『壹』 什麼是大數據時代
隨著雲時代的來臨,大數據(Big data)也吸引了越來越多的關注。《著雲台》的分析師團隊認為,大數據(Big data)通常用來形容一個公司創造的大量非結構化和半結構化數據,這些數據在下載到關系型資料庫用於分析時會花費過多時間和金錢。大數據分析常和雲計算聯繫到一起,因為實時的大型數據集分析需要像MapRece一樣的框架來向數十、數百或甚至數千的電腦分配工作。
簡言之,從各種各樣類型的數據中,快速獲得有價值信息的能力,就是大數據技術。明白這一點至關重要,也正是這一點促使該技術具備走向眾多企業的潛力。 大數據的4個「V」,或者說特點有四個層面:第一,數據體量巨大。從TB級別,躍升到PB級別;第二,數據類型繁多。前文提到的網路日誌、視頻、圖片、地理位置信息等等。第三,價值密度低。以視頻為例,連續不間斷監控過程中,可能有用的數據僅僅有一兩秒。第四,處理速度快。1秒定律。最後這一點也是和傳統的數據挖掘技術有著本質
的不同。業界將其歸納為4個「V」——Volume,Variety,Value,Velocity。 物聯網、雲計算、移動互聯網、車聯網、手機、平板電腦、PC以及遍布地球各個角落的各種各樣的感測器,無一不是數據來源或者承載的方式 著雲台
例子包括網路日誌,RFID,感測器網路,社會網路,社會數據(由於數據革命的社會),互聯網文本和文件;互聯網搜索索引;呼叫詳細記錄,天文學,大氣科學,基因組學,生物地球化學,生物,和其他復雜和/或跨學科的科研,軍事偵察,醫療記錄;攝影檔案館視頻檔案;和大規模的電子商務。
大的數據需要特殊的技術,以有效地處理大量的容忍經過時間內的數據。適用於大數據的技術,包括大規模並行處理(MPP)資料庫,數據挖掘電網,分布式文件系統,分布式資料庫,雲計算平台,互聯網,和可擴展的存儲系統。
一些但不是所有的MPP的關系資料庫的PB的數據存儲和管理的能力。隱含的負載,監控,備份和優化大型數據表的使用在RDBMS的。
斯隆數字巡天收集在其最初的幾個星期,比在天文學的歷史,早在2000年的整個數據收集更多的數據。自那時以來,它已經積累了140兆兆 位元組的信息。這個望遠鏡的繼任者,大天氣巡天望遠鏡,將於2016年在網上和將獲得的數據,每5天沃爾瑪處理超過100萬客戶的交易每隔一小時,反過來進口量資料庫估計超過2.5 PB的是相當於167次,在美國國會圖書館的書籍 。
FACEBOOK處理400億張照片,從它的用戶群。解碼最初的人類基因組花了10年來處理時,現在可以在一個星期內實現。
「大數據」的影響,增加了對信息管理專家的需求,甲骨文,IBM,微軟和SAP花了超過15億美元的在軟體智能數據管理和分析的專業公司。這個行業自身價值超過1000億美元,增長近10%,每年兩次,這大概是作為一個整體的軟體業務的快速。 大數據已經出現,因為我們生活在一個社會中有更多的東西。有46億全球行動電話用戶有1億美元和20億人訪問互聯網。
基本上,人們比以往任何時候都與數據或信息交互。 1990年至2005年,全球超過1億人進入中產階級,這意味著越來越多的人,誰收益的這筆錢將成為反過來導致更多的識字信息的增長。思科公司預計,到2013年,在互聯網上流動的交通量將達到每年667艾位元組。
最早提出「大數據」時代已經到來的機構是全球知名咨詢公司麥肯錫。麥肯錫在研究報告中指出,數據已經滲透到每一個行業和業務職能領域,逐漸成為重要的生產因素;而人們對於海量數據的運用將預示著新一波生產率增長和消費者盈餘浪潮的到來。
「麥肯錫的報告發布後,大數據迅速成為了計算機行業爭相傳誦的熱門概念,也引起了金融界的高度關注。」隨著互聯網技術的不斷發展,數據本身是資產,這一點在業界已經形成共識。「如果說雲計算為數據資產提供了保管、訪問的場所和渠道,那麼如何盤活數據資產,使其為國家治理、企業決策乃至個人生活服務,則是大數據的核心議題,也是雲計算內在的靈魂和必然的升級方向。」
事實上,全球互聯網巨頭都已意識到了「大數據」時代,數據的重要意義。包括EMC、惠普(微博)、IBM、微軟(微博)在內的全球IT 巨頭紛紛通過收購「大數據」相關廠商來實現技術整合,亦可見其對「大數據」的重視。
「大數據」作為一個較新的概念,目前尚未直接以專有名詞被我國政府提出來給予政策支持。不過,在12月8日工信部發布的物聯網「十二五」規劃上,把信息處理技術作為4項關鍵技術創新工程之一被提出來,其中包括了海量數據存儲、數據挖掘、圖像視頻智能分析,這都是大數據的重要組成部分。而另外3項關鍵技術創新工程,包括信息感知技術、信息傳輸技術、信息安全技術,也都與「大數據」密切相關。
『貳』 什麼是大數據時代
大數據時代
(巨量資料(IT行業術語))
編輯
最早提出「大數據」時代到來的是全球知名咨詢公司麥肯錫,麥肯錫稱:「數據,已經滲透到當今每一個行業和業務職能領域,成為重要的生產因素。人們對於海量數據的挖掘和運用,預示著新一波生產率增長和消費者盈餘浪潮的到來。」 「大數據」在物理學、生物學、環境生態學等領域以及軍事、金融、通訊等行業存在已有時日,卻因為近年來互聯網和信息行業的發展而引起人們關注。
中文名
大數據時代
外文名
Big data
提出者
麥肯錫
類 屬
科技名詞
目錄
1 產生背景
2 影響
