『壹』 大數據的內容是什麼
問題一:大數據都包括什麼內容? 你好,
第一,你可以直接網路搜索。
第二,根據我的理解,所有你在互聯網上留下的痕跡就是大數據。
比如很多購物網站,會根據你以前的購買記錄,在你再次到該網站的時候,在頁面底部出現「猜你喜歡」,推薦幾個你可能喜歡的東西。比如淘寶、天貓、京東這些購物網站。
有時候,還會定期發郵件給你,推薦你一些商品,比如做的比較好的,像亞馬遜。
希望能對你有所幫助,有什麼問題我們可以繼續交流
問題二:什麼是大數據?大數據是什麼意思? 「大數據」是近年來IT行業的熱詞,大數據在各個行業的應用逐漸變得廣泛起來,如2014年的兩會,我們聽得最多的也是大數據分析,那麼,什麼是大數據呢,大數據時代怎麼理解呢,一起來看看吧。
大數據的定義。大數據,又稱巨量資料,指的是所涉及的數據資料量規模巨大到無法通過人腦甚至主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。
大數據的特點。數據量大、數據種類多、 要求實時性強、數據所蘊藏的價值大。在各行各業均存在大數據,但是眾多的信息和咨詢是紛繁復雜的,我們需要搜索、處理、分析、歸納、總結其深層次的規律。
大 數據的採集。科學技術及互聯網的發展,推動著大數據時代的來臨,各行各業每天都在產生數量巨大的數據碎片,數據計量單位已從從Byte、KB、MB、 GB、TB發展到PB、EB、ZB、YB甚至BB、NB、DB來衡量。大數據時代數據的採集也不再是技術問題,只是面對如此眾多的數據,我們怎樣才能找到 其內在規律。
大數據的挖掘和處理。大數據必然無法用人腦來推算、估測,或者用單台的計算機進行處理,必須採用分布式計算架構,依託雲計算的分布式處理、分布式資料庫、雲存儲和虛擬化技術,因此,大數據的挖掘和處理必須用到雲技術。
互聯網是個神奇的大網,大數據開發也是一種模式,你如果真想了解大數據,可以來這里,這個手機的開始數字是一八七中間的是三兒零最後的是一四二五零,按照順序組合起來就可以找到,我想說的是,除非你想做或者了解這方面的內容,如果只是湊熱鬧的話,就不要來了。
大 數據的應用。大數據可應用於各行各業,將人們收集到的龐大數據進行分析整理,實現資訊的有效利用。舉個本專業的例子,比如在奶牛基因層面尋找與產奶量相關 的主效基因,我們可以首先對奶牛全基因組進行掃描,盡管我們獲得了所有表型信息和基因信息,但是由於數據量龐大,這就需要採用大數據技術,進行分析比對, 挖掘主效基因。例子還有很多。
大數據的意義和前景。總的來說,大數據是對大量、動態、能持續的數據,通過運 用新系統、新工具、新模型的挖掘,從而獲得具有洞察力和新價值的東西。以前,面對龐大的數據,我們可能會一葉障目、可見一斑,因此不能了解到事物的真正本 質,從而在科學工作中得到錯誤的推斷,而大數據時代的來臨,一切真相將會展現在我么面前。
商業智能的技術體系主要有數據倉庫(Data Warehouse,DW)、聯機分析處理(OLAP)以及數據挖掘(Data Mining,DM)三部分組成。
數據倉庫是商業智能的基礎,許多基本報表可以由此生成,但它更大的用處是作為進一步分析的數據源。所謂數據倉庫(DW)就是面向主題的、集成的、穩定的、不同時間的數據 *** ,用以支持經營管理中的決策制定過程。多維分析和數據挖掘是最常聽到的例子,數據倉庫能供給它們所需要的、整齊一致的數據。
在線分析處理(OLAP)技術則幫助分析人員、管理人員從多種角度把從原始數據中轉化出來、能夠真正為用戶所理解的、並真實反映數據維特性的信息,進行快速、一致、交互地訪問,從而獲得對數據的更深入了解的一類軟體技術。
數據挖掘(DM)是一種決策支持過程,它主要基於AI、機器學習、統計學等技術,高度自動化地分析企業原有的數據,做出歸納性的推理,從中挖掘出潛在的模式,預測客戶的行為,幫助企業的決策者調整市場策略,減少風險,做出正確的決策。
商業智能的應用范圍
1.采購管理
2.財務管理
3.人力資源管理
4.客戶服務
5.配銷管......>>
問題三:什麼是大數據 大數據是一個體量特別大,數據類別特別大的數據集,並且這樣的數據集無法用傳統資料庫工具對其內容進行抓取、管理和處理。 大數據首先是指數據體量(volumes)?大,指代大型數據集,一般在10TB?規模左右,但在實際應用中,很多企業用戶把多個數據集放在一起,已經形成了PB級的數據量;其次是指數據類別(variety)大,數據來自多種數據源,數據種類和格式日漸豐富,已沖破了以前所限定的結構化數據范疇,囊括了半結構化和非結構化數據。接著是數據處理速度(Velocity)快,在數據量非常龐大的情況下,也能夠做到數據的實時處理。最後一個特點是指數據真實性(Veracity)高,隨著社交數據、企業內容、交易與應用數據等新數據源的興趣,傳統數據源的局限被打破,企業愈發需要有效的信息之力以確保其真實性及安全性。
數據採集:ETL工具負責將分布的、異構數據源中的數據如關系數據、平面數據文件等抽取到臨時中間層後進行清洗、轉換、集成,最後載入到數據倉庫或數據集市中,成為聯機分析處理、數據挖掘的基礎。
數據存取:關系資料庫、NOSQL、SQL等。
