❶ 大數據技術是學什麼的就業方向
大數據技術是學數學專業、計算機專業的就業方向。
大數據技術里會用到很多學科學習的知識,並不是單一的專業可以學完大數據所需要掌握的技術,所以大數據屬於交叉學科:以統計學、數學、計算機為三大支撐性學科;生物、醫學、環境科學、經濟學、社會學、管理學為應用拓展性學科。
❷ 智能製造:工業製造中的大數據分析
搞清出工業大數據分析,第一步我們應該如何定義製造業的大數據?這里我和大家通過大數據的三個特性,來經一步了解大數據的特性。
1
關注#1 -工業大數據數據來源
工業大數據的主要來源有兩個,第一類數據來源與智能設備。普適計算有很大的空間,現代工人可以帶一個普適感應器等設備來參加生產和管理。所以工業數據源是280億左右大量設備之間的關聯,這個是我們未來需要去採納的數據源之一。
第二個數據來源於人類軌跡產生的數據,包括在現代工業製造鏈中,從采購,生產,物流與銷售市場的內部流程以及外部互聯網訊息等,都是此類大數據的戰場。通過行為軌跡數據與設備數據的結合,大數據可以幫助我們實現客戶的分析和挖掘,它的應用場景包括了實時核心,交易,服務,後台服務等。
2
關注#2 -數據的關系
數據必須要放到相應的環境中一起分析,這樣才能了解數據之間的關系,可以分析出問題的根本原因(root cause)。譬如,每一款新機型在交付給航空公司之前都會接受一系列殘酷的飛行測試。極端天氣測試就是多項嚴酷的測試之一。該測試的目的是為了確保飛機的發動機、材料和控制系統能在極端天氣條件下正常運行。
問題的處理關鍵在於找到產生問題的根源,而以知錯誤的消除,關鍵在於解決方案的可靠有效。一旦找到並確定了根本原因,同時產生了可接受的應急措施,就可把問題當成一個已知錯誤來處理。問題調查的過程一定需要收集所有可用,與事件相關的信息來確定並消除引起事件和問題的根本原因。數據採集與分析必須要事件/問題發生的環境數據結合。
3
關注#3 -數據的收益
對於數字化轉型的其他方面而言,大數據不僅要關注實際數據量的多少,而最重要的是關注在大數據的處理方法在特定的場合的應用,讓數據產生巨大的創新價值。如果離開了收益考慮或投資回報的設計,一味尋求大數據既無法落地也無法為企業創造價值。
工業大數據分析的定義
生產執行系統(MES)與飛機發動機 健康 管理系統如出一轍。我們可以從工廠的生產中,實時採集到海量的流程,變數,測量結果等數據。這些數據來源的原因都是因為在製造環境中,設備或資產連接後所產生的現象。然而基於大量數據集而生成的報表,或是基礎統計的分析並不足以稱之為製造業的大數據分析。
所以如果製造業大數據分析不僅僅意味著數據的量,作為一個行業,我們應該如何定義製造業的大數據分析?「大數據不僅僅是大量的數據」這句話裡麵包含了多重涵義。
當代大數據處理技術的價值在於技術進步,同時也是因為技術進步,使大數據成為商業中有價值的核心驅動因素。作為智能製造的三駕馬車之一,工業大數據分析已經被多數的製造企業所認知並接受。許多製造業企業認為自己在生產運營方面也累積了大量的數據,是時候可以用到大數據了。
數據類型的多樣性
大數據不僅僅是大量的數據的堆積。大數據的重要屬性之一,便是,人們設法收集,並弄清楚,不斷變化的數據類型。如果只是大量採集同一類型的數據的話,再大的數據量都不能稱之為大數據。
數據必須包括高度可變性和種類多樣性。製造工廠中存在無數的大數據應用,但並不包括簡單地分類和展示一連串的流程測量結果,這些工作基本的統計展現就可以完成。一些大數據資料庫或數據湖的構成部分數據類型也是文本信息、圖像數據、地理或地質信息和非結構信息,例如,通過社交媒體或其他協作平台獲得的數據類型。