▪ 大數據
▪ 大數據的精髓
▪ 數據價值
▪ 可視化
3 特徵
4 案例分析
5 產業崛起
6 提供依據
7 應對措施
產生背景
編輯
進入2012年,大數據(big data)一詞越來越多地被提及,人們用它來描述和定義信息爆炸時代產生的海量數
大數據時代來臨
據,並命名與之相關的技術發展與創新。它已經上過《紐約時報》《華爾街日報》的專欄封面,進入美國白宮官網的新聞,現身在國內一些互聯網主題的講座沙龍中,甚至被嗅覺靈敏的國金證券、國泰君安、銀河證券等寫進了投資推薦報告。[1]
數據正在迅速膨脹並變大,它決定著企業的未來發展,雖然很多企業可能並沒有意識到數據爆炸性增長帶來問題的隱患,但是隨著時間的推移,人們將越來越多的意識到數據對企業的重要性。
正如《紐約時報》2012年2月的一篇專欄中所稱,「大數據」時代已經降臨,在商業、經濟及其他領域中,決策將日益基於數據和分析而作出,而並非基於經驗和直覺。
哈佛大學社會學教授加里·金說:「這是一場革命,龐大的數據資源使得各個領域開始了量化進程,無論學術界、商界還是政府,所有領域都將開始這種進程。」[2]
影響
編輯
大數據
現在的社會是一個高速發展的社會,科技發達,信息流通,人們之間的交流越來越密切,生活也越來越方便,大數據就是這個高科技時代的產物。[3]
隨著雲時代的來臨,大數據(Big data)也吸引了越來越多的關注。大數據(Big data)通常用來形容一個公司創造的大量非結構化和半結構化數據,這些數據在下載到關系型資料庫用於分析時會花費過多時間和金錢。大數據分析常和雲計算聯繫到一起,因為實時的大型數據集分析需要像MapRece一樣的框架來向數十、數百或甚至數千的電腦分配工作。[2]
在現今的社會,大數據的應用越來越彰顯他的優勢,它佔領的領域也越來越大,電子商務、O2O、物流配送等,各種利用大數據進行發展的領域正在協助企業不斷地發展新業務,創新運營模式。有了大數據這個概念,對於消費者行為的判斷,產品銷售量的預測,精確的營銷范圍以及存貨的補給已經得到全面的改善與優化。[4]
「大數據」在互聯網行業指的是這樣一種現象:互聯網公司在日常運營中生成、累積的用戶網路行為數據。這些數據的規模是如此龐大,以至於不能用G或T來衡量。
大數據到底有多大?一組名為「互聯網上一天」的數據告訴我們,一天之中,互聯網產生的全部內容可以刻滿1.68億張DVD;發出的郵件有2940億封之多(相當於美國兩年的紙質信件數量);發出的社區帖子達200萬個(相當於《時代》雜志770年的文字量);賣出的手機為37.8萬台,高於全球每天出生的嬰兒數量37.1萬……[1]
截止到2012年,數據量已經從TB(1024GB=1TB)級別躍升到PB(1024TB=1PB)、EB(1024PB=1EB)乃至ZB(1024EB=1ZB)級別。國際數據公司(IDC)的研究結果表明,2008年全球產生的數據量為0.49ZB,2009年的數據量為0.8ZB,2010年增長為1.2ZB,2011年的數量更是高達1.82ZB,相當於全球每人產生200GB以上的數據。而到2012年為止,人類生產的所有印刷材料的數據量是200PB,全人類歷史上說過的所有話的數據量大約是5EB。IBM的研究稱,整個人類文明所獲得的全部數據中,有90%是過去兩年內產生的。而到了2020年,全世界所產生的數據規模將達到今天的44倍。[5] 每一天,全世界會上傳超過5億張圖片,每分鍾就有20小時時長的視頻被分享。然而,即使是人們每天創造的全部信息——包括語音通話、電子郵件和信息在內的各種通信,以及上傳的全部圖片、視頻與音樂,其信息量也無法匹及每一天所創造出的關於人們自身的數字信息量。
這樣的趨勢會持續下去。我們現在還處於所謂「物聯網」的最初級階段,而隨著技術成熟,我們的設備、交通工具和迅速發展的「可穿戴」科技將能互相連接與溝通。科技的進步已經使創造、捕捉和管理信息的成本降至2005年的六分之一,而從2005年起,用在硬體、軟體、人才及服務之上的商業投資也增長了整整50%,達到了4000億美元。[5]
大數據的精髓
大數據帶給我們的三個顛覆性觀念轉變:是全部數據,而不是隨機采樣;是大體方向,而不是精確制導;是相關關系,而不是因果關系。[6]
A.不是隨機樣本,而是全體數據:在大數據時代,我們可以分析更多的數據,有時候甚至可以處理和某個特別現象相關的所有數據,而不再依賴於隨機采樣(隨機采樣,以前我們通常把這看成是理所應當的限制,但高性能的數字技術讓我們意識到,這其實是一種人為限制);
B.不是精確性,而是混雜性:研究數據如此之多,以至於我們不再熱衷於追求精確度;之前需要分析的數據很少,所以我們必須盡可能精確地量化我們的記錄,隨著規模的擴大,對精確度的痴迷將減弱;擁有了大數據,我們不再需要對一個現象刨根問底,只要掌握了大體的發展方向即可,適當忽略微觀層面上的精確度,會讓我們在宏觀層面擁有更好的洞察力;
C.不是因果關系,而是相關關系:我們不再熱衷於找因果關系,尋找因果關系是人類長久以來的習慣,在大數據時代,我們無須再緊盯事物之間的因果關系,而應該尋找事物之間的相關關系;相關關系也許不能准確地告訴我們某件事情為何會發生,但是它會提醒我們這件事情正在發生。
數據價值
大數據時代,什麼最貴?
