導航:首頁 > 網路數據 > 大數據能賣錢嗎

大數據能賣錢嗎

發布時間:2023-03-24 07:38:54

『壹』 「私人大數據」可以賣錢嗎

大數據就是用來賣錢的
不然收集大數據干什麼?
真的是個人愛好收藏?

『貳』 大數據可能是一場騙局

大數據可能是一場騙局
幾乎每天都能看到有人在談論大數據,讓人好生厭煩。什麼是大數據(Big Data) ? 簡單一點可以理解為超出傳統數據管理工具處理能力的大規模、復雜的數據集合。判斷是否數據大數據的范疇,要從三個維度來衡量:數據量(Volume)、處理速度( Velocity)以及數據種類(Variety)。

大數據(Big Data) 是 2012 年信息技術領域最時髦的詞彙。當然,跟所有曾經的時髦技術熱詞一樣,最後可能是一場騙局。為什麼?
大數據是個相對的概念,新瓶裝舊酒
有些人所說的大數據處理方式,不過是在既有的方案上包裝了一下,新瓶裝舊酒,只為趕時髦。今天的大數據可能到了明天算不上大數據。過去我們也曾經對「海量數據」望而生畏。但海量數據時代並沒有給多少企業帶來革命性的變化,在 MapRece 以及 Hadoop 出現之前,沒有多少企業能夠輕松的對數據進行大規模並行計算(奇怪的是,那時候沒有多少人提大數據)。而 NoSQL 的出現也為處理數據的方式帶來了更多可能性。我們突然發現,處理數據能力已經悄然增強。
大數據是機會,但不是所有人的機會
大數據的商業前景被過分誇大了。到目前來看,只有為數不多的企業真正擁有大數據,而且這些數據的管理、處理、分析並沒有帶來所謂空前大的挑戰。因為新的工具、新的計算方式已經已經具備處理這些數據的能力。
大數據是機會,但只是少數人的機會,更多是巨頭們的商業障眼法,比如 IBM 、Oracle、微軟,他們提倡甚至誇大大數據的目的還是為了向你兜售他們的工具,兜售他們的解決方案,確切的說,從你身上賺錢。更有甚者,居然是向你兜售硬體,這不完全是扯淡么? 大硬體還差不多。
中小型公司應該繞道走,別唯大佬們馬首是瞻,別總去湊熱鬧。你所需要的東西,通過開源社區就可以獲取到,參加各種大佬們口沫橫飛的會議還不如和工程師聊聊可以運用什麼工具來具體操練一下。適用好比什麼都重要。創業公司也應該繞著大數據走,這未必是個好方向。 大數據的確會有價值,但沒有那麼大
必須要承認從某些大數據中會挖掘出新的價值,但這個價值只是附加價值,沒有理由去誇大他,更沒有理由去無端的想像。你可以說這篇沙漠可能有金子,但並不是說沙漠中一定就能挖掘出金子。
從現在業界一些公司拿出來的所謂的大數據應用實例來看,依然只是在利用傳統意義上的數據價值,只是巧妙地把這筆帳記在了大數據上而已。一個電子商務網站說什麼地方的人買東西最瘋狂或是什麼型號手機最好賣,這會是大數據分析的結果,完全是扯淡嘛。難道數據倉庫系統分析出來的結果和這個大數據出來的結果會有不同么?
不算結束的結束語
大數據不會是什麼商業模式的變革,重視大數據,但沒必要抱著大數據的大腿,尤其是在業界對於數據還不夠重視的時候,就更別說大數據了。相信隨著時間的推移,大數據這個詞會和信息爆炸、網格計算、雲計算等逐漸被淡忘,當然,到時候可能出現新的時髦詞彙了。
沒有大數據,只有數據;沒有藍海,只有大海;沒有先知,只有忽悠。

『叄』 做大數據真的能賺錢嗎

未至科技數據來中心解決方案是以自組織價值鏈分析模型為理論指導,結合組織戰略規劃和面向對象的方法論,對組織信息化戰略進行規劃重造立足數據,以數據為基礎建立組織信息化標准,提供面向數據採集、處理、挖掘、分析、服務為組織提供一整套的基礎解決方案。未至數據中心解決方案採用了當前先進的大數據技術,基於Hadoop架構,利用HDFS、Hive、Impala等大數據技術架構組件和公司自有ETL工具等中間件產品,建立了組織內部高性能、高效率的信息資源大數據服務平台,實現組織內數億條以上數據的秒級實時查詢、更新、調用、分析等信息資源服務。未至數據中心解決方案將,為公安、教育、旅遊、住建等各行業業務數據中心、城市公共基礎資料庫平台、行業部門信息資源基礎資料庫建設和數據資源規劃、管理等業務提供了一體化的解決方案。

『肆』 大數據三大核心技術:拿數據、算數據、賣數據!