製造業信息結構概括起來分為兩層,一個是管理層,一個是自動化層。從經營管理,生產執行與控制三個緯度來實現決策支持、管理、生產執行、過程式控制制以及設備的連接與感測。製造業中大數據分析是指利用通用的數據模型,將管理層與自動化層的結構性系統數據與非結構性數據結合,進而通過先進的分析工具發現新的洞見。
大數據分析對生產的意義
製造業的創新的核心就是要依託大量的前沿 科技 。先進的技術是創新的手段。在新技術的支持下,可以通過一體化的製造運作管理系統MOM將企業管理應用系統,例如ERP,MES等系統與工業自動化的相關系統整合為一體。
從兩化融合的角度來看,信息系統供應商要從企業的主信息系統提供商定位來做好規劃、標准、功能設計、實施策略的統一性工作。協助企業做好風險控制,降低投資,降低操作維護成本,實現企業信息系統全集成。
❸ 工業大數據包括哪些工業大數據應用在哪些方面
【導讀】眾所周知,第二次世界大戰也稱為工業革命,可見工業在生活中是多麼的重要,現在工業也已經趨於人工智慧化,不過還是處於前期的觀望試運行階段,今天我們就來了解一下大數據在工業方面的應用有哪些,一起來看看吧!
大數據在工業中的應用有哪些?
從需求角度來看,目前國內製造企業對大數據的需求較為明顯,但很多用戶仍處於觀望和試驗階段,不知道如何進行。因此,對於大數據服務提供商來說,有必要結合行業業務,尋找合適的應用場景。
工業大數據的應用有哪些?
互聯網給傳統製造業帶來了挑戰,而互聯網大數據可以為企業管理者和參與者提供一個新的視角,通過技術創新和開發,以及對數據的全面感知、收集、分析和共享,來審視製造業價值鏈。所帶來的巨大價值正在被傳統企業所認可。
然而,不同於目前互聯網大數據的火熱,工業大數據的應用對於企業來說有著很高的門檻。與互聯網不同,行業大數據與行業業務密切相關。因此,對企業的行業積累和對行業業務的深入了解都有很高的要求。此外,行業內的大數據分析比較准確,邏輯關系非常清晰。
工業大數據的應用有哪些?大數據在工業中的應用有哪些?通過大數據分析,企業可以使部門之間的數據更加協調,從而准確預測市場需求缺口。同時,通過更加靈活的工藝管理和更加自動化的生產設備裝配調度,實現智能化生產。然而,據我們所知,在中國從事大數據應用的公司並不多。然而,擁有自主知識產權和核心技術的企業並不多。要做好工業大數據的應用,需要有一套嚴謹的數據推理邏輯,以及平台和工具。目前,國內大數據應用企業還沒有足夠的能力滿足這一需求。
然而,仍有一些大型工業企業處於應用的前沿。以唐山鋼鐵集團為例,通過引進國際最先進的生產線,實現實時數據採集,與涵宇等企業合作,深入挖掘行業大數據價值,實時生產監控、生產調度、產品質量管理、能源控制等。此外,先進製造企業基於大數據在行業中的應用,將產品、機器、資源、人有機結合,推動基於大數據分析和應用的製造業智能化轉型。
綜上所述,在「互聯網+」時代,用戶需求具有實時性、小批量、碎片化、更新快等特點,對傳統製造業提出了挑戰。工業大數據有其鮮明的特點。隨著信息化和工業化的融合,產業大數據的應用為製造業轉型升級開辟了一條新途徑。深入探討工業大數據在製造過程中的應用場景和應用,將有利於更好地發揮其支撐作用。
以上就是小編今天給大家整理的關於「工業大數據包括哪些?工業大數據應用在哪些方面?」的相關內容,希望對大家有所幫助。總的來說,大數據的價值不可估量,未來發展前景也是非常可觀的,因此有興趣的小夥伴,盡早著手學習哦!