基礎架構:雲存儲、分布式文件存儲等。
數據處理:自然語言處理(NLP,NaturalLanguageProcessing)是研究人與計算機交互的語言問題的一門學科。處理自然語言的關鍵是要讓計算機理解自然語言,所以自然語言處理又叫做自然語言理解(NLU,NaturalLanguage Understanding),也稱為計算語言學(putational Linguistics。一方面它是語言信息處理的一個分支,另一方面它是人工智慧(AI, Artificial Intelligence)的核心課題之一。
統計分析:假設檢驗、顯著性檢驗、差異分析、相關分析、T檢驗、方差分析、卡方分析、偏相關分析、距離分析、回歸分析、簡單回歸分析、多元回歸分析、逐步回歸、回歸預測與殘差分析、嶺回歸、logistic回歸分析、曲線估計、因子分析、聚類分析、主成分分析、因子分析、快速聚類法與聚類法、判別分析、對應分析、多元對應分析(最優尺度分析)、bootstrap技術等等。
數據挖掘:分類 (Classification)、估計(Estimation)、預測(Prediction)、相關性分組或關聯規則(Affinity grouping or association rules)、聚類(Clustering)、描述和可視化、Description and Visualization)、復雜數據類型挖掘(Text, Web ,圖形圖像,視頻,音頻等)
模型預測:預測模型、機器學習、建模模擬。
結果呈現:雲計算、標簽雲、關系圖等。
要理解大數據這一概念,首先要從大入手,大是指數據規模,大數據一般指在10TB(1TB=1024GB)規模以上的數據量。大數據同過去的海量數據有所區別,其基本特徵可以用4個V來總結(Vol-ume、Variety、Value和Veloc-ity),即體量大、多樣性、價值密度低、速度快。
第一,數據體量巨大。從TB級別,躍升到PB級別。
第二,數據類型繁多,如前文提到的網路日誌、視頻、圖片、地理位置信息,等等。
第三,價值密度低。以視頻為例,連續不間斷監控過程中,可能有用的數據僅僅有一兩秒。
第四,處理速度快。1秒定律。最後這一點也是和傳統的......>>
問題四:什麼是大數據 大數據是什麼意思 「大數據」不是「數據分析」的另一種說法!大數據具有規模性、高速性、多樣性、而且無處不在等全新特點,具體地說,是指需要通過快速獲取、處理、分析和提取有價值的、海量、多樣化的交易數據、交互數據為基礎,針對企業的運作模式提出有針對性的方案。由於物聯網和智能可穿戴的普及帶來的,生產線上普通的藍領員工,前台電話員,等企業內的低階員工也成為產生大數據的數據內容的一部分,數據的產生除了來自社交網路,網站,電子商務網站,郵箱外,智能手機,各種感測器,和物聯網,智能可穿戴設備。
大數據營銷與傳統營銷最顯著的區別是大數據可以深入到營銷的各個環節,使營銷無處不在。如用戶的偏好?上網的時間段?上網主要瀏覽頁?對頁面和產品的點擊次數?網站上的用戶評價對他的影響?他會在哪些地方分享對產品和購物過程的體驗?這些都是對用戶網上消費和品牌關注度的深入分析,可以直接影響用戶消費的傾向等商業效果。
大數據徹底改變企業內部運作模式,以往的管理是「領導怎麼說?」現在變成「大數據的分析結果」,這是對傳統領導力的挑戰,也推動企業管理崗位人才的定義。不僅懂企業的業務流程,還要成為數據專家,跨專業的要求改變過去領導力主要體現在經驗和過往業績上,如今熟練掌握大數據分析工具,善於運用大數據分析結果結合企業的銷售和運營管理實踐是新的要求。
當然大數據對企業的作用一個不可迴避的關鍵因素是數據的質量,有句話叫「垃圾進,垃圾出」指的是如果採集的是大量垃圾數據會導致出來的分析結果也是毫無意義的垃圾。此外,企業內部是否會形成一個個孤立的數據孤島,數據是否會成就企業內某些人或團隊新的權力,導致數據不能得到實時有效地分享,這些都會是阻礙大數據在企業中有效應用的因素。
而隨著大數據時代的到來,對大數據商業價值的挖掘和利用逐漸成為行業人士爭相追捧的利潤焦點。業內人士稱,電商企業通過大數據應用,可以探索個人化、個性 化、精確化和智能化地進行廣告推送和推廣服務,創立比現有廣告和產品推廣形式性價比更高的全新商業模式。同時,電商企業也可以通過對大數據的把握,尋找更 多更好地增加用戶粘性,開發新產品和新服務,降低運營成本的方法和途徑。
問題五:大數據到底是什麼東西? 基於大數據→企業網上支付與結算
基於大數據→銀行的融資參考依據
基於大數據→優化庫存周轉
基於大數據→按需按量按地定產,高效自營