大數據的由來

對於「大數據」(Big data)研究機構Gartner給出了這樣的定義。「大數據」是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力來適應海量、高增長率和多樣化的信息資產。

1

麥肯錫全球研究所給出的定義是:一種規模大到在獲取、存儲、管理、分析方面大大超出了傳統資料庫軟體工具能力范圍的數據集合,具有海量的數據規模、快速的數據流轉、多樣的數據類型和價值密度低四大特徵。

大數據技術的戰略意義不在於掌握龐大的數據信息,而在於對這些含有意義的數據進行專業化處理。換而言之,如果把大數據比作一種產業,那麼這種產業實現盈利的關鍵,在於提高對數據的「加工能力」,通過「加工」實現數據的「增值」。

從技術上看,大數據與雲計算的關系就像一枚硬幣的正反面一樣密不可分。大數據必然無法用單台的計算機進行處理,必須採用分布式架構。它的特色在於對海量數據進行分布式數據挖掘。但它必須依託雲計算的分布式處理、分布式資料庫和雲存儲、虛擬化技術。

大數據需要特殊的技術,以有效地處理大量的容忍經過時間內的數據。適用於大數據的技術,包括大規模並行處理(MPP)資料庫、數據挖掘、分布式文件系統、分布式資料庫、雲計算平台、互聯網和可擴展的存儲系統。

最小的基本單位是bit,按順序給出所有單位:bit、Byte、KB、MB、GB、TB、PB、EB、ZB、YB、BB、NB、DB。

大數據的應用領域

大數據無處不在,大數據應用於各個行業,包括金融、 汽車 、餐飲、電信、能源、體能和 娛樂 等在內的 社會 各行各業都已經融入了大數據的印跡。

製造業,利用工業大數據提升製造業水平,包括產品故障診斷與預測、分析工藝流程、改進生產工藝,優化生產過程能耗、工業供應鏈分析與優化、生產計劃與排程。

金融行業,大數據在高頻交易、社交情緒分析和信貸風險分析三大金融創新領域發揮重大作用。

汽車 行業,利用大數據和物聯網技術的無人駕駛 汽車 ,在不遠的未來將走入我們的日常生活。

互聯網行業,藉助於大數據技術,可以分析客戶行為,進行商品推薦和針對性廣告投放。

電信行業,利用大數據技術實現客戶離網分析,及時掌握客戶離網傾向,出台客戶挽留措施。

能源行業,隨著智能電網的發展,電力公司可以掌握海量的用戶用電信息,利用大數據技術分析用戶用電模式,可以改進電網運行,合理設計電力需求響應系統,確保電網運行安全。

物流行業,利用大數據優化物流網路,提高物流效率,降低物流成本。

城市管理,可以利用大數據實現智能交通、環保監測、城市規劃和智能安防。

體育 娛樂 ,大數據可以幫助我們訓練球隊,決定投拍哪種 題財的 影視作品,以及預測比賽結果。

安全領域,政府可以利用大數據技術構建起強大的國家安全保障體系,企業可以利用大數據抵禦網路攻擊,警察可以藉助大數據來預防犯罪。

個人生活, 大數據還可以應用於個人生活,利用與每個人相關聯的「個人大數據」,分析個人生活行為習慣,為其提供更加周到的個性化服務。

大數據的價值,遠遠不止於此,大數據對各行各業的滲透,大大推動了 社會 生產和生活,未來必將產生重大而深遠的影響。

大數據方面核心技術有哪些?