❹ 大數據的應用領域有哪些呢
隨著5G時代的到來,大數據應用得到迅速的發展,並且得到很多人的關注。大數據應用於各個行業,包括金融、汽車、餐飲、電信、能源、娛樂等在內的社會各行各業都已經融入了大數據的痕跡。
1. 製造業:利用工業大數據提升製造業水平,包括產品故障診斷與預測、分析工藝流程、改進生產工藝,優化生產過程能耗、工業供應鏈分析與優化、生產計劃與排程。
2.電商行業:電商行業是最早將大數據用於精準營銷的行業,它可以根據消費者的習慣提前生產物料和物流管理。隨著電子商務的越來越集中,大數據在行業中的數據量變得越大,並且種類非常多。
3.金融行業:大數據在金融行業的使用是非常廣泛的,主要使用在交易過程中。現在許多股權交易都是使用大數據演算法進行的。這些演算法能夠越來越多地考慮社交媒體和網站新聞,並且決定接下來的幾秒內是選擇購買還是出售。
4.互聯網行業:藉助於大數據技術分析用戶行為,進行商品推薦和針對性廣告投放。
5.能源行業:隨著智能電網的發展,電力公司可以掌握海量的用戶用電信息,利用大數據技術分析用戶用電模式,可以改進電網運行,合理設計電力需求響應系統,確保電網運行安全。
6.物流行業:利用大數據優化物流網路,提高物流效率,降低物流成本。
7.生物技術:基因技術是人類未來挑戰疾病的重要武器。科學家可以利用大數據技術的應用,這樣能夠加速他們自己的基因和其他動物基因的研究過程,並且還能成為人類未來克服疾病的重要武器之一。
❺ 工業製造大數據分析
工業製造大數據分析
大數據不僅僅是大量的數據的堆積。大數據的重要屬性之一,是人們設法收集並弄清楚不斷變化的數據類型。如果只是大量採集同一類型的數據,再大的數據量都不能稱之為大數據。
如何實現智能製造是大家都關心的問題。從哈佛商學院的邁克爾·波特到賓夕法尼亞大學沃頓商學院,有一個普遍的共識,即數字化轉型是智能製造實現的途徑。重要的是,這個共識也來自於眾多的世界級製造業企業與企業家們。
這一共識是基於無數技術趨勢的融合,例如,物聯網、賽博系統(CPS)、工業物聯網、移動技術、人工智慧、雲計算、虛擬/虛擬增強現實(VR/AR),以及大數據分析等。我們一定要保持清醒,不要簡單地認為有了這些技術,未來五年就是製造業的黃金時期。道理很簡單,這個新製造業文化的變革進程是相當復雜和艱難的,沒有行業、企業與用戶的融合推進,無法實現這次變革。數字化轉型不僅僅意味著企業簡單的數字化,而是把數字作為智能製造的核心驅動力,利用數據去整合產業鏈和價值鏈。
自工業革命以來,為了改進運營,製造商一直以來都在有意地採集並存儲數據。隨著時間的推移,數據在製造業分析的需求將越來越大。然而在過去的許多年間,利用數據的根本動因並沒有改變,數據的復雜性增強,數據轉化為情報的能力越來越大。
2012年高德納給出大數據定義,其中特別強調大數據是多樣化信息資產,不僅關注實際數據,更關注大數據處理方法。數據量大小本身並不是判斷大數據價值的核心指標,而數據的實時性和多元性對大數據的定義和價值更具直接的影響。
在討論工業大數據分析的時候,我注意到兩種不同的觀點:
第一種觀點認為,製造業向來都有大數據。幾十年來我們的企業一直在通過歷史記錄、MES、ERP、EAM等各種應用系統採集數據。在部分產業鏈環節,特別在市場營銷方面,大數據算是一個新的熱詞。
第二種觀點認為,從工業大數據角度看,製造業是一個尚未打開的市場或剛剛開啟的市場。存在大量不同類型的數據,但如今它們還未被應用到分析之中。