十年前,葛大爺曾說過,「21世紀什麼最貴?」——「人才」,深以為然。只是,十年後的今天,大數據時代也帶來了身價不斷翻番的各種數據。由於急速拓展的網路帶寬以及各種穿戴設備所帶來的大量數據,數據的增長從未停歇,甚至呈井噴式增長。[7]
一分鍾內,微博推特上新發的數據量超過10萬;社交網路「臉譜」的瀏覽量超過600萬……
這些龐大數字,意味著什麼?
它意味著,一種全新的致富手段也許就擺在面前,它的價值堪比石油和黃金。
事實上,當你仍然在把微博等社交平台當作抒情或者發議論的工具時,華爾街的斂財高手們卻正在挖掘這些互聯網的「數據財富」,先人一步用其預判市場走勢,而且取得了不俗的收益。
讓我們一起來看看——他們是怎麼做的。
這些數據都能幹啥。具體有六大價值:
●1、華爾街根據民眾情緒拋售股票;
●2、對沖基金依據購物網站的顧客評論,分析企業產品銷售狀況;
●3、銀行根據求職網站的崗位數量,推斷就業率;
●4、投資機構搜集並分析上市企業聲明,從中尋找破產的蛛絲馬跡;
●5、美國疾病控制和預防中心依據網民搜索,分析全球范圍內流感等病疫的傳播狀況;
●6、美國總統奧巴馬的競選團隊依據選民的微博,實時分析選民對總統競選人的喜好。[1]
可視化
「數據是新的石油。」亞馬遜前任首席科學家Andreas Weigend說。Instagram以10億美元出售之時,成立於1881年的世界最大影像產品及服務商柯達正申請破產。
大數據是如此重要,以至於其獲取、儲存、搜索、共享、分析,乃至可視化地呈現,都成為了當前重要的研究課題[1] 。
「當時時變幻的、海量的數據出現在眼前,是怎樣一幅壯觀的景象?在後台注視著這一切,會不會有接近上帝俯視人間星火的感覺?」
這個問題我曾請教過劉建國,中國著名的搜索引擎專家。劉曾主持開發過國內第一個大規模中英文搜索引擎系統「天網」。
要知道,劉建國曾任至網路的首席技術官,在這樣一家每天需應對網民各種搜索請求1.7億次(2013年約為8.77億次)的網站中,如果只是在後台靜靜端坐,可能片刻都不能安心吧。網路果然在提供搜索服務之外,逐漸增添了網路指數,後又建立了基於網民搜索數據的重要產品「貼吧」及網路統計產品等。
劉建國沒有直接回答這個問題,他想了很久,似乎陷入了回憶,嘴角的笑容含著詭秘。
倒是有公司已經在大數據中有接近上帝俯視的感覺,美國洛杉磯就有企業宣稱,他們將全球夜景的歷史數據建立模型,在過濾掉波動之後,做出了投資房地產和消費的研究報告。
在數據可視化呈現方面,我最新接收到的故事是,一位在美國思科物流部門工作的朋友,很聰明的印度裔小夥子,被Facebook高價挖角,進入其數據研究小組。他後來驚訝地發現,裡面全是來自物流企業、供應鏈方面的技術人員和專家,「Facebook想知道,能不能用物流的角度和流程的方式,分析用戶的路徑和行為。」
特徵
編輯
數據量大(Volume)
第一個特徵是數據量大。大數據的起始計量單位至少是P(1000個T)、E(100萬個T)或Z(10億個T)。
類型繁多(Variety)
第二個特徵是數據類型繁多。包括網路日誌、音頻、視頻、圖片、地理位置信息等等,多類型的數據對數據的處理能力提出了更高的要求。
價值密度低(Value)
第三個特徵是數據價值密度相對較低。如隨著物聯網的廣泛應用,信息感知無處不在,信息海量,但價值密度較低,如何通過強大的機器演算法更迅速地完成數據的價值「提純」,是大數據時代亟待解決的難題。
速度快、時效高(Velocity)
第四個特徵是處理速度快,時效性要求高。這是大數據區分於傳統數據挖掘最顯著的特徵。
既有的技術架構和路線,已經無法高效處理如此海量的數據,而對於相關組織來說,如果投入巨大採集的信息無法通過及時處理反饋有效信息,那將是得不償失的。可以說,大數據時代對人類的數據駕馭能力提出了新的挑戰,也為人們獲得更為深刻、全面的洞察能力提供了前所未有的空間與潛力。[2]
案例分析
編輯
個案一
你開心他就買你焦慮他就拋[2]
華爾街「德溫特資本市場」公司首席執行官保羅·霍廷每天的工作之一,就是利用電腦程序分析全球3.4億微博賬戶的留言,進而判斷民眾情緒,再以「1」到「50」進行打分。根據打分結果,霍廷再決定如何處理手中數以百萬美元計的股票。
霍廷的判斷原則很簡單:如果所有人似乎都高興,那就買入;如果大家的焦慮情緒上升,那就拋售。
這一招收效顯著——當年第一季度,霍廷的公司獲得了7%的收益率。
個案二
國際商用機器公司(IBM)估測,這些「數據」值錢的地方主要在於時效。對於片刻便能定輸贏的華爾街,這一時效至關重要。曾經,華爾街2%的企業搜集微博等平台的「非正式」數據;如今,接近半數企業採用了這種手段。
●「社會流動」創業公司在「大數據」行業生機勃勃,和微博推特是合作夥伴。它分析數據,告訴廣告商什麼是正確的時間,誰是正確的用戶,什麼是應該發表的正確內容,備受廣告商熱愛。
●通過喬希·詹姆斯的Omniture(著名的網頁流量分析工具)公司,你可以知道有多少人訪問你的網站,以及他們呆了多長時間——這些數據對於任何企業來說都至關重要。詹姆斯把公司賣掉,進賬18億美元。
●微軟專家吉拉德喜歡把這些「大數據」結果可視化:他把客戶請到辦公室,將包含這些公司的數據圖譜展現出來——有些是普通的時間軸,有些像蒲公英,有些則是鋪滿整個畫面的泡泡,泡泡中顯示這些客戶的粉絲正在談論什麼話題。
●「臉譜」數據分析師傑弗遜的工作就是搭建數據分析模型,弄清楚用戶點擊廣告的動機和方式。
處理和分析工具