大數據技術的體系龐大且復雜,基礎的技術包含數據的採集、數據預處理、分布式存儲、NoSQL資料庫、數據倉庫、機器學習、並行計算、可視化等各種技術范疇和不同的技術層面。首先給出一個通用化的大數據處理框架,主要分為下面幾個方面:數據採集與預處理、數據存儲、數據清洗、數據查詢分析和數據可視化。

數據採集與預處理

對於各種來源的數據,包括移動互聯網數據、社交網路的數據等,這些結構化和非結構化的海量數據是零散的,也就是所謂的數據孤島,此時的這些數據並沒有什麼意義,數據採集就是將這些數據寫入數據倉庫中,把零散的數據整合在一起,對這些數據綜合起來進行分析。數據採集包括文件日誌的採集、資料庫日誌的採集、關系型資料庫的接入和應用程序的接入等。在數據量比較小的時候,可以寫個定時的腳本將日誌寫入存儲系統,但隨著數據量的增長,這些方法無法提供數據安全保障,並且運維困難,需要更強壯的解決方案。

Flume NG

Flume NG作為實時日誌收集系統,支持在日誌系統中定製各類數據發送方,用於收集數據,同時,對數據進行簡單處理,並寫到各種數據接收方(比如文本,HDFS,Hbase等)。Flume NG採用的是三層架構:Agent層,Collector層和Store層,每一層均可水平拓展。其中Agent包含Source,Channel和 Sink,source用來消費(收集)數據源到channel組件中,channel作為中間臨時存儲,保存所有source的組件信息,sink從channel中讀取數據,讀取成功之後會刪除channel中的信息。

NDC

Logstash

Logstash是開源的伺服器端數據處理管道,能夠同時從多個來源採集數據、轉換數據,然後將數據發送到您最喜歡的 「存儲庫」 中。一般常用的存儲庫是Elasticsearch。Logstash 支持各種輸入選擇,可以在同一時間從眾多常用的數據來源捕捉事件,能夠以連續的流式傳輸方式,輕松地從您的日誌、指標、Web 應用、數據存儲以及各種 AWS 服務採集數據。

Sqoop

Sqoop,用來將關系型資料庫和Hadoop中的數據進行相互轉移的工具,可以將一個關系型資料庫(例如Mysql、Oracle)中的數據導入到Hadoop(例如HDFS、Hive、Hbase)中,也可以將Hadoop(例如HDFS、Hive、Hbase)中的數據導入到關系型資料庫(例如Mysql、Oracle)中。Sqoop 啟用了一個 MapRece 作業(極其容錯的分布式並行計算)來執行任務。Sqoop 的另一大優勢是其傳輸大量結構化或半結構化數據的過程是完全自動化的。

流式計算

流式計算是行業研究的一個熱點,流式計算對多個高吞吐量的數據源進行實時的清洗、聚合和分析,可以對存在於社交網站、新聞等的數據信息流進行快速的處理並反饋,目前大數據流分析工具有很多,比如開源的strom,spark streaming等。

Strom集群結構是有一個主節點(nimbus)和多個工作節點(supervisor)組成的主從結構,主節點通過配置靜態指定或者在運行時動態選舉,nimbus與supervisor都是Storm提供的後台守護進程,之間的通信是結合Zookeeper的狀態變更通知和監控通知來處理。nimbus進程的主要職責是管理、協調和監控集群上運行的topology(包括topology的發布、任務指派、事件處理時重新指派任務等)。supervisor進程等待nimbus分配任務後生成並監控worker(jvm進程)執行任務。supervisor與worker運行在不同的jvm上,如果由supervisor啟動的某個worker因為錯誤異常退出(或被kill掉),supervisor會嘗試重新生成新的worker進程。

Zookeeper

Zookeeper是一個分布式的,開放源碼的分布式應用程序協調服務,提供數據同步服務。它的作用主要有配置管理、名字服務、分布式鎖和集群管理。配置管理指的是在一個地方修改了配置,那麼對這個地方的配置感興趣的所有的都可以獲得變更,省去了手動拷貝配置的繁瑣,還很好的保證了數據的可靠和一致性,同時它可以通過名字來獲取資源或者服務的地址等信息,可以監控集群中機器的變化,實現了類似於心跳機制的功能。