考慮到這些觀點,面對任何新的市場提法,包括名詞解釋、定義或分析框架,我們始終都應該保持適當的懷疑精神。這里我更多傾向於第二個觀點。我們的製造業的確有「大量數據」,但這並不是我們大多數人從市場上所理解的「大數據」涵義。在搞清楚工業大數據分析之前,我們應該如何定義製造業的大數據?這里可以通過大數據的三個特性,進一步了解大數據的特性。
數據來源
工業大數據的主要來源有兩個,第一是智能設備。普適計算有很大的空間,現代工人可以帶一個普適感應器等設備來參加生產和管理。所以工業數據源是280億左右大量設備之間的關聯,這個是我們未來需要去採集的數據源之一。
第二個數據來源於人類軌跡產生的數據,包括在現代工業製造鏈中,從采購、生產、物流與銷售內部流程以及外部互聯網信息等。通過行為軌跡數據與設備數據的結合,大數據可以幫助我們實現對客戶的分析和挖掘,它的應用場景包括了實時核心交易、服務、後台服務等。
數據關系
數據必須要放到相應的環境中分析,才能了解數據之間的關系。譬如,每一款新機型在交付給航空公司之前都會接受一系列殘酷的飛行測試。極端天氣測試就是測試之一。該測試的目的是為了確保飛機的發動機、材料和控制系統能在極端天氣條件下正常運行。
問題的處理關鍵在於找到可能產生問題的根源,消除已知錯誤,並確保解決方案的可靠有效。一旦找到並確定了根本原因,同時具備了可接受的應急措施,就可把問題當成一個已知錯誤來處理。問題調查的過程一定需要收集所有可用、與事件相關的信息,以確定並消除引起事件和問題的根本原因。數據採集與分析必須要事件/問題發生的環境數據結合。
數據價值
對於數字化轉型,大數據不僅要關注實際數據量的多少,最重要的是關注大數據的處理方法在特定場合的應用,讓數據產生巨大的創新價值。如果離開了收益考慮或投資回報(ROI)的設計,一味尋求大數據,則大數據分析既無法落地也無法為企業創造價值。
工業大數據分析的定義
發動機是飛機的心臟,也是關乎航空安全,生命安全的重中之重。為了實時監控發動機的狀況,現代民航大多安裝了飛機發動機健康管理系統。通過感測器、發射系統、信號接收系統、信號分析系統等方式採集到的數據,會經由飛機通信定址與報告系統,通過甚高頻或者衛星通信傳輸出來,這就是為何GE的發動機監控系統每天會獲取超過1PB數據的原因。
生產執行系統(MES)與飛機發動機健康管理系統如出一轍。我們可以從工廠的生產中,實時採集到海量的流程變數、測量結果等數據。基於大量數據集而生成的報表,或是基礎統計的分析並不足以稱為製造業的大數據分析。
數據類型的多樣性是工業大數據分析的重要屬性
大數據不僅僅是大量的數據的堆積。大數據的重要屬性之一,是人們設法收集並弄清楚不斷變化的數據類型。如果只是大量採集同一類型的數據,再大的數據量都不能稱之為大數據。
例如,生產環境中收集的時間序列模擬流程變數,數據的類型是單一的,很容易建立索引,即使存在千千萬萬,也不足以成為大數據。
數據必須包括高度可變性和種類多樣性。製造工廠中存在無數的大數據應用,但並不包括簡單地分類和展示一連串的流程測量結果,對這些工作,基本的統計展現就可以完成。一些大數據的資料庫或數據湖的構成部分也是文本信息、圖像數據、地理或地質信息和非結構信息,例如,通過社交媒體或其他協作平台獲得的數據類型。
製造業信息結構概括起來分為兩層,一個是管理層,一個是自動化層。從經營管理、生產執行與控制三個緯度來實現決策支持、管理、生產執行、過程式控制制以及設備的連接與感測。製造業中大數據分析是指利用通用的數據模型,將管理層與自動化層的結構性系統數據與非結構性數據結合,進而通過先進的分析工具發現新的洞見。
大數據分析對企業生產智能的意義