用於分析大數據的工具主要有開源與商用兩個生態圈。
開源大數據生態圈:
1、Hadoop HDFS、HadoopMapRece, HBase、Hive 漸次誕生,早期Hadoop生態圈逐步形成。
2、. Hypertable是另類。它存在於Hadoop生態圈之外,但也曾經有一些用戶。
3、NoSQL,membase、MongoDb
商用大數據生態圈:
1、一體機資料庫/數據倉庫:IBM PureData(Netezza), OracleExadata, SAP Hana等等。
2、數據倉庫:TeradataAsterData, EMC GreenPlum, HPVertica 等等。
3、數據集市:QlikView、 Tableau 、 以及國內的Yonghong Data Mart 。
產業崛起
編輯
越來越多的政府、企業等機構開始意識到數據正在成為組織最重要的資產,數據分析能力正在成為組織的核心競爭力。具體有以下三大案例:
1、2012年3月22日,奧巴馬政府宣布投資2億美元拉動大數據相關產業發展,將「大數據戰略」上升為國家意志。奧巴馬政府將數據定義為「未來的新石油」,並表示一個國家擁有數據的規模、活性及解釋運用的能力將成為綜合國力的重要組成部分,未來,對數據的佔有和控制甚至將成為陸權、海權、空權之外的另一種國家核心資產。
2、聯合國也在2012年發布了大數據政務白皮書,指出大數據對於聯合國和各國政府來說是一個歷史性的機遇,人們如今可以使用極為豐富的數據資源,來對社會經濟進行前所未有的實時分析,幫助政府更好地響應社會和經濟運行。
3、而最為積極的還是眾多的IT企業。麥肯錫在一份名為《大數據,是下一輪創新、競爭和生產力的前沿》的專題研究報告中提出,「對於企業來說,海量數據的運用將成為未來競爭和增長的基礎」,該報告在業界引起廣泛反響。
IBM則提出,上一個十年,他們拋棄了PC,成功轉向了軟體和服務,而這次將遠離服務與咨詢,更多地專注於因大數據分析軟體而帶來的全新業務增長點。IBM執行總裁羅睿蘭認為,「數據將成為一切行業當中決定勝負的根本因素,最終數據將成為人類至關重要的自然資源。」
在國內,網路已經致力於開發自己的大數據處理和存儲系統;騰訊也提出2013年已經到了數據化運營的黃金時期,如何整合這些數據成為未來的關鍵任務。
事實上,自2009年以來,有關「大數據」 主題的並購案層出不窮,且並購數量和規模呈逐步上升的態勢。其中,Oracle對Sun、惠普對Autonomy兩大並購案總金額高達176億美元,大數據的產業價值由此可見一斑。[1-2]
提供依據
編輯
大數據是信息通信技術發展積累至今,按照自身技術發展邏輯,從提高生產效率向更高級智能階段的自然生長。無處不在的信息感知和採集終端為我們採集了海量的數據,而以雲計算為代表的計算技術的不斷進步,為我們提供了強大的計算能力,這就圍繞個人以及組織的行為構建起了一個與物質世界相平行的數字世界[1-2] 。
大數據雖然孕育於信息通信技術的日漸普遍和成熟,但它對社會經濟生活產生的影響絕不限於技術層面,更本質上,它是為我們看待世界提供了一種全新的方法,即決策行為將日益基於數據分析做出,而不是像過去更多憑借經驗和直覺做出。
事實上,大數據的影響並不僅僅限於信息通信產業,而是正在「吞噬」和重構很多傳統行業,廣泛運用數據分析手段管理和優化運營的公司其實質都是一個數據公司。麥當勞、肯德基以及蘋果公司等旗艦專賣店的位置都是建立在數據分析基礎之上的精準選址。而在零售業中,數據分析的技術與手段更是得到廣泛的應用,傳統企業如沃爾瑪通過數據挖掘重塑並優化供應鏈,新崛起的電商如卓越亞馬遜、淘寶等則通過對海量數據的掌握和分析,為用戶提供更加專業化和個性化的服務。
最讓人吃驚的例子是,社交媒體監測平台DataSift監測了Facebook(臉譜) IPO當天Twitter上的情感傾向與Facebook股價波動的關聯。在Facebook開盤前Twitter上的情感逐漸轉向負面,25分鍾之後Facebook的股價便開始下跌。而當Twitter上的情感轉向正面時,Facebook股價在8分鍾之後也開始了回彈。最終當股市接近收盤、Twitter上的情感轉向負面時,10分鍾後Facebook的股價又開始下跌。最終的結論是:Twitter上每一次情感傾向的轉向都會影響Facebook股價的波動。
這僅僅只是基於社交網路產生的大數據「預見未來」的眾多案例之一,此外還有谷歌通過網民搜索行為預測流感爆發等例子。不僅在商業方面,大數據在社會建設方面的作為同樣令人驚嘆,智能電網、智慧交通、智慧醫療、智慧環保、智慧城市等的蓬勃興起,都與大數據技術與應用的發展息息相關。
「大數據」可能帶來的巨大價值正漸漸被人們認可,它通過技術的創新與發展,以及數據的全面感知、收集、分析、共享,為人們提供了一種全新的看待世界的方法。更多地基於事實與數據做出決策,這樣的思維方式,可以預見,將推動一些習慣於靠「差不多」運行的社會發生巨大變革。
應對措施
編輯
一個好的企業應該未雨綢繆,從現在開始就應該著手准備,為企業的後期的數據收集和分析做好准備,企業可以從下面六個方面著手,這樣當面臨鋪天蓋地的大數據的時候,以確保企業能夠快速發展,具體為下面六點。
目標
幾乎每個組織都可能有源源不斷的數據需要收集,無論是社交網路還是車間感測器設備,而且每個組織都有大量的數據需要處理,IT人員需要了解自己企業運營過程中都產生了什麼數據,以自己的數據為基準,確定數據的范圍。
