度不足而導致的數據與報表泛濫狀況,切實提升監控管理水平。
功能特性:
門禁監控集成、視頻監控集成、消防監控集成、環境監控集成、配電監控集成、製冷監控集成、設備統一告警展示。
6、演示可視化
PPT介紹、動畫錄像等傳統匯報方式枯燥單調、真實感不強。Tarsier的演示可視化管理藉助T3D圖形引擎提供的虛擬線路和可視化展示等強大功能,滿足數據中心基礎設施多樣化的展示需求,如邏輯關系表達、模擬氣流、PPT整合、自動巡檢及演示路線定製等,用戶可以在平台中製作內容豐富、生動多彩、圖文並茂的數據中心介紹和演示內容,以耳目一新的形式展現數據中心的方方面面,有力提升數據中心整體形象,充分體現數據中心管理水平。
功能特性:
PPT演示匯報管理、日常工作視角管理、動畫線路管理。
『拾』 如何實現大數據可視化
1.考慮用戶
管理咨詢公司Aspirent視覺分析實踐主管Dan Gastineau表示,企業應使用顏色、形狀、大小和布局來顯示可視化的設計和使用。
Aspirent使用顏色來突出希望用戶關注的分析方面。而大小可有效說明數量,但過多使用不同大小來傳遞信息可能會導致混亂。這里應該有選擇地使用大小,即在咨詢團隊成員想要強調的地方。
2.講述連貫的故事
與你的受眾溝通,保持設計的簡單和專注性。顏色到圖表數量等細節可幫助確保儀錶板講述連貫的故事。MicroStrategy產品管理高級副總裁Saurabh
Abhyankar說:「儀錶板就像一本書,它需要考慮讀者的設計元素,而不僅僅是強制列出所有可訪問的數據。」儀錶板的設計將成為推動部署的因素。
3.迭代設計
應不斷從視覺分析用戶獲得反饋意見。隨著時間的推移,數據探索會引發新的想法和問題,而隨時間和部署推移提高數據相關性會使用戶更智能。
從你的受眾徵求並獲取反饋意見可改善體驗。谷歌雲端數據工作室首席產品經理Nick
Mihailovski表示,快速構建概念、快速獲取反饋意見並進行迭代可更快獲得更好的結果。另外,還可將調查和表格整合到精美的報告中,也可以幫助確保大數據的可視化結果確實有助於目標受眾。
4.個性化一切
應確保儀錶板向最終用戶顯示個性化信息,並確保其相關性。並且,還應確保可視化在設計上反映其所在的設備,並為最終用戶提供離線訪問,這將讓可視化走得更長遠。Mihailovski說,通過精心設計的互動式可視化來吸引觀眾以及傳播數據文化,這會使分析具有吸引力和富有樂趣。
5.從分析目標開始
應確保數據類型和分析目標可反映所選的可視化類型。Mihailovski稱:「人們通常會採用相反的方法,他們先看到整潔或模糊的可視化類型,然後試圖使其數據相匹配。」對於大數據項目的可視化,簡單的表格或條形圖有時可能是最有效的。