數據存儲

Hadoop作為一個開源的框架,專為離線和大規模數據分析而設計,HDFS作為其核心的存儲引擎,已被廣泛用於數據存儲。

HBase

HBase,是一個分布式的、面向列的開源資料庫,可以認為是hdfs的封裝,本質是數據存儲、NoSQL資料庫。HBase是一種Key/Value系統,部署在hdfs上,克服了hdfs在隨機讀寫這個方面的缺點,與hadoop一樣,Hbase目標主要依靠橫向擴展,通過不斷增加廉價的商用伺服器,來增加計算和存儲能力。

Phoenix

Phoenix,相當於一個Java中間件,幫助開發工程師能夠像使用JDBC訪問關系型資料庫一樣訪問NoSQL資料庫HBase。

Yarn

Yarn是一種Hadoop資源管理器,可為上層應用提供統一的資源管理和調度,它的引入為集群在利用率、資源統一管理和數據共享等方面帶來了巨大好處。Yarn由下面的幾大組件構成:一個全局的資源管理器ResourceManager、ResourceManager的每個節點代理NodeManager、表示每個應用的Application以及每一個ApplicationMaster擁有多個Container在NodeManager上運行。

Mesos

Mesos是一款開源的集群管理軟體,支持Hadoop、ElasticSearch、Spark、Storm 和Kafka等應用架構。

Redis

Redis是一種速度非常快的非關系資料庫,可以存儲鍵與5種不同類型的值之間的映射,可以將存儲在內存的鍵值對數據持久化到硬碟中,使用復制特性來擴展性能,還可以使用客戶端分片來擴展寫性能。

Atlas

Atlas是一個位於應用程序與MySQL之間的中間件。在後端DB看來,Atlas相當於連接它的客戶端,在前端應用看來,Atlas相當於一個DB。Atlas作為服務端與應用程序通訊,它實現了MySQL的客戶端和服務端協議,同時作為客戶端與MySQL通訊。它對應用程序屏蔽了DB的細節,同時為了降低MySQL負擔,它還維護了連接池。Atlas啟動後會創建多個線程,其中一個為主線程,其餘為工作線程。主線程負責監聽所有的客戶端連接請求,工作線程只監聽主線程的命令請求。

Ku

Ku是圍繞Hadoop生態圈建立的存儲引擎,Ku擁有和Hadoop生態圈共同的設計理念,它運行在普通的伺服器上、可分布式規模化部署、並且滿足工業界的高可用要求。其設計理念為fast analytics on fast data。作為一個開源的存儲引擎,可以同時提供低延遲的隨機讀寫和高效的數據分析能力。Ku不但提供了行級的插入、更新、刪除API,同時也提供了接近Parquet性能的批量掃描操作。使用同一份存儲,既可以進行隨機讀寫,也可以滿足數據分析的要求。Ku的應用場景很廣泛,比如可以進行實時的數據分析,用於數據可能會存在變化的時序數據應用等。

在數據存儲過程中,涉及到的數據表都是成千上百列,包含各種復雜的Query,推薦使用列式存儲方法,比如parquent,ORC等對數據進行壓縮。Parquet 可以支持靈活的壓縮選項,顯著減少磁碟上的存儲。

數據清洗

MapRece作為Hadoop的查詢引擎,用於大規模數據集的並行計算,」Map(映射)」和」Rece(歸約)」,是它的主要思想。它極大的方便了編程人員在不會分布式並行編程的情況下,將自己的程序運行在分布式系統中。

隨著業務數據量的增多,需要進行訓練和清洗的數據會變得越來越復雜,這個時候就需要任務調度系統,比如oozie或者azkaban,對關鍵任務進行調度和監控。

Oozie

Oozie是用於Hadoop平台的一種工作流調度引擎,提供了RESTful API介面來接受用戶的提交請求(提交工作流作業),當提交了workflow後,由工作流引擎負責workflow的執行以及狀態的轉換。用戶在HDFS上部署好作業(MR作業),然後向Oozie提交Workflow,Oozie以非同步方式將作業(MR作業)提交給Hadoop。這也是為什麼當調用Oozie 的RESTful介面提交作業之後能立即返回一個JobId的原因,用戶程序不必等待作業執行完成(因為有些大作業可能會執行很久(幾個小時甚至幾天))。Oozie在後台以非同步方式,再將workflow對應的Action提交給hadoop執行。