准則
雖然每個企業都會產生大量數據,而且互不相同、多種多樣的,這就需要企業IT人員在現在開始收集確認什麼數據是企業業務需要的,找到最能反映企業業務情況的數據。
重新評估
大數據需要在伺服器和存儲設施中進行收集,並且大多數的企業信息管理體系結構將會發生重要大變化,IT經理則需要准備擴大他們的系統,以解決數據的不斷擴大,IT經理要了解公司現有IT設施的情況,以組建處理大數據的設施為導向,避免一些不必要的設備的購買。
重視大數據技術
大數據是最近幾年才興起的詞語,而並不是所有的IT人員對大數據都非常了解,例如如今的Hadoop,MapRece,NoSQL等技術都是2013年剛興起的技術,企業IT人員要多關注這方面的技術和工具,以確保將來能夠面對大數據的時候做出正確的決定。
培訓企業的員工
大多數企業最缺乏的是人才,而當大數據到臨的時候,企業將會缺少這方面的採集收集分析方面的人才,對於一些公司,特別是那種人比較少的公司,工作人員面臨大數據將是一種挑戰,企業要在平時的時候多對員工進行這方面的培訓,以確保在大數據到來時,員工也能適應相關的工作。
培養三種能力
Teradata大中華區首席執行官辛兒倫對新浪科技表示,隨著大數據時代的到來,企業應該在內部培養三種能力。第一,整合企業數據的能力;第二,探索數據背後價值和制定精確行動綱領的能力;第三,進行精確快速實時行動的能力。
做到上面的幾點,當大數據時代來臨的時候,面臨大量數據將不是束手無策,而是成竹在胸,而從數據中得到的好處也將促進企業快速發展。
望採納,謝謝
『叄』 什麼是大數據時代
大數據時代是數據,已經滲透到當今每一個行業和業務職能領域,成為重要的生產因素。人們對於海量數據的挖掘和運用,預示著新一波生產率增長和消費者盈餘浪潮的到來。
「大數據」在物理學、生物學、環境生態學等領域以及軍事、金融、通訊等行業存在,卻因為來自互聯網和信息行業的發展而引起人們關注。
進入2012年,大數據(big data)一詞越來越多地被提及,人們用它來描述和定義信息爆炸時代產生的海量數大數據時代來臨據,並命名與之相關的技術發展與創新。
大數據時代已經上過《紐約時報》《華爾街日報》的專欄封面,進入美國白宮官網的新聞,現身在國內一些互聯網主題的講座沙龍中,甚至被嗅覺靈敏的國金證券、國泰君安、銀河證券等寫進了投資推薦報告。
(3)大數據時代的到來的時間擴展閱讀:
大數據時代特徵:
1、數據量大(Volume)
第一個特徵是數據量大。大數據的起始計量單位至少是P(1000個T)、E(100萬個T)或Z(10億個T)。
2、類型繁多(Variety)
第二個特徵是數據類型繁多。包括網路日誌、音頻、視頻、圖片、地理位置信息等等,多類型的數據對數據的處理能力提出了更高的要求。
3、價值密度低(Value)
第三個特徵是數據價值密度相對較低。如隨著物聯網的廣泛應用,信息感知無處不在,信息海量,但價值密度較低,如何通過強大的機器演算法更迅速地完成數據的價值「提純」,是大數據時代亟待解決的難題。
4、速度快、時效高(Velocity)
第四個特徵是處理速度快,時效性要求高。這是大數據區分於傳統數據挖掘最顯著的特徵。
『肆』 大數據的歷史
李娜再度奪得大滿貫,超越了張德培的華人大滿貫紀錄,非舉國體制下的奇跡造就了舉國的愉悅。
在總結李娜成功因素的時候,也再次看到了這樣的言論:是大數據起到了重要的作用。但這次李娜奪冠,最靠譜的解釋就是李娜在卡洛斯的幫助下大大提升了心理層面的戰鬥力。
在技術層面領先的前提下,李娜在整場比賽中克服了節奏問題,她具備了一顆冠軍的心臟。2012年9月6日,代表亞洲網球至高水平的中國選手李娜在美國迎戰名將小威廉姆斯。
當時,IBM公司在綜合了美網過去8年的全部比賽數據之後,為參賽球員制定了「Keys to the march」的比賽制勝策略。李娜一方獲得贏球的關鍵包括3個指標:1.一發得分率超過69%;2.4-9拍相持中得分利率要超過48%:3.發球局30-30或40-40時得分率要超過67%。
比賽結果是,李娜潰敗。比賽結束後,IBM高調地宣布李娜僅僅完成了三項制勝策略中的項,而小威廉姆斯則完成了自己三項制勝策略中的兩項。
於是,很多人就順著IBM的思路問,李娜為什麼不照著BM的策略去打球?其實,當當事人的主觀願望不積極的時候,大數據對他們來說不過是噪音而已。同樣,數據也會因為主觀意願具有欺騙性。
我們很多時候都會被誤導,認為大數據的作用是讓歷史提示未來。其實不然。
在網球這樣的領域里,歷史數據甚至常常會成為陷阱。有意思的是,在另一場女子網球比賽中,一位球員做到了IBM為其制定的三項指標中的兩個,她卻失敗了。
而勝利的一方,只完成了一個指標。
可按照時間點劃分大數據的發展歷程。
大數據時代發展的具體歷程如下:2005年Hadoop項目誕生。 Hadoop其最初只是雅虎公司用來解決網頁搜索問題的一個項目,後來因其技術的高效性,被Apache Software Foundation公司引入並成為開源應用。
Hadoop本身不是一個產品,而是由多個軟體產品組成的一個生態系統,這些軟體產品共同實現全面功能和靈活的大數據分析。從技術上看,Hadoop由兩項關鍵服務構成:採用Hadoop分布式文件系統(HDFS)的可靠數據存儲服務,以及利用一種叫做MapRece技術的高性能並行數據處理服務。