製造業創新的核心就是要依託大量的前沿科技。先進的技術是創新的手段。在新技術的支持下,可以通過一體化的製造運作管理系統MOM將企業管理應用系統,例如ERP、EAM等系統與工業自動化的相關系統整合為一體。在一體化製造運作管理的基礎上,我們可以實現集IT+MOM+MES+BI的一體化製造企業信息系統解決方案。
從兩化融合的角度來看,信息系統供應商要從企業的主信息系統提供商(MIV,MainInformation systems Vendor )定位來做好規劃、標准、功能設計、實施策略的統一性工作。協助企業做好風險控制,降低投資,降低操作維護成本,實現企業信息系統全集成。
特別需要注意的是,企業管理信息平台被普遍認為是製造企業管理的集成和儀錶板工具。許多供應商既大量投資其與ERP和自動化系統專有的集成,也投資開放式集成,還投資儀錶板和移動技術,希望隨時隨地為需要正確信息的決策者提供衡量標准。
製造業大數據分析的三種途徑
途徑一,利用開放技術與平台,將任何系統的數據移動到任何其他地方。
製造運作管理系統建設項目是系統工程,不僅僅是一套我們理解的傳統軟體系統,更多的是項目執行和服務的平台。這需要在項目管理與製造企業的策略「客戶服務」上,體現出製造企業的綜合管理能力與軟實力。
整個平台要從前期、工程實施以及售後服務這三個大的階段來架構。在前期規劃中,要重視標准、設計與實施,特別是與管理一體化的信息系統形成統一的對接。有了前期統一規劃的制定,工程實施的環節可把行業的經驗、集成能力、實施能力、軟體開發能力等融合。特別需要在組織上建立和形成超級團隊的制度。而持續服務、長期經營,將物聯網應用融入與「軟體+雲服務」的互聯網+戰略是後續服務的考慮重點。
在製造業大數據分析工作中,必須要加強通過物聯網科技的應用對後續持續服務的支撐作業。通過工業物聯網,實現的及時響應客戶、物聯網軟硬體系統定期巡檢、提供應急備件、提供易耗品、完善應用等功能來加強和鎖定與企業的供應鏈企業之間的長期合作。通過管理平台與物聯網數據,可以持續為客戶提供有價值的服務。
途徑二,投資工廠內外系統架構堆棧中能夠處理結構性和非結構性數據的數據模型。
新技術是創新革命的核心,其中很重要一個特點就是集成,即製造運作管理系統MOM與ERP、EAM、OA、商業分析的集成,包括一鍵登錄、界面集成、消息推送、工作流集成、主數據、應用集成匯流排與平台。
由於這些系統之間主數據全部統一,所有系統之間的數據交互依靠應用系統匯流排進行數據交互,整合了跨系統的業務流程、工作流、服務流程等之後即實現無縫集成和分析。對於企業管理者來說,一鍵登錄後,可以根據不同的崗位,個性化制定並且顯示與管理最相關的必要信息。這就是互聯網所帶給我們的分享思路。
途徑三,通過時間序列、圖像、視頻、機器學習、地理空間、預測模型、優化、模擬和統計過程式控制制等先進的分析工具與製造業企業內的大數據平台結合分析,從而洞見尚未顯現的情況。通過感測器、感應器、傳輸網路和應用軟體等物聯網數據,與管理應用軟體結合起來,將是今後製造業大數據分析的一大方向。
培養企業內部大數據分析專家
作為一個行業,我們需要有機地發展行業特定的大數據分析工具集,這樣才能讓現在的行業專家,從足夠的數據科學中實現數字化轉型。為了推動轉型,我們需要一大批優秀的企業利用這種方法,並向其他人或同行證明其價值。
❻ 工業大數據如何改變製造業
工業大數據如何改變製造業
工業大數據是互聯網、大數據和工業產業結合的產物,是中國製造2025、工業互聯網、工業4.0等國家戰略在企業的落腳點。對於製造業而言,了解行業大數據產生的背景,歸納行業大數據的分類和特點,從數據流推動本身價值創造的視角看待、重造工業價值流程,將具有很強的現實意義。