Azkaban

Azkaban也是一種工作流的控制引擎,可以用來解決有多個hadoop或者spark等離線計算任務之間的依賴關系問題。azkaban主要是由三部分構成:Relational Database,Azkaban Web Server和Azkaban Executor Server。azkaban將大多數的狀態信息都保存在MySQL中,Azkaban Web Server提供了Web UI,是azkaban主要的管理者,包括project的管理、認證、調度以及對工作流執行過程中的監控等;Azkaban Executor Server用來調度工作流和任務,記錄工作流或者任務的日誌。

流計算任務的處理平台Sloth,是網易首個自研流計算平台,旨在解決公司內各產品日益增長的流計算需求。作為一個計算服務平台,其特點是易用、實時、可靠,為用戶節省技術方面(開發、運維)的投入,幫助用戶專注於解決產品本身的流計算需求

數據查詢分析

Hive

Hive的核心工作就是把SQL語句翻譯成MR程序,可以將結構化的數據映射為一張資料庫表,並提供 HQL(Hive SQL)查詢功能。Hive本身不存儲和計算數據,它完全依賴於HDFS和MapRece。可以將Hive理解為一個客戶端工具,將SQL操作轉換為相應的MapRece jobs,然後在hadoop上面運行。Hive支持標準的SQL語法,免去了用戶編寫MapRece程序的過程,它的出現可以讓那些精通SQL技能、但是不熟悉MapRece 、編程能力較弱與不擅長Java語言的用戶能夠在HDFS大規模數據集上很方便地利用SQL 語言查詢、匯總、分析數據。

Hive是為大數據批量處理而生的,Hive的出現解決了傳統的關系型資料庫(MySql、Oracle)在大數據處理上的瓶頸 。Hive 將執行計劃分成map->shuffle->rece->map->shuffle->rece…的模型。如果一個Query會被編譯成多輪MapRece,則會有更多的寫中間結果。由於MapRece執行框架本身的特點,過多的中間過程會增加整個Query的執行時間。在Hive的運行過程中,用戶只需要創建表,導入數據,編寫SQL分析語句即可。剩下的過程由Hive框架自動的完成。

Impala

Impala是對Hive的一個補充,可以實現高效的SQL查詢。使用Impala來實現SQL on Hadoop,用來進行大數據實時查詢分析。通過熟悉的傳統關系型資料庫的SQL風格來操作大數據,同時數據也是可以存儲到HDFS和HBase中的。Impala沒有再使用緩慢的Hive+MapRece批處理,而是通過使用與商用並行關系資料庫中類似的分布式查詢引擎(由Query Planner、Query Coordinator和Query Exec Engine三部分組成),可以直接從HDFS或HBase中用SELECT、JOIN和統計函數查詢數據,從而大大降低了延遲。Impala將整個查詢分成一執行計劃樹,而不是一連串的MapRece任務,相比Hive沒了MapRece啟動時間。

Hive 適合於長時間的批處理查詢分析,而Impala適合於實時互動式SQL查詢,Impala給數據人員提供了快速實驗,驗證想法的大數據分析工具,可以先使用Hive進行數據轉換處理,之後使用Impala在Hive處理好後的數據集上進行快速的數據分析。總的來說:Impala把執行計劃表現為一棵完整的執行計劃樹,可以更自然地分發執行計劃到各個Impalad執行查詢,而不用像Hive那樣把它組合成管道型的map->rece模式,以此保證Impala有更好的並發性和避免不必要的中間sort與shuffle。但是Impala不支持UDF,能處理的問題有一定的限制。

Spark

Spark擁有Hadoop MapRece所具有的特點,它將Job中間輸出結果保存在內存中,從而不需要讀取HDFS。Spark 啟用了內存分布數據集,除了能夠提供互動式查詢外,它還可以優化迭代工作負載。Spark 是在 Scala 語言中實現的,它將 Scala 用作其應用程序框架。與 Hadoop 不同,Spark 和 Scala 能夠緊密集成,其中的 Scala 可以像操作本地集合對象一樣輕松地操作分布式數據集。