這兩項服務的共同目標是,提供一個使對結構化和復雜數據的快速、可靠分析變為現實的基礎。2008年末,「大數據」得到部分美國知名計算機科學研究人員的認可,業界組織計算社區聯盟 (puting munity Consortium),發表了一份有影響力的白皮書《大數據計算:在商務、科學和社會領域創建革命性突破》。
它使人們的思維不僅局限於數據處理的機器,並提出:大數據真正重要的是新用途和新見解,而非數據本身。此組織可以說是最早提出大數據概念的機構。
2009年印度 *** 建立了用於身份識別管理的生物識別資料庫,聯合國全球脈沖項目已研究了對如何利用手機和社交網站的數據源來分析預測從螺旋價格到疾病爆發之類的問題。同年,美國 *** 通過啟動://Data.gov網站的方式進一步開放了數據的大門,這個網站向公眾提供各種各樣的 *** 數據。
該網站的超過4.45萬量數據集被用於保證一些網站和智能手機應用程序來跟蹤從航班到產品召回再到特定區域內失業率的信息,這一行動激發了從肯亞到英國范圍內的 *** 們相繼推出類似舉措。2009年,歐洲一些領先的研究型圖書館和科技信息研究機構建立了夥伴關系致力於改善在互聯網上獲取科學數據的簡易性。
2010年2月,肯尼斯庫克爾在《經濟學人》上發表了長達14頁的大數據專題報告《數據,無所不在的數據》。庫克爾在報告中提到:「世界上有著無法想像的巨量數字信息,並以極快的速度增長。
從經濟界到科學界,從 *** 部門到藝術領域,很多方面都已經感受到了這種巨量信息的影響。科學家和計算機工程師已經為這個現象創造了一個新詞彙:「大數據」。
庫克爾也因此成為最早洞見大數據時代趨勢的數據科學家之一。2011年2月,IBM的沃森超級計算機每秒可掃描並分析4TB(約2億頁文字量)的數據量,並在美國著名智力競賽電視節目《危險邊緣》「Jeopardy」上擊敗兩名人類選手而奪冠。
後來 *** 認為這一刻為一個「大數據計算的勝利。」 相繼在同年5月,全球知名咨詢公司麥肯錫(McKinsey&pany)肯錫全球研究院(MGI)發布了一份報告——《大數據:創新、競爭和生產力的下一個新領域》,大數據開始備受關注,這也是專業機構第一次全方面的介紹和展望大數據。
報告指出,大數據已經滲透到當今每一個行業和業務職能領域,成為重要的生產因素。人們對於海量數據的挖掘和運用,預示著新一波生產率增長和消費者盈餘浪潮的到來。
報告還提到,「大數據」源於數據生產和收集的能力和速度的大幅提升——由於越來越多的人、設備和感測器通過數字網路連接起來,產生、傳送、分享和訪問數據的能力也得到徹底變革。2011年12 月,工信部發布的物聯網十二五規劃上,把信息處理技術作為4 項關鍵技術創新工程之一被提出來,其中包括了海量數據存儲、數據挖掘、圖像視頻智能分析,這都是大數據的重要組成部分。
2012年1月份,瑞士達沃斯召開的世界經濟論壇上,大數據是主題之一,會上發布的報告《大數據,大影響》(Big Data, Big Impact) 宣稱,數據已經成為一種新的經濟資產類別,就像貨幣或黃金一樣。2012年3月,美國奧巴馬 *** 在白宮網站發布了《大數據研究和發展倡議》,這一倡議標志著大數據已經成為重要的時代特徵。
2012年3月22日,奧巴馬 *** 宣布2億美元投資大數據領域,是大數據技術從商業行為上升到國家科技戰略的分水嶺,在次日的電話會議中, *** 對數據的定義「未來的新石油」,大數據技術領域的競爭,事關國家安全和未來。並表示,國家層面的競爭力將部分體現為一國擁有數據的規模、活性以及解釋、運用的能力;國家數字 *** 體現對數據的佔有和控制。
數字 *** 將是繼邊防、海防、空防之後,另一個大國博弈的空間。2012年4月,美國軟體公司Splunk於19日在納斯達克成功上市,成為第一家上市的大數據處理公司。
鑒於美國經濟持續低靡、股市持續震盪的大背景,Splunk首日的突出交易表現尤其令人們印象深刻,首日即暴漲了一倍多。Splunk是一家領先的提供大數據監測和分析服務的軟體提供商,成立於2003年。
Splunk成功上市促進了資本市場對大數據的關注,同時也促使IT廠商加快大數據布局。2012年7月,聯合國在紐約發布了一份關於大數據政務的白皮書,總結了各國 *** 如何利用大數據更好地服務和保護人民。
這份白皮書舉例說明在一個數據生態系統中,個人、公共部門和私人部門各自的角色、動機和需求:例如通過對價格關注和更好服務的渴望,個人提供數據和眾包信息,並對隱。
進入2012年,大數據(big data)一詞越來越多地被提及,人們用它來描述和定義信息爆炸時代產生的海量數據,並命名與之相關的技術發展與創新。
它已經上過《 *** 》《華爾街日報》的專欄封面,進入美國白宮官網的新聞,現身在國內一些互聯網主題的講座沙龍中,甚至被嗅覺靈敏的國金證券、國泰君安、銀河證券等寫進了投資推薦報告。 數據正在迅速膨脹並變大,它決定著企業的未來發展,雖然很多企業可能並沒有意識到數據爆炸性增長帶來問題的隱患,但是隨著時間的推移,人們將越來越多的意識到數據對企業的重要性。
正如《 *** 》2012年2月的一篇專欄中所稱,「大數據」時代已經降臨,在商業、經濟及其他領域中,決策將日益基於數據和分析而作出,而並非基於經驗和直覺。哈佛大學社會學教授加里·金說:「這是一場革命,龐大的數據資源使得各個領域開始了量化進程,無論學術界、商界還是 *** ,所有領域都將開始這種進程。」
。