問題六:大數據時代:大數據是什麼? 大數據是什麼?是一種運營模式,是一種能力,還是一種技術,或是一種數據 *** 的統稱?今天我們所說的「大數據」和過去傳統意義上的「數據」的區別又在哪裡?大數據的來源又有哪些?等等。當然,我不是專家學者,我無法給出一個權威的,讓所有人信服的定義,以下所談只是我根據自己的理解進行小結歸納,只求表達出我個人的理解,並不求全面權威。先從「大數據」與「數據」的區別說起吧,過去我們說的「數據」很大程度上是指「數字」,如我們所說的客戶量,業務量,營業收入額,利潤額等等,都是一個個數字或者是可以進行編碼的簡單文本,這些數據分析起來相對簡單,過去傳統的數據解決方案(如資料庫或商業智能技術)就能輕松應對;而今天我們所說的「大數據」則不單純指「數字」,可能還包括「文本,圖片,音頻,視頻……」等多種格式,其涵括的內容十分豐富,如我們的博客,微博,輕博客,我們的音頻視頻分享,我們的通話錄音,我們位置信息,我們的點評信息,我們的交易信息,互動信息等等,包羅萬象。用正規的語句來概括就是,「數據」是結構化的,而「大數據」則包括了「結構化數據」「半結構化數據」和「非結構化數據」。關於「結構化」「半結構化」「非結構化」可能從字面上比較難理解,在此我試著用我的語言看能否形象點地表達出來:由於數據是結構化的,數據分析可以遵循一定現有規律的,如通過簡單的線性相關,數據分析可以大致預測下個月的營業收入額;而大數據是半結構化和非結構化的,其在分析過程中遵循的規律則是未知的,它通過綜合方方面面的信息進行模擬,它以分析形式評估證據,假設應答結果,並計算每種可能性的可信度,通過大數據分析我們可以准確找到下一個市場熱點。 基於此,或許我們可以給「大數據」這樣一個定義,「大數據」指的是收集和分析大量信息的能力,而這些信息涉及到人類生活的方方面面,目的在於從復雜的數據里找到過去不容易昭示的規律。相比「數據」,「大數據」有兩個明顯的特徵:第一,上文已經提到,數據的屬性是包括結構化、非結構化和半結構化數據;第二,數據之間頻繁產生交互,大規模進行數據分析,並實時與業務結合進行數據挖掘。解決了大數據是什麼,接下來還有一個問題,大數據的來源有哪些?或者這個問題這樣來表達會更清晰「大數據的數據來源有哪些?」對於企業而言,大數據的數據來源主要有兩部分,一部分來自於企業內部自身的信息系統中產生的運營數據,這些數據大多是標准化、結構化的。(若繼續細化,企業內部信息系統又可分兩類,一類是「基幹類系統」,用來提高人事、財會處理、接發訂單等日常業務的效率;另一類是「信息類系統」,用於支持經營戰略、開展市場分析、開拓客戶等。)傳統的商業智能系統中所用到的數據基本上數據該部分。而另外一部分則來自於外部,包括廣泛存在於社交網路、物聯網、電子商務等之中的非結構化數據。這些非結構化數據由源於 Facebook、Twitter、LinkedIn 及其它來源的社交媒體數據構成,其產生往往伴隨著社交網路、移動計算和感測器等新的渠道和技術的不斷涌現和應用。具體包括了:如,呼叫詳細記錄、設備和感測器信息、GPS 和地理定位映射數據、通過管理文件傳輸協議傳送的海量圖像文件、Web 文本和點擊流數據、科學信息、電子郵件等等。由於來源不同,類型不同的數據透視的是同一個事物的不同的方面,以消費客戶為例,消費記錄信息能透視客戶的消費能力,消費頻率,消費興趣點等,渠道信息能透視客戶的渠道偏好,消費支付信息能透視客戶的支付渠道情況,還有很多,如,客戶會否在社交網站上分享消費情況,消費前後有否在搜索引擎上搜索過相關的關鍵詞等等,這些信息(或說數據)......>>
問題七:大數據是什麼,干什麼用的?包含哪些內容?哪些技術?解決什麼問題? 大數據指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據 *** ,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。通過大數據分析,可以預測交通路況實況,比如網路地圖的實時公交,了解客戶信用,比如支付寶實名認證大數據背後的花唄借唄信用積累大數據研究顯示,我國的數據總量正在以年均50%以上的速度持續增長,預計到2020年在全球的佔比將達到21%。產業新形態不斷出現,催生了個性化定製、智慧醫療、智能交通等一大批新技術新應用新業態。大數據主要的三大就業方向:大數據系統研發類人才、大數據應用開發類人才和大數據分析類人才。
問題八:大數據可以做什麼 用處太多了
首先,精準化定製。
主要是針對供需兩方的,獲取需方的個性化需求,幫助供方定準定位目標,然後依據需求提 *** 品,最終實現供需雙方的最佳匹配。
具體應用舉例,也可以歸納為三類。
一是個性化產品,比如智能化的搜索引擎,搜索同樣的內容,每個人的結果都不同。或者是一些定製化的新聞服務,或者是網游等。
第二種是精準營銷,現在已經比較常見的互聯網營銷,網路的推廣,淘寶的網頁推廣等,或者是基於地理位置的信息推送,當我到達某個地方,會自動推送周邊的消費設施等。
第三種是選址定位,包括零售店面的選址,或者是公共基礎設施的選址。
這些全都是通過對用戶需求的大數據分析,然後供方提供相對定製化的服務。
應用的第二個方向,預測。
預測主要是圍繞目標對象,基於它過去、未來的一些相關因素和數據分析,從而提前做出預警,或者是實時動態的優化。
從具體的應用上,也大概可以分為三類。
一是決策支持類的,小到企業的運營決策,證券投資決策,醫療行業的臨床診療支持,以及電子政務等。
二是風險預警類的,比如疫情預測,日常健康管理的疾病預測,設備設施的運營維護,公共安全,以及金融業的信用風險管理等。
第三種是實時優化類的,比如智能線路規劃,實時定價等。