工業大數據如何改變製造業1、精度更高高成功率的製造是製造商的核心競爭力,在大數據出現之前,最好的方法是投資更好的設備,或對員工進行更好的培訓,但都無法太大的減少失敗率帶來的額外損失。然而,使用大數據,製造商可以使用計算機程序來優化流程,並更加巧妙地分析錯誤,從而防止這些錯誤產生。2、產量更高大多數製造商購買原材料並製造成品,他們銷售價格高過製造成本。在該系統中,製造商可以獲得更高的收益(每個成品使用的原材料越少),企業的經營就更有利可圖。新的大數據應用程序使製造商能夠更好地了解其整體產量,並有機會改進其運營方法,生產產品獲得更多的利潤。3、更好的預測製造商可以根據各種情況預先判斷需要生產多少產品,淡季的時候減少生產量,以及在倉庫中的庫存或出貨量。大數據有助於製造商更好地掌握這種供需關系的變化,因此可以在最有價值的生產條件下進行生產。4、預測和判斷蹤供應商的產品優劣製造商也可以使用大數據跟蹤供應商的優劣。例如,如果供應商提供劣質產品比例較高,通過大數據計算證明這些事情,就可以確定選擇新的供應商是否更加具有成本效益。5、更高的可追溯性大數據還使製造商的流程更加透明和可追溯。製造商的原材料在生產過程中以及生產階段有多少損失?給定批次產量多少,目前存儲在哪裡?運送需要多長時間,一旦需要運送,產品在哪裡?大數據可幫製造商跟蹤生產和交付的所有這些階段,並提供對可能效率低的領域的洞察和分析。6、高級自定義工作大數據顯示,通過在以往的努力中獲取數據並創造更好地利用原材料的方法,有可能創建高級定製工作。它也可以幫助製造商採取逆向工程,為熟悉的問題提出新的解決方案。7、投資回報率和運營效率大數據使製造商能夠更深入地了解其運營的真正效率,以及升級時產生的投資回報率(ROI),例如新設備或新的廣告策略。這對製造商意味著什麼?更高的盈利能力傳統製造業受到原材料成本和生產限制等因素的限制,而大數據的降臨,讓每個生產環節得更多的收益,極大的較少了成本,企業主能夠利用這些機會,賺取更多的收入。更大的競爭壓力隨著製造商採用大數據戰略,競爭對手感受到採取類似甚至更好的方法的壓力。越來越多的競爭迫使越來越多的傳統製造商升級內部系統,因此未來的技術發展將會越來越活躍。對新角色的需求精益的數據應用程序對外部人員或不熟悉數據分析的人員來說具有極大的挑戰性。新技術令人印象深刻,但他們要求有足夠知識和經驗的人來實施和管理它們。因此,製造商需要專業的人或者公司來協助完成這些變化。目前來看,越來越多的傳統製造業也隨著大數據的普及在不斷的進行產業升級,在競爭激烈的新時代,大數據給製造業帶來的改變是否會引領新的工業革命呢?這些相信各位看官都已經有了自己的答案
❼ 什麼是大數據分析 主要應用於哪些行業以製造業為例
大數據作為IT行業最流行的詞彙,圍繞大數據的商業價值的使用,隨之而來的數據倉庫、數據安全、數據分析、數據挖掘等,逐漸成為業界所追求的利潤焦點。隨著大數據時代的到來,大數據分析也應運而生。
1.大數據分析主要應用於哪些行業?
製造業: 利用工業大數據提升製造業水平,包括產品故障診斷與預測、分析工藝流程、改進生產工藝,優化生產過程能耗、工業供應鏈分析與優化、生產計劃與排程。
金融業: 大數據在高頻交易、社交情緒分析和信貸風險分析三大金融創新領域發揮重大作用。
汽車行業: 利用大數據和物聯網技術的無人駕駛汽車,在不遠的未來將走入我們的日常生活。
互聯網行業: 藉助於大數據技術分析用戶行為,進行商品推薦和針對性廣告投放。
餐飲行業: 利用大數據實現餐飲O2O模式,徹底改變傳統餐飲經營方式。
2.大數據分析師就業前景如何?