大數據時代:最早提出大數據時代到來的是全球知名咨詢公司麥肯錫, 大數據在物理學、生物學、環境生態學等領域以及軍事、金融、通訊等行業存在已有時日,卻因為近年來互聯網和信息行業的發展而引起人們關注。
大數據提出的背景:進入2012年,大數據(big data)一詞越來越多地被提及,人們用它來描述和定義信息爆炸時代產生的海量數據,並命名與之相關的技術發展與創新。它已經上過《 *** 》《華爾街日報》的專欄封面,進入美國白宮官網的新聞,現身在國內一些互聯網主題的講座沙龍中,甚至被嗅覺靈敏的國金證券、國泰君安、銀河證券等寫進了投資推薦報告。
數據正在迅速膨脹並變大,它決定著企業的未來發展,雖然很多企業可能並沒有意識到數據爆炸性增長帶來問題的隱患,但是隨著時間的推移,人們將越來越多的意識到數據對企業的重要性。正如《 *** 》2012年2月的一篇專欄中所稱,「大數據」時代已經降臨,在商業、經濟及其他領域中,決策將日益基於數據和分析而作出,而並非基於經驗和直覺。
哈佛大學社會學教授加里·金說:「這是一場革命,龐大的數據資源使得各個領域開始了量化進程,無論學術界、商界還是 *** ,所有領域都將開始這種進程。」 (4)大數據時代的到來的時間擴展閱讀 大數據影響 現在的社會是一個高速發展的社會,科技發達,信息流通,人們之間的交流越來越密切,生活也越來越方便,大數據就是這個高科技時代的產物。
隨著雲時代的來臨,大數據(Big data)也吸引了越來越多的關注。大數據(Big data)通常用來形容一個公司創造的大量非結構化和半結構化數據,這些數據在下載到關系型資料庫用於分析時會花費過多時間和金錢。
大數據分析常和雲計算聯繫到一起,因為實時的大型數據集分析需要像MapRece一樣的框架來向數十、數百或甚至數千的電腦分配工作。 在現今的社會,大數據的應用越來越彰顯他的優勢,它佔領的領域也越來越大,電子商務、O2O、物流配送等,各種利用大數據進行發展的領域正在協助企業不斷地發展新業務,創新運營模式。
有了大數據這個概念,對於消費者行為的判斷,產品銷售量的預測,精確的營銷范圍以及存貨的補給已經得到全面的改善與優化。「大數據」在互聯網行業指的是這樣一種現象:互聯網公司在日常運營中生成、累積的用戶網路行為數據。
這些數據的規模是如此龐大,以至於不能用G或T來衡量。大數據到底有多大?一組名為「互聯網上一天」的數據告訴我們,一天之中,互聯網產生的全部內容可以刻滿1.68億張DVD;發出的郵件有2940億封之多(相當於美國兩年的紙質信件數量)。
發出的社區帖子達200萬個(相當於《時代》雜志770年的文字量);賣出的手機為37.8萬台,高於全球每天出生的嬰兒數量37.1萬…… 截止到2012年,數據量已經從TB(1024GB=1TB)級別躍升到PB(1024TB=1PB) EB(1024PB=1EB)乃至ZB(1024EB=1ZB)級別。國際數據公司(IDC)的研究結果表明,2008年全球產生的數據量為0.49ZB,2009年的數據量為0.8ZB,2010年增長為1.2ZB,2011年的數量更是高達1.82ZB,相當於全球每人產生200GB以上的數據。
而到2012年為止,人類生產的所有印刷材料的數據量是200PB,全人類歷史上說過的所有話的數據量大約是5EB。IBM的研究稱,整個人類文明所獲得的全部數據中,有90%是過去兩年內產生的。
而到了2020年,全世界所產生的數據規模將達到今天的44倍。 每一天,全世界會上傳超過5億張圖片,每分鍾就有20小時時長的視頻被分享。
然而,即使是人們每天創造的全部信息——包括語音通話、電子郵件和信息在內的各種通信,以及上傳的全部圖片、視頻與音樂,其信息量也無法匹及每一天所創造出的關於人們自身的數字信息量。這樣的趨勢會持續下去。
我們現在還處於所謂「物聯網」的最初級階段,而隨著技術成熟,我們的設備、交通工具和迅速發展的「可穿戴」科技將能互相連接與溝通。科技的進步已經使創造、捕捉和管理信息的成本降至2005年的六分之一,而從2005年起,用在硬體、軟體、人才及服務之上的商業投資也增長了整整50%,達到了4000億美元。
大數據的精髓 大數據帶給我們的三個顛覆性觀念轉變:是全部數據,而不是隨機采樣;是大體方向,而不是精確制導;是相關關系,而不是因果關系。A.不是隨機樣本,而是全體數據:在大數據時代,我們可以分析更多的數據,有時候甚至可以處理和某個特別現象相關的所有數據,而不再依賴於隨機采樣(隨機采樣,以前我們通常把這看成是理所應當的限制,但高性能的數字技術讓我們意識到,這其實是一種人為限制); B.不是精確性,而是混雜性:研究數據如此之多,以至於我們不再熱衷於追求精確度;之前需要分析的數據很少,所以我們必須盡可能精確地量化我們的記錄,隨著規模的擴大,對精確度的痴迷將減弱;擁有了大數據,我們不再需要對一個現象刨根問底,只要掌握了大體的發展方向即可。
適當忽略微觀層面上的精確度,會讓我們在宏觀層面擁有更好的洞察力; C.不是因果關系,而是相關關系:我們不再熱衷於找因果關系,尋找因果關系是人類長久以來的習慣,在大。
大數據是一種現代雲基礎架構,它包含了多種與其他人連接和共享信息的方法。它推動了「物聯網」的發展,如通過社交網站連接人、通過共享朋友或網路來尋找人們之間互相認識的可能性。大數據的背後運行著人工智慧,而它對於大多數人而言是完全透明的,人們不知道背後有這樣的技術。大數據位於人們日常使用的智能手機之後,然後人們通過它給移動互聯網貢獻信息,即使他們並沒有意識到這一點。
為什麼大數據如此重要?