問題九:大數據的內容和基本含義? 「大數據」是近年來IT行業的熱詞,大數據在各個行業的應用逐漸變得廣泛起來,如2014年的兩會,我們聽得最多的也是大數據分析,那麼,什麼是大數據呢,什麼是大數據概念呢,大數據概念怎麼理解呢,一起來看看吧。
1、大數據的定義。大數據,又稱巨量資料,指的是所涉及的數據資料量規模巨大到無法通過人腦甚至主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。
2、大數據的採集。科學技術及互聯網的發展,推動著大數據時代的來臨,各行各業每天都在產生數量巨大的數據碎片,數據計量單位已從從Byte、KB、MB、GB、TB發展到PB、EB、ZB、YB甚至BB、NB、DB來衡量。大數據時代數據的採集也不再是技術問題,只是面對如此眾多的數據,我們怎樣才能找到其內在規律。
3、大數據的特點。數據量大、數據種類多、 要求實時性強、數據所蘊藏的價值大。在各行各業均存在大數據,但是眾多的信息和咨詢是紛繁復雜的,我們需要搜索、處理、分析、歸納、總結其深層次的規律。
4、大數據的挖掘和處理。大數據必然無法用人腦來推算、估測,或者用單台的計算機進行處理,必須採用分布式計算架構,依託雲計算的分布式處理、分布式資料庫、雲存儲和虛擬化技術,因此,大數據的挖掘和處理必須用到雲技術。
5、大數據的應用。大數據可應用於各行各業,將人們收集到的龐大數據進行分析整理,實現資訊的有效利用。舉個本專業的例子,比如在奶牛基因層面尋找與產奶量相關的主效基因,我們可以首先對奶牛全基因組進行掃描,盡管我們獲得了所有表型信息和基因信息,但是由於數據量龐大,這就需要採用大數據技術,進行分析比對,挖掘主效基因。例子還有很多。
6、大數據的意義和前景。總的來說,大數據是對大量、動態、能持續的數據,通過運用新系統、新工具、新模型的挖掘,從而獲得具有洞察力和新價值的東西。以前,面對龐大的數據,我們可能會一葉障目、可見一斑,因此不能了解到事物的真正本質,從而在科學工作中得到錯誤的推斷,而大數據時代的來臨,一切真相將會展現在我么面前。
問題十:大數據具體學習內容是啥? HADOOPP 是一個能夠對大量數據進行分布式處理的軟體框架。但是HADOOPP 是以一種可靠、高效、可伸縮的方式進行處理的。HADOOPP 是可靠的,因為它假設計算元素和存儲會失敗,因此它維護多個工作數據副本,確保能夠針對失敗的節點重新分布處理。HPCC高性能計算與 通信」的報告。開發可擴展的計算系統及相關軟體,以支持太位級網路傳輸性能,開發千兆比特網路技術,擴展研究和教育機構及網路連接能力。Storm是自由的開源軟體,一個分布式的、容錯的實時計算系統。Storm可以非常可靠的處理龐大的數據流,用於處理HADOOPP的批量數據。為了幫助企業用戶尋找更為有效、加快HADOOPP數據查詢的方法,Apache軟體基金會近日發起了一項名為「Drill」的開源項目。RapidMiner是世界領先的數據挖掘解決方案,在一個非常大的程度上有著先進技術。它數據挖掘任務涉及范圍廣泛,包括各種數據藝術,能簡化數據挖掘過程的設計和評價。Pentaho BI 平台不同於傳統的BI 產品,它是一個以流程為中心的,面向解決方案(Solution)的框架。其目的在於將一系列企業級BI產品、開源軟體、API等等組件集成起來,方便商務智能應用的開發。IT JOB
『貳』 大數據怎麼分析變碼的情況
⼤數據如何分析?如何進⾏數據處理及分析
當今社會,數據已成為某些企業的「根」。近年來越來越多的公司意識到數據分析可以帶來的價值,並搭上了⼤數據這
趟「旅⾏車」。現實⽣活中現在所有事情都受到監視及測試,從⽽創建了許多數據流,其數據量通常⽐公司處理的速度還快。因此問題就來了,按照定義,在⼤數據很⼤的情況下,數據收集中的細微差異或錯誤會導致重⼤問題。
如何分析⼤數據?從以下六個⽅⾯考慮
1.可視化分析
不管是數據分析專家還是普通⽤戶,數據可視化都是數據分析⼯具的基本要求。可視化可以直觀地顯⽰數據,讓數據⾃⼰說話,讓⽤戶看到結果。
2.數據挖掘演算法
可視化適⽤於⼈,⽽數據挖掘適⽤於機器。聚類,細分,離群值分析和其他演算法使我們能夠深⼊挖掘數據並挖掘價值。這些演算法不僅需要處理⼤數據的量,還需要處理⼤數據的速度。
3.預測分析能⼒
數據挖掘使分析師可以更好地理解數據,⽽預測分析則可以使分析師基於視覺分析和數據挖掘的結果做出⼀些預測性判斷。
4.語義引擎
我們知道,⾮結構化數據的多樣性給數據分析帶來了新的挑戰。我們需要⼀系列⼯具來解析,提取和分析數據。需要將語義引擎設計為可以從「⽂檔」中智能地提取信息。
5.數據質量和主數據管理
數據質量和數據管理是管理⽅⾯的最佳實踐。通過標准化流程和⼯具處理數據可以確保預先定義的⾼質量分析結果。如果⼤數據確實是下⼀個重要的技術創新,那麼我們將更好地關注⼤數據可以為我們帶來的好處,⽽不僅僅是挑戰。
6.數據存儲,數據倉庫
數據倉庫是⼀個關系資料庫,旨在促進以特定模式存儲的數據的多維分析和多⾓度顯⽰。在商業智能系統的設計中,數據倉庫的建設是商業智能系統的關鍵和基礎。它承擔著集成業務系統數據的任務,為業務智能系統提供數據提取,轉換和載入(ETL)。查詢和訪問數據以提供⽤於在線數據分析和數據挖掘的數據平台。
如何進⾏數據處理和分析?