Nutch

Nutch 是一個開源Java 實現的搜索引擎。它提供了我們運行自己的搜索引擎所需的全部工具,包括全文搜索和Web爬蟲。

Solr

Solr用Java編寫、運行在Servlet容器(如Apache Tomcat或Jetty)的一個獨立的企業級搜索應用的全文搜索伺服器。它對外提供類似於Web-service的API介面,用戶可以通過http請求,向搜索引擎伺服器提交一定格式的XML文件,生成索引;也可以通過Http Get操作提出查找請求,並得到XML格式的返回結果。

Elasticsearch

Elasticsearch是一個開源的全文搜索引擎,基於Lucene的搜索伺服器,可以快速的儲存、搜索和分析海量的數據。設計用於雲計算中,能夠達到實時搜索,穩定,可靠,快速,安裝使用方便。

還涉及到一些機器學習語言,比如,Mahout主要目標是創建一些可伸縮的機器學習演算法,供開發人員在Apache的許可下免費使用;深度學習框架Caffe以及使用數據流圖進行數值計算的開源軟體庫TensorFlow等,常用的機器學習演算法比如,貝葉斯、邏輯回歸、決策樹、神經網路、協同過濾等。

數據可視化

對接一些BI平台,將分析得到的數據進行可視化,用於指導決策服務。主流的BI平台比如,國外的敏捷BI Tableau、Qlikview、PowrerBI等,國內的SmallBI和新興的網易有數等。

在上面的每一個階段,保障數據的安全是不可忽視的問題。

基於網路身份認證的協議Kerberos,用來在非安全網路中,對個人通信以安全的手段進行身份認證,它允許某實體在非安全網路環境下通信,向另一個實體以一種安全的方式證明自己的身份。

控制許可權的ranger是一個Hadoop集群許可權框架,提供操作、監控、管理復雜的數據許可權,它提供一個集中的管理機制,管理基於yarn的Hadoop生態圈的所有數據許可權。可以對Hadoop生態的組件如Hive,Hbase進行細粒度的數據訪問控制。通過操作Ranger控制台,管理員可以輕松的通過配置策略來控制用戶訪問HDFS文件夾、HDFS文件、資料庫、表、欄位許可權。這些策略可以為不同的用戶和組來設置,同時許可權可與hadoop無縫對接。

簡單說有三大核心技術:拿數據,算數據,賣數據。

『伍』 銀行大數據能借給別人嗎

可以。銀遲明行大數哪旦局據由於可以自行使用的,因此是能借給別李讓人的。銀行是依法成立的經營貨幣信貸業務的金融機構,是商品貨幣經濟發展到一定階段的產物。

『陸』 如何才能讓大數據變現

討論一個問題。我們都知道數據是當下所有企業的戰略資產,而每個企業中都積累,並不斷在產生大量的數據,但為何依然很多企業並不認為數據為其帶來了價值,原因可能有很多,但都可以歸結到沒有用好數據,或者數據不是好數據。

1、 什麼樣的數據才能產生價值?

阿里巴巴曾鳴認為,所有商業都在快速智能化,而數據是智能商業時代最重要的資產,但只有活數據才能創造價值。第一,數據是活的,也就是說數據是在線的,可以隨時被使用;第二,數據必須是被活用的,也就是說數據在不斷地被處理,產生智能商業決策,同時又產生更多的數據,形成數據迴流。只有在線才能真正讓數據成為活數據,進而以數據驅動企業運營。

SCRM的定位是面向行業領導者的用戶生態數字化運營平台,行業領導者意味著其客戶群體為行業第一層級的企業,用戶生態數字化運營平台則有兩層含義,一是企業全渠道連接用戶、持續互動的連接器,二是連接數據,實現數據變現的平台。

2、SCRM是讓消費者交互變縱為橫

一是對於SCRM的理解。

一直以來,SCRM有諸多解讀,對其中「S」所代表的social同樣說法不少。車傳利認為,SCRM的重點有兩層,第一是以結合社交工具、社交手段,而更為重要的是「企業和品牌不能再遠離用戶,與用戶做朋友」。後一層含義被很多廠商、很多產品所忽略,但事實卻是當下消費者的消費習慣會不斷變化,但企業要直接與用戶產生關系的趨勢不變的。