從20世紀90年代起,歐美國家開始大量培養數據分析師,直到現在,對數據分析師的需求仍然長盛不衰,而且還有擴展之勢。
根據美國勞工部預測,到2018年,數據分析師的需求量將增長20%。就算你不是數據分析師,但數據分析技能也是未來必不可少的工作技能之一。在數據分析行業發展成熟的國家,90%的市場決策和經營決策都是通過數據分析研究確定的。
3.關於大數據分析具體含義?
1、數據分析可以讓人們對數據產生更加優質的詮釋,而具有預知意義的分析可以讓分析員根據可視化分析和數據分析後的結果做出一些預測性的推斷。
2、大數據的分析與存儲和數據的管理是一些數據分析層面的最佳實踐。通過按部就班的流程和工具對數據進行分析可以保證一個預先定義好的高質量的分析結果。
3、不管使用者是數據分析領域中的專家,還是普通的用戶,可作為數據分析工具的始終只能是數據可視化。可視化可以直觀的展示數據,讓數據自己表達,讓客戶得到理想的結果。
什麼是大數據分析 主要應用於哪些行業?中琛魔方大數據平台指出大數據的價值,遠遠不止於此,大數據針對各行各業的滲透,大大推動了社會生產和生活,未來必將產生重大而深遠的影響。
我們可以看看億信華辰關於製造業的案例,
某電建集團主要從事國內外高速公路、市政、鐵路、軌道交通、橋梁、隧 道、城市綜合體開發、機場、港口、航道、地下綜合管廊以及生態水環境治理、海綿 城市建設、環境保護等項目投資、建設、運營等,為客戶提供投資融資、咨詢規劃、 設計建造、管理運營一攬子解決方案和集成式、一體化服務。成立以來,投資建設了 一大批體量大、強度高、領域寬的基礎設施及環保項目。
該公司的數據化建設,或將成為新型基礎設施建設的一個縮影。
項目背景 數字經濟時代,數據資源已經成為企業的核心資源和核心競爭力,各類企業信息化建設的重心正從 IT(信息技術) 向 DT(數據技術) 轉化,未來信息化建設的重心將是如何對組織內外部的數據進行深入、多維、實時的挖掘和分析,以滿足決策層的需求,推動信息化向更高層面進化,構築公司數字經濟時代的新優勢。目前,由於各級各部門大量的時間用在內外部各種繁雜的報表填報、匯總、統計和分析上,同時各級領導有對公司或者所轄單位的整體經營情況仍舊通過傳統的匯報、傳統的報表等了解,缺乏直觀和可視化系統支撐決策分析,主要存在問題如下:1、數據孤島嚴重各級各部門數據無法有效共享,跨部門跨層級的數據採集、共享和分析利用困難。2、數據採集方式落後數據採集仍舊採用傳統 EXCEL 方式進行,缺乏自下而上的數據採集、數據審核、數據報送、匯總分析的數據採集平台支撐,導致數據源分散、數據標准不統一、數據質量難以保證、數據採集效率低下。3、缺乏統一的決策經營指標體系和數據資源統一管理機制導致數據資源不能有效利用,價值無法充分發揮,無法為各級領導決策提供有效支持。
建設內容 為徹底解決以上問題,根據需求和數據資產類項目建設方式,系統實現按照「指標資源整理-應用場景展現設計--數據獲取-指標資源池-頁面實現-決策門戶 」的方式設計。即根據梳理的指標體系應用場景需要確定設計展現界面展現內容,根據展現內容確定指標體系,根據指標體系來並收集相關數據。
1、搭建智能填報系統 梳理指標體系,構建決策指標和主題指標,明確指標類型,指標數據來源,各指標輸出口徑:是否填報、填報維度與對象、填報周期等等。實現公司各級各部門自下而上決策數據填報、數據審核、 數據報送、匯總查詢、數據補錄等全過程網路化數據採集的需要。
2、構建經營決策指標體系構建公司經營決策指標體系。收集數據分析需求,分析匯總形成公司市場、經營、履約、運營、項目等生產經營關鍵指標和相關數據分析主題、指標,形成指標 資源池,實現決策數據的體系化、指標化和模型化。