步驟1:收集資料
對於企業來說,⽆論是新實施的系統還是舊的系統,要實施⼤數據分析平台,⾸先都需要了解需要收集哪些數據。考慮到數據收集的難度和成本,⼤數據分析平台並不收集企業的所有數據,⽽是直接或間接相關的數據。企業應該知道哪些數據可⽤於戰略決策或某些詳細的決策,並且分析後的數據的結果是有價值的,這也是考驗⼀個數據分析師的能⼒。例如,⼀家企業只想了解⽣產線設備的運⾏狀態。此時,僅需要收集影響⽣產線設備性能的關鍵參數。再例如,在產品售後服務中,公司需要了解產品使⽤狀態,購買組別和其他信息,這些數據對於⽀持新產品開發和市場預測⾮常重要。因此,建議公司在執⾏⼤數據分析計劃時對項⽬⽬標進⾏准確的分析,這更容易實現業務⽬標。
⼤數據收集過程的困難主要是由於並發數量⾼,因為可能有成千上萬的⽤戶同時訪問和操作,例如12306⽹和淘寶⽹,他們的並發訪問量在2007年達到了數百⼈。因此您需要在集合端部署⼤量資料庫以提供⽀持。⽽如何在這些資料庫之間執⾏負載蠢缺平衡和分⽚也需要深⼊思考。
步驟2:導⼊和預處理數據
收集過程只是構建⼤數據平台的第⼀步。在確定需要收集哪些數據之後,下⼀步需要統⼀處理不同來源的數據。例如,在智能⼯⼚中,可能存在視頻監控數據,設備操作數據,材料消耗數據等。這些數據可以是結構化的或⾮結構化的。⽬前,企業需要使⽤ETL⼯具從分布式和異構數據源(例如關系數據和平⾯數據⽂件)中提取數據到臨時中間層進⾏清理,轉換和集成,並將這些數據從前端導⼊到集中式⼤型分布式資料庫或分布式存儲集群最終被載入到數據倉庫或數據集市中,並成為在線分析處理和數據挖陵物掘的基礎。對於數據源的導⼊和預處理,最⼤的挑戰主要是導⼊的數據量,每秒的導⼊量通常達到100萬億甚⾄千兆位。
步驟3:統計分析
統計和分析主要使⽤分布式資料庫或分布式計算集群對存儲在其中的海量數據進⾏常規分析和分類,以滿⾜最常見的分析需求。在這⽅⾯,⼀些實時需求將使⽤EMC的GreenPlum,Oracle的Exadata和基於MySQL的列式存儲Infobright 等,⽽⼀些批處理或基於半結構化數據的需求則可以使⽤hadoop。數據的統計分析⽅法很多,例如假設檢驗,顯著意義檢驗,差異分析,相關分析,T檢驗,⽅差分析,卡⽅分析,偏相關分析,距離分析,回歸分析,簡單回歸分析,多元回歸分析,逐步回歸,回歸預測和殘差分析,帶汪辯嶺回歸,邏輯回歸分析,曲線估計,因⼦分析,聚類分析,主成分分析,因⼦分析,快速聚類和聚類⽅法,判別分析,對應分析,多元對應分析(最佳規模分析),⾃舉技術等。在統計和分析部分,主要特徵和挑戰是分析中涉及的⼤量數據,這將⼤⼤占⽤系統資源,尤其是I / O。
步驟4:價值挖掘
與以前的統計和分析過程不同,數據挖掘通常沒有任何預設的主題,主要是基於對現有數據的各種演算法的計算,從⽽達到預測的效果,以實現⼀些⾼級的數據分析需求⽬的。典型的演算法包括⽤於聚類的Kmeans,⽤於統計學習的SVM和⽤於分類的NaiveBayes。使⽤的主要⼯具是Mahout for Hadoop。該過程的特點和挑戰主要在於⽤於挖掘的演算法⾮常復雜,並且計算中涉及的數據量和計算量⾮常⼤。常⽤的數據挖掘演算法主要是單線程的。
以上信息均由億信華⾠⼩編整理發布,如若轉載,請標明出處!
¥
5.9
網路文庫VIP限時優惠現在開通,立享6億+VIP內容
立即獲取
大數據如何分析?如何進行數據處理及分析
⼤數據如何分析?如何進⾏數據處理及分析
當今社會,數據已成為某些企業的「根」。近年來越來越多的公司意識到數據分析可以帶來的價值,並搭上了⼤數據這
趟「旅⾏車」。現實⽣活中現在所有事情都受到監視及測試,從⽽創建了許多數據流,其數據量通常⽐公司處理的速度還快。因此問題就來了,按照定義,在⼤數據很⼤的情況下,數據收集中的細微差異或錯誤會導致重⼤問題。
第 1 頁
如何分析⼤數據?從以下六個⽅⾯考慮
1.可視化分析
不管是數據分析專家還是普通⽤戶,數據可視化都是數據分析⼯具的基本要求。可視化可以直觀地顯⽰數據,讓數據⾃⼰說話,讓⽤戶看到結果。
2.數據挖掘演算法
可視化適⽤於⼈,⽽數據挖掘適⽤於機器。聚類,細分,離群值分析和其他演算法使我們能夠深⼊挖掘數據並挖掘價值。這些演算法不僅需要處理⼤數據的量,還需要處理⼤數據的速度。
第 2 頁
3.預測分析能⼒
數據挖掘使分析師可以更好地理解數據,⽽預測分析則可以使分析師基於視覺分析和數據挖掘的結果做出⼀些預測性判斷。
4.語義引擎
我們知道,⾮結構化數據的多樣性給數據分析帶來了新的挑戰。我們需要⼀系列⼯具來解析,提取和分析數據。需要將語義引擎設計為可以從「⽂檔」中智能地提取信息。
5.數據質量和主數據管理
第 3 頁
數據質量和數據管理是管理⽅⾯的最佳實踐。通過標准化流程和⼯具處理數據可以確保預先定義的⾼質量分析結果。如果⼤數據確實是下⼀個重要的技術創新,那麼我們將更好地關注⼤數據可以為我們帶來的好處,⽽不僅僅是挑戰。
6.數據存儲,數據倉庫
數據倉庫是⼀個關系資料庫,旨在促進以特定模式存儲的數據的多維分析和多⾓度顯⽰。在商業智能系統的設計中,數據倉庫的建設是商業智能系統的關鍵和基礎。它承擔著集成業務系統數據的任務,為業務智能系統提供數據提取,轉換和載入(ETL)。查詢和訪問數據以提供⽤於在線數據分析和數據挖掘的數據平台。
『叄』 大數據中有什麼比較好用的知識
大數據技術學習前的准備知識
(1)英語基礎
對於大數據技術文章,比較先進的是外文較多,必須要有一定的英語能力。