對消費者的需求,作為工具的SCRM產品如何幫助企業觸達從企業端來看,過去很難連接消費者,了解不到客戶的需求,在層層渠道、經銷商中需求傳遞缺失。這種過去的企業與消費者的關系,可以形象的歸結為縱向傳遞,消費者-渠道商-渠道商-……-企業。即便在現在,大量的第三方線上平台出現並聚集消費者,然而用戶的真實需求也多被這些三方平台所截流,企業依然觸達不到。

SCRM的一個重點特點便是能夠打破中間環節,這也為變縱為橫提供了可能,讓企業能夠打破與消費者之間的層層架構,實現企業與渠道商、門店以及最終消費者的直接連接,從而把握真實客戶需求,真正做到客戶運營。

3、在線讓數據活起來

在數據收集方面,企業面臨兩大問題,一是線上被第三方平台所截流,線下被渠道截流,很難收集到真正的數據;二是,即便收集到,很多數據不是實時的,消費者可能已經過了相應的周期,數據就變成了廢數據。

而數據變現最基礎的便是依託互動數據識別用戶特性,並基於數據進行進一步互動,下一層次的消費挖掘,比如大量消費者留下的客服數據,這是可以深度挖掘的數據,一方面反應產品存在的問題,一方面亦能發掘新需求。

因此,企業要真正挖掘數據財富的前提,便是能真正獲取到數據、能獲取到真正數據。發源地的產品通過兩方面建立這條通路,一是全渠道連接,二是將線下多端上線,讓數據可連接,實現數據變現。

全渠道連接整合企業經營相關的所有與消費者交互的渠道。主要包括門店、線下活動等線下渠道,官網、微信微博、APP等自營媒體平台,天貓、京東等電商平台,經銷商、服務商等合作夥伴以及廣告等6類渠道,實現全渠道連接客戶接觸點。整合渠道後,依託平台與消費者持續互動,不斷匯集實時的消費者數據,進而通過數據挖掘,實現數據應用。

同時,連接數據的重點在於讓線下的鏈條在線化,包括線下渠道、線下商品、員工以及消費者的上線。

客戶在線,以消費者幾乎必備的微信作為入口,通過線上活動、支付等手段連接門店、連接消費者,將相關消費信息記錄下來,回傳到系統;

員工在線,門店的店員在線,將與消費者的互動實現線上記錄,實現精細化運營;

產品在線,讓每一個員工都知道每一個貨品的銷售情況,判斷消費者喜好及貨品市場接受度;

渠道在線,實現賣貨情況、銷售情況等實時掌握,判斷門店經營情況。

4、做定製化的SaaS

與很多SaaS服務商不同,發源地服務直接定位在一體化解決方案,而不是產品+服務。或者說SaaS多是主通用產品,結合行業方案或者定製方案,而發源地則是直接瞄準定製方案。

發源地的服務過程主要分為四步:業務流程梳理與戰略咨詢、發源地SCRM SaaS解決方案、定製化解決方案實施、運營與維護支持。這與SaaS的服務方式普遍不同。

其原因一是因為發源地主要服務集團型、連鎖品牌,如vivo、聯合利華等,這類大型企業存在太多差異化需求,取決於客戶群體的行業特性,發源地定下這種服務理念。

二是發源地認為,一套完整的方案,不是一個通用產品+簡單服務便能完成,如果不涉及咨詢層面,不與客戶一同梳理出企業的流程、脈絡,只是客戶要一個服務便加一個服務,帶給客戶的只能是遷就的方案,而不是順暢、一體化的方案。

當然,並不是說發源地提供的就是純粹的定製服務,而是依託支持靈活業務拓展的PaaS開放平台,通過功能模塊化、可插拔的方式實現。

『柒』 據消息稱,67款APP因未完成整改下架,這些APP違反了哪些規定

我個人認為這些app違反了很多規定,首先就是竊取了用戶的信息,因為大部分應用需要獲得用戶的許可才能獲取到一些信息,如果不經過用戶的許可,獲取用戶的信息,那麼就是違法的行為。還有的就是可能把用戶的信息賣給其他的商業公司,因為我們都知道大數據可以賣錢,也就是我們用戶的一些數據,可以經過商家賣給其他人,自然我們不知道,但總體來說還是屬於犯法的行為。除此之外經常推送廣告也是一種違反規定的行為,我認為大部分需要整改的app都有一些不合理的地方,不僅僅是在法律層面,對於用戶的體驗感方面也需要做出很大改進,這樣才能夠讓用戶喜歡。現在我就來談一談這些app違反了哪些規定。