3、決策指標體系建設根據某電建集團提供數據的內容和主要特徵,將決策指標體系的指標分為運營指標、經營指標、整體指標、市場指標、履約指標五類一級指標。每類一級指標又分別由若干個二級指標組成。
4、建設決策支持系統通過億信BI工具,基於報表採集的數據和相關信息系統積累的數據, 初步構建管理駕駛艙,滿足面向公司決策層和部門領導的數據分析,可視化圖表化輔助領導管理決策,並集成電建通APP應用,實現決策移動化。
5、搭建自助式BI通過豌豆BI工具搭建自助式 BI。為市場營銷、建設管理、資產運營、財務管理等部門有自助探索數據分析的業務人員提供自助式可視化分析工具。
價值體現 在合作中,億信華辰根據當前數據分析應用的訴求,幫助該電建集團建設決策整體指標、市場指標、履約指標、運營指標五個模塊,提供了從數據採集、數據匯總到指標口徑定義、指標建模、指標數據落地和數據可視化分析於一體的完整的解決方案。決策管理平台以業務分析平台為基礎,以更核心的指標、更直觀的展現方式實現數據的分析與監控,支撐領導層的管理決策。主要包括管理駕駛艙、項目看板專題、市場專題、經營專題、履約專題、運營專題等場景。使數據資源得到充分利用,最大程度的發揮數據價值。
❽ 大數據技術是學什麼的 就業方向有哪些
大數據技術是中國普通高等學校專科專業。預計2025年前大數據人才需求仍將保持30%—40%的增速,需求總量在2000萬人左右。
主要課程:大數據專業導論,面向對象程序設計(java),操作系統原理,Linux系統運維技術,雲數據中心基礎,資料庫原理及應用,Hadoop大數據平台集群部署與開發,Python程序設計,機器學習,大數據可視化技術,數據分析與應用等。
學生經過本專業學習可以考取「大數據分析應用」、「1+X大數據運維」等職業資格證書以提高專業技能,增強其就業競爭力。畢業生亦可升本繼續深造,對應本科專業如:數據科學與大數據技術、計算機科學與技術等。
專業緊貼市場需求,重點培育兩個崗位:大數據應用開發崗、大數據BI崗,其中大數據應用開發崗培養大數據離線分析、實時分析及數據可視化核心能力;大資料庫BI崗側重於與行業企業運行系統、業務模塊對接,掌握商業大數據管理。
大數據應用開發工程師、數據ETL技術員、數據可視化工程師、行業BI工程師、資料庫管理員(DBA)、資料庫程序開發員(Java開發);本專業畢業後半年的平均月薪5500元,最高可達1.5萬元。
本專業畢業生主要面向互聯網與軟體信息、商業服務、醫療、教育、金融、生產製造等行業的大數據應用崗位就業,主要工作崗位:大數據運維工程師、數據分析工程師、數據可視化工程師、大數據運營工程師、大數據技術銷售經理等。據統計,初次就業薪資待遇:5000-8000元左右。
❾ 大數據技術與應用是學什麼的好就業嗎
大數據是眾多學科與統計學交叉產生的一門新興學科。大數據牽扯的數據挖掘、雲計算一類的,所以是計算機一類的專業。分布比較廣,應用行業較多。零售業:主要集中在客戶營銷分析上,通過大數據技術可以對客戶的消費信息進行分析。獲知客戶的消費習慣、消費方向等,以便商場做好更合理商品、貨架擺放,規劃市場營銷方案、產品推薦手段等。
金融業:在金融行業里頭,數據即是生命,其信息系統中積累了大量客戶的交易數據。通過大數據可以對客戶的行為進行分析、防堵詐騙、金融風險分析等。
醫療業:通過大數據可以輔助分析疫情信息,對應做出相應的.防控措施。對人體健康的趨勢分析在電子病歷、醫學研發和臨床試驗中,可提高診斷准確性和葯物有效性等。
製造業:該行業對大數據的需求主要體現在產品研發與設計、供應鏈管理、生產、售後服務等。通過數據分析,在產品研發過程中免除掉一些不必要的步驟,並且及時改善產品的製造與組裝的流程。