(2)統計學
主要是大數據分析、數據挖掘方向的工作需要。可以重點學習:
基本的統計量:均值、中位數、眾數、方差、標准差、百分位數等
概率分布:幾何分布、二項分布、泊松分布、正態分布等
總體和樣如隱本:了解基本概念,抽樣的概念
置信區間與假設檢驗:如何進行驗證分析
相關性與回歸分析:一般數據分析的基本模型等等。
推薦書籍:
《赤裸裸的統計學》、渣跡廳《深入淺出統計學》
(3)數學
和數據打交道,數學知識是有很大幫助的,尤其是數據分析這個方向。需要的數學知識如下:
概率論與數理統計
線性代數
優化理論:線性優化、最優化、凸優化等
離散數學等
推薦學習資源:
《高等數學》、《概率論及其應用》、《線性代數及其應用》等
(4)計算機知識
網路體系結構
網路協議
數據傳輸過程
網路安全
多媒體數據傳輸等
推薦書籍:
《計算機基州亮礎知識入門》、《計算機組成原理》、《計算機系統》、《編譯原理》、《語言與計算機》
2、linux操作系統
要了解操作系統體系結構、任務調度、內存管理、存儲管理、命令解釋、界面管理、文件管理等基本內容。
Linux基礎
Linux系統管理
基礎網路服務
系統管理進階及運維自動化工具
推薦學習資源:
Linux 基金會關於 Linux 的介紹、《Linux 介紹》、《Linux 新手終極指南》、《Linux 基礎》、《Linux 命令行》
3、javaSE
Java經過二十多年的發展,目前應用十分廣泛,具有健全的生態體系,網路上的學習資源很多,且相當一部分系統清楚。Java和大數據有直接的關系,學習大數據之前,需要先學習這門編程語言,尤其是大數據開發方向。
變數、循環、if等等;面向對象;I/O輸入和輸出(HDFS會用到);反射、泛型,MR查詢等
JavaSE書籍推薦:
《Java編程思想》、《Java核心技術卷一》、《Effective Java》、《深入理解Java虛擬機》、《Java8實戰》、《Java高並發編程實戰》
『肆』 大數據分析是指的什麼
大數據分析是指對規模巨大的數據進行分析。對大數據bigdata進行採集、清洗、挖掘、分析等,大數據主要有數據採集、數據存儲、數據管理和數據分析與挖掘技術等。
大數據分析目標:語義引擎處理大數據的時候,經常會使用很多時間和花費,所以每次生成的報告後,應該支持語音引擎功能。產生可視化報告,便於人工分析通過軟體,對大量的數據進行處理,將結果可視化。通過大數據分析演算法,應該對於數據進行一定的推斷,這樣的數據才更有指導性。
統計分析:假設檢驗、顯著性檢驗、差異分析、相關分析、多元回歸分析、逐步回歸、回歸預測與殘差分析等。
數據挖掘:分類 (Classification)、估計(Estimation)、預測(Prediction)、相關性分組或關聯規則(Affinity grouping or association rules)、聚類(Clustering)、描述和可視化、Description and Visualization)、復雜數據類型挖掘(Text, Web ,圖形圖像,視頻,音頻等)。建立模型,採集數據可以通過網路爬蟲,或者歷年的數據資料,建立對應的數據挖掘模型,然後採集數據,獲取到大量的原始數據。導入並准備數據在通過工具或者腳本,將原始轉換成可以處理的數據,
大數據分析演算法:機器學習通過使用機器學習的方法,處理採集到的數據。根據具體的問題來定。這里的方法就特別多。
『伍』 大數據分析應該掌握哪些基礎知識呢
前言,學大數據要先換電腦:
保證電腦4核8G內存64位操作系統,盡量有ssd做系統盤,否則卡到你喪失信心。硬碟越大越好。
1,語言要求
java剛入門的時候要求javase。
scala是學習spark要用的基本使用即可。
後期深入要求:
java NIO,netty,多線程,ClassLoader,jvm底層及調優等,rpc。
2,操作系統要求
linux 基本的shell腳本的使用。
crontab的使用,最多。
cpu,內存,網路,磁碟等瓶頸分析及狀態查看的工具。
scp,ssh,hosts的配置使用。
telnet,ping等網路排查命令的使用
3,sql基本使用
sql是基礎,hive,sparksql等都需要用到,況且大部分企業也還是以數據倉庫為中心,少不了sql。
sql統計,排序,join,group等,然後就是sql語句調優,表設計等。
4,大數據基本了解
Zookeeper,hadoop,hbase,hive,sqoop,flume,kafka,spark,storm等這些框架的作用及基本環境的搭建,要熟練,要會運維,瓶頸分析。
5,maprece及相關框架hive,sqoop
深入了解maprece的核心思想。尤其是shuffle,join,文件輸入格式,map數目,rece數目,調優等。
6,hive和hbase等倉庫
hive和hbase基本是大數據倉庫的標配。要回用,懂調優,故障排查。
hbase看浪尖hbase系列文章。hive後期更新。
7,消息隊列的使用
kafka基本概念,使用,瓶頸分析。看浪尖kafka系列文章。
8,實時處理系統
storm和spark Streaming
9,spark core和sparksql
spark用於離線分析的兩個重要功能。
10,最終方向決策
a),運維。(精通整套系統及故障排查,會寫運維腳本啥的。)
b),數據分析。(演算法精通)
c),平台開發。(源碼精通)
自學還是培訓?