一、首先就是未經許可來竊取用戶的信息。

大部分情況下正規的應用需要獲得用戶的許可才能夠獲取到信息,然後用這些信息磨物去給用戶一些好的推送。但是作為客戶來講也不希望自己的信息被一些小眾的app知道,所以就沒有給他們許可權,但是這些小眾app仍然竊取了用戶的信息,這就違反了規定。

作為顧客來講肯培老定需要一種非常安全而且便捷的app,違反規定的app一定要被整改。

『捌』 華為ai造字可以賣錢嗎

能。通過你來書寫漢字,然後經過AI智能的大數據匹配,為兄彎返你自動生成字體,可以賣錢,你可以通過付費羨飢分享來獲得收益。先鬧清推廣自己的字體,讓喜歡的人付費使用,這也是一種新的財富方式。

『玖』 山東95後女孩用「大數據」幫老家賣桃一萬多斤,她是怎麼做到的

山東95後女孩用「大數據」幫老家賣桃一萬多斤,她是怎麼做到的?這個95後女人用數據統計分析協助故鄉賣出去萬公斤桃,該女子是一位大數據分析師,見到家長在桃批發點得到了挫敗,便決定利用自己特長協助爸爸媽媽,大白天正常運轉,而晚上就協助家中遠程式控制制賣桃子。開辟了人們在都市生活,聯接故鄉種植園的一種新模式,這名女人協助村裡桃市場銷售到國內各地。

我覺得該女子的舉動也增強了一種新理念,可以讓城市果二代開啟糧食作物售賣的新機遇,許多糧食作物都是非常高質量的,但是由於很多農民不容易藉助互聯網,因此好的水果並不能售出,這對落後地區來說是一種浪費資源,因此鄉村也要和互聯網生活所對接,讓老百姓了解,可以靠手機出售自身家種的農業產品,讓很多農民減少與網友們的間距。

『拾』 那麼多app收集我們的個人信息,這些信息能賣錢嗎

這些信息是肯定可以賺錢的呀,不然的話那些app費盡心思的收集我們的個人信息干嗎呢,不就是為了換錢或者是換利益嗎。大家之所以很少討論這個問題,是因為沒有什麼意義,因為我們都是要使用互聯網的,那麼就很難逃脫被這些app收集資料的問題,因為他們都是有定位系統的,我們拿著手機操作什麼他們都是知道的。雖然大家很討厭這種事情,但是真的沒有辦法改變,或者說是不知道該怎麼去改變。

大家是不是覺得這樣的現象挺可怕的,真的是挺可怕的,有時候我們都沒有用手機搜索,就是跟朋友聊一聊某個東西,結果過不了多久就會收到相關的推送,這樣感覺一點隱私都沒有,真的是很可怕的一件事情。希望國家能夠出手整治一下這樣的事情,保護好大家的隱私,不然太嚇人了。

閱讀全文

與大數據能賣錢嗎相關的資料

熱點內容
存儲文件壓縮包和文件夾哪個合適 瀏覽:778
看房子哪個網站比較好 瀏覽:817
oppoa57用什麼數據線 瀏覽:832
一點停app真垃圾 瀏覽:53
移出私人空間文件找不到了 瀏覽:601
微信一視頻切換到語音 瀏覽:190
電腦里我的照片放在哪個文件夾 瀏覽:288
iphone6s升級到128 瀏覽:674
移動硬碟視頻文件修復 瀏覽:330
更新win10會不會丟失文件 瀏覽:21
win10會受病毒感染么 瀏覽:775
以及cad的存儲文件的格式 瀏覽:45
有哪些招募網站 瀏覽:864
網站右側qq客服代碼 瀏覽:283
美國失業數據是什麼 瀏覽:322
蘋果中國利潤 瀏覽:386
ff14低級職業快速升級 瀏覽:459
java應用程序已被阻止 瀏覽:650
69版本烏鴉視頻 瀏覽:588
4g為什麼網路很好卻很卡 瀏覽:723

友情鏈接