第一,對大數據的處理分析正成為新一代信息技術融合應用的結點。移動互聯網、物聯網、社交網路、數字家庭、電子商務等是新一代信息技術的應用形態,這些應用不斷產生大數據。雲計算為這些海量、多樣化的大數據提供存儲和運算平台。通過對不同來源數據的管理、處理、分析與優化,將結果反饋到上述應用中,將創造出巨大的經濟和社會價值。
第二,大數據是信息產業持續高速增長的新引擎。面向大數據市場的新技術、新產品、新服務、新業態會不斷涌現。在硬體與集成設備領域,大數據將對晶元、存儲產業產生重要影響,還將催生一體化數據存儲處理伺服器、內存計算等市場。在軟體與服務領域,大數據將引發數據快速處理分析、數據挖掘技術和軟體產品的發展。
第三,大數據利用將成為提高核心競爭力的關鍵因素。各行各業的決策正在從「業務驅動」 轉變「數據驅動」。
總結
在大數據時代到來的時候,要用大數據的思維去發掘大數據的潛在價值。大數據的意義不在於掌握龐大的數據信息,而在於對這些含有意義的數據進行專業化處理。從前我們所了解的數據是冷冰冰的、死氣沉沉的,被存到冷備份默默地等著人拿出來用,我們對待數據的感覺十分消極,要先想清楚其用處才開始分析應用。現在,數據時代來臨了,人們正在試圖點燃數據,使其變熱,賦予生命。所謂「活數據」,是動態的數據,流通的數據,因互動而產生,因產生而互動,是自然演化的數據,要用大數據的思維去考慮這些數據怎樣才能帶來效益。未來大數據的發展前景非常好,與大數據相關的職業比如數據挖掘師,數據分析師等必定會有廣闊的發展空間。
這個問題是這樣的:
首先你要明確你的插入是正常業務需求么?如果是,那麼只能接受這樣的數據插入量。
其次你說資料庫存不下了 那麼你可以讓你的資料庫上限變大 這個你可以在資料庫裡面設置的 裡面有個資料庫文件屬性 maxsize
最後有個方法可以使用,如果你的歷史數據不會對目前業務造成很大影響 可以考慮歸檔處理 定時將不用的數據移入歷史表 或者另外一個資料庫。
注意平時對資料庫的維護 定期整理索引碎片
『伍』 什麼是大數據時代
(1)大數據時代的提出
最早提出大數據時代到來的是全球知名咨詢公司麥肯錫,他認為數據已經滲透到當今每一個行業和業務職能領域,成為重要的生產因素。人們對於海量數據的挖掘和運用,預示著新一波生產率增長和消費者盈餘浪潮的到來。
(2)大數據時代的來臨
隨著互聯網快速發展、智能手機以及「可佩帶」計算設備的出現,我們的行為、位置,甚至身體生理數據等每一點變化都成為了可被記錄和分析的數據。這些新技術推動著大數據時代的來臨,各行各業每天都在產生數量巨大的數據碎片,數據計量單位已從Byte、KB、MB、GB、TB發展到PB、EB、ZB、YB甚至BB來衡量。
(3)大數據時代的特點
如果簡單來理解什麼是大數據,我們只要抓住大數據的四個特點,大量、高速、多樣、價值。具體來講就是數據體量巨大,數據的爆發性增長迫切的需要智能的演算法、強大的數據處理平台和新的數據處理技術,來統計、分析、預測和實時處理如此大規模的數據;數據類型繁多,廣泛的數據來源決定了大數據形式的多樣性。任何形式的數據都可以產生作用,目前應用最廣泛的就是推薦系統的應用;價值密度低,現實世界所產生的數據中,有價值的數據所佔比例很小。相比於傳統的小數據,大數據最大的價值在於通過從大量不相關的各種類型的數據中,挖掘出對未來趨勢與模式預測分析有價值的數據;數據分析處理速度快,主要通過互聯網傳輸。大數據對處理速度有非常嚴格的要求,伺服器中大量的資源都用於處理和計算數據,很多平台都需要做到實時分析。
『陸』 中國大數據的提出的時間和背景是什麼發展情況和現狀分別是什麼樣的
大數據在中國的發展相對比較年輕。2012年,中國政府在美國提出《大數據研究和發展計劃內》並且批復了「十容二五國家政務信息化建設工程規劃」,總投資額估計在幾百億,專門有人口、法人、空間、宏觀經濟和文化等五大資源庫的五大建設工程。我國的開放、共享和智能的大數據的時代才真正大面積的開始
發展和現狀是:(一)市場規模快速增長,供給結構初步形成 市場規模快速增長。十二五以來,我國大數據產業從無到有,全國各地發展大數據積極性較高,行業應用得到快速推廣,市場規模增速明顯。易觀國際數據顯示,2011-2014年,我國大數據市場規模分別為37.4億元、47.3億元、59億元和75.7億元,年平均復合增長約為27%。易觀國際同時預測,2015、2016年我國大數據市場規模將保持約30%的增長速度,在十二五末市場規模接近100億元。
『柒』 大數據時代是如何到來的,跟那些主要因素有關系
這東西只能說是時代在更新,社會在進步;必然會出現很多新的產物。大數據主要基於網路,因為現在基本誰都離不開手機,離不開網路。
不是專業人士,對錯勿怪啊
『捌』 大數據時代發展歷程是什麼
可按照時間點劃分大數據的發展歷程。