無基礎的同學,培訓之前先搞到視頻通學一遍,防止盲目培訓跟不上講師節奏,浪費時間,精力,金錢。
有基礎的盡量搞點視頻學基礎,然後跟群里大牛交流,前提是人家願意,
想辦法跟大牛做朋友才是王道。
『陸』 如何讓Hadoop結合R語言做大數據分析
R語言和Hadoop讓我們體會到了,兩種技術在各自領域的強大。很多開發人員在計算機的角度,都會提出下面2個問題。問題1: Hadoop的家族如此之強大,為什麼還要結合R語言?x0dx0a問題2: Mahout同樣可以做數據挖掘和機器學習,和R語言的區別是什麼?下面我嘗試著做一個解答:問題1: Hadoop的家族如此之強大,為什麼還要結合R語言?x0dx0ax0dx0aa. Hadoop家族的強大之處,在於對大數據的處理,讓原來的不可能(TB,PB數據量計算),成為了可能。x0dx0ab. R語言的強大之處,在於統計分析,在沒有Hadoop之前,我們對於大數據的處理,要取樣本,假設檢驗,做回歸,長久以來R語言都是統計學家專屬的工具。x0dx0ac. 從a和b兩點,我們可以看出,hadoop重點是全量數據分析,而R語言重點是樣本數據分析。 兩種技術放在一起,剛好是最長補短!x0dx0ad. 模擬場景:對1PB的新聞網站訪問日誌做分析,預測未來流量變化x0dx0ad1:用R語言,通過分析少量數據,對業務目標建回歸建模,並定義指標d2:用Hadoop從海量日誌數據中,提取指標數據d3:用R語言模型,對指標數據進行測試和調優d4:用Hadoop分步式演算法,重寫R語言的模型,部署上線這個場景中,R和Hadoop分別都起著非常重要的作用。以計算機開發人員的思路,所有有事情都用Hadoop去做,沒有數據建模和證明,」預測的結果」一定是有問題的。以統計人員的思路,所有的事情都用R去做,以抽樣方式,得到的「預測的結果」也一定是有問題的。所以讓二者結合,是產界業的必然的導向,也是產界業和學術界的交集,同時也為交叉學科的人才提供了無限廣闊的想像空間。問題2: Mahout同樣可以做數據挖掘和機器學習,和R語言的區別是什麼?x0dx0ax0dx0aa. Mahout是基於Hadoop的數據挖掘和機器學習的演算法框架,Mahout的重點同樣是解決大數據的計算的問題。x0dx0ab. Mahout目前已支持的演算法包括,協同過濾,推薦演算法,聚類演算法,分類演算法,LDA, 樸素bayes,隨機森林。上面的演算法中,大部分都是距離的演算法,可以通過矩陣分解後,充分利用MapRece的並行計算框架,高效地完成計算任務。x0dx0ac. Mahout的空白點,還有很多的數據挖掘演算法,很難實現MapRece並行化。Mahout的現有模型,都是通用模型,直接用到的項目中,計算結果只會比隨機結果好一點點。Mahout二次開發,要求有深厚的JAVA和Hadoop的技術基礎,最好兼有 「線性代數」,「概率統計」,「演算法導論」 等的基礎知識。所以想玩轉Mahout真的不是一件容易的事情。x0dx0ad. R語言同樣提供了Mahout支持的約大多數演算法(除專有演算法),並且還支持大量的Mahout不支持的演算法,演算法的增長速度比mahout快N倍。並且開發簡單,參數配置靈活,對小型數據集運算速度非常快。x0dx0a雖然,Mahout同樣可以做數據挖掘和機器學習,但是和R語言的擅長領域並不重合。集百家之長,在適合的領域選擇合適的技術,才能真正地「保質保量」做軟體。x0dx0ax0dx0a如何讓Hadoop結合R語言?x0dx0ax0dx0a從上一節我們看到,Hadoop和R語言是可以互補的,但所介紹的場景都是Hadoop和R語言的分別處理各自的數據。一旦市場有需求,自然會有商家填補這個空白。x0dx0ax0dx0a1). RHadoopx0dx0ax0dx0aRHadoop是一款Hadoop和R語言的結合的產品,由RevolutionAnalytics公司開發,並將代碼開源到github社區上面。RHadoop包含三個R包 (rmr,rhdfs,rhbase),分別是對應Hadoop系統架構中的,MapRece, HDFS, HBase 三個部分。x0dx0ax0dx0a2). RHiveRHive是一款通過R語言直接訪問Hive的工具包,是由NexR一個韓國公司研發的。x0dx0ax0dx0a3). 重寫Mahout用R語言重寫Mahout的實現也是一種結合的思路,我也做過相關的嘗試。x0dx0ax0dx0a4).Hadoop調用Rx0dx0ax0dx0a上面說的都是R如何調用Hadoop,當然我們也可以反相操作,打通JAVA和R的連接通道,讓Hadoop調用R的函數。但是,這部分還沒有商家做出成形的產品。x0dx0ax0dx0a5. R和Hadoop在實際中的案例x0dx0ax0dx0aR和Hadoop的結合,技術門檻還是有點高的。對於一個人來說,不僅要掌握Linux, Java, Hadoop, R的技術,還要具備 軟體開發,演算法,概率統計,線性代數,數據可視化,行業背景 的一些基本素質。在公司部署這套環境,同樣需要多個部門,多種人才的的配合。Hadoop運維,Hadoop演算法研發,R語言建模,R語言MapRece化,軟體開發,測試等等。所以,這樣的案例並不太多。
『柒』 在大數據環境下,非參數方法有意義嗎
有意義。在大數據環境下,非參數方法可以咐判祥不依賴總體分布的衡搏具體形式,不是對分布參數進沖陵行估計或者假設檢驗,而是對總體的分布位置/形狀進行估計或者假設檢驗。
『捌』 # 大數據的統計學基礎
概率論是統計學的基礎,統計學沖鋒在應用第一線,概率論提供武器。
我們在學習R的時候,會做過假設檢驗。做假設檢驗的時候會有一個基本的技術就是構造出統計量,這些統計量要滿足一定的概率密度分布,然後我算這個統計量的值,來判定它在這個密度分布裡面,分布在哪個區域,出現在這個區域內的可能性有多高,如果可能性太低,我們就判定我們的假設檢驗是不成立的。 那麼如何構造這個統計量,這是一個很有技術的東西,同時也是由數學家來完成的,那這個工作就是概率論所作的事情。
古典概率論: 扔硬幣,正面1/2反面1/2,扔的次數之間是相互獨立的。 但是這個等概率事件確實是一個不是很嚴謹的事情。仔細想一想其實是很有趣的。 柯爾莫哥洛夫創建現代概率論 他將概率論提出了許多公理,因此將概率論變成了非常嚴謹的一門學科。
學會和運用概率,會使人變得聰明,決策更准確。
統計學 : 統計學可以分為:描述統計學與推斷統計學 描述統計學 :使用特定的數字或者圖表來體現數據的集中程度和離散程度。比如:每次考試算的平均分,最高分,各個分數段的人數分布等,也是屬於描述統計學的范圍。 推斷統計學 :根據樣本數據推斷總體數據特徵。比如:產品質量檢查,一般採用抽樣檢測,根據所抽樣本的質量合格率作為總體的質量合格率的一個估計。 統計學的應用十分廣泛,可以說,只要有數據,就有統計學的用武之地。目前比較熱門的應用:經濟學,醫學,心理學,IT行業大數據方面等。
例如:對於 1 2 3 4 5 這組數據,你會使用哪個數字作為代表呢? 答案是3。 因為3是這組數據的中心。 對於一組數據,如果只容許使用一個數字去代表這組數據,那麼這個數字應該如何選擇???-----選擇數據的中心,即反映數據集中趨勢的統計量。 集中趨勢:在統計學裡面的意思是任意種數據向 中心值靠攏 的程度。它可以反映出數據中心點所在的位置。 我們經常用到的能夠反映出集中趨勢的統計量: 均值:算數平均數,描述 平均水平 。 中位數:將數據按大小排列後位於正中間的數描述,描述 中等水平 。 眾數:數據種出現最多的數,描述 一般水平 。
均值:算數平均數 例如:某次數學考試種,小組A與小組B的成員成績分別如下: A:70,85,62,98,92 B:82,87,95,80,83 分別求出兩組的平均數,並比較兩組的成績。
組B的平均分比組A的高,就是組B的總體成績比組A高。
中位數:將數據按大小順序(從大到小或者從小到大)排列後處於 中間位置 的數。 例如:58,32,46,92,73,88,23 1.先排序:23,32,46,58,73,88,92 2.找出中間位置的數23,32,46, 58 ,73,88,92 如果數據中是偶數個數,那麼結果會發生什麼改變? 例如:58,32,46,92,73,88,23,63 1.先排序:23,32,46,58,63,73,88,92 2.找出處於中間位置的數:23,32,46, 58 , 63 ,73,88,92 3.若處於中間位置的數據有兩個(也就是數據的總個數為偶數時),中位數為中間兩個數的算數平均數:(58+63)/2=60.5 在原數據中,四個數字比60.5小,四個數字比60.5大。
眾數:數據中出現次數最多的數(所佔比例最大的數) 一組數據中,可能會存在多個眾數,也可能不存在眾數。 1 2 2 3 3 中,眾數是2 和 3 1 2 3 4 5 中,沒有眾數 1 1 2 2 3 3 4 4 中,也沒有眾數 只要出現的頻率是一樣的,那麼就不存在眾數 眾數不僅適用於數值型數據,對於非數值型數據也同樣適合 {蘋果,蘋果,香蕉,橙子,橙子,橙子,橙子,桃子}這一組數據,沒有什麼均值中位數科研,但是存在眾數---橙子。 但是在R語言裡面沒有直接計算眾數的內置函數,不過可以通過統計數據出現的頻率變相的去求眾數。
下面比較一下均值,中位數,眾數三個統計量有什麼優點和缺點 [圖片上傳失敗...(image-57f18-1586015539906)]
例子: 兩個公司的員工及薪資構成如下: A:經理1名,月薪100000;高級員工15名,月薪10000;普通員工20名,月薪7500 B:經理1名,月薪20000;高級員工20名,月薪11000;普通員工15名,月薪9000 請比較兩家公司的薪資水平。若只考慮薪資,你會選擇哪一家公司?
A 7500 B 11000
A 7500 B 11000</pre>
若從均值的角度考慮,明顯地A公司的平均月薪比B公司的高,但是A公司存在一個極端值,大大地拉高了A公司的均值,這時只從均值考慮明顯不太科學。從中位數和眾數來看,B公司的薪資水平比較高,若是一般員工,選擇B公司顯得更加合理。
比較下面兩組數據: A: 1 2 5 8 9 B: 3 4 5 6 7 兩組數據的均值都是5,但是你可以看出B組的數據與5更加接近。但是有描述集中趨勢的統計量不夠,需要有描述數據的離散程度的統計量。
極差 :最大值 - 最小值,簡單地描述數據的范圍大小。 A: 9 - 1 = 8 B: 7 - 3 = 4 同樣的5個數,A的極差比B的極差要大,所以也比B的要分散 但是只用極差這個衡量離散程度也存在不足 比如: A: 1 2 5 8 9 B: 1 4 5 6 9 兩組數據雖然極差都是相同的,但是B組數據整體分布上更加靠近5。
方差 :在統計學上,更常地是使用方差來描述數據的 離散程度 :數據離中心越遠,越離散。 方差越大,就代表這組數據越離散。
對於前面的數據 1 2 5 8 9,前面求的一組數據的方差是12.5。 將12.5於原始數據進行比較,可以看出12.5比原數據都大,這是否就能說明這一組數據十分離散呢? 其實方差與元數據的單位是不一樣的,這樣比較也是毫無意義的。如果原始數據的單位是m的話,那麼方差的單位就是m^2 為了保持單位的一致性,我們引入一個新的統計量:標准差 標准差:sqrt(var()), 有效地避免了因為單位的平方而引起的度量問題。 與方差一樣,標准差的值越大,表示數據越分散。 A: 1 2 5 8 9 B: 3 4 5 6 7
某班40個學生某次數學檢測的成績如下:
63,84,91,53,69,81,61,69,78,75,81,67,76,81,79,94,61,69,89,70,70,87,81,86,90,88,85,67,71,82,87,75,87,95,53,65,74,77 對於這一組數字,你能看出什麼呢? 或許先算一算平均值,中位數,或者眾數
或許算一算這組數據的方差或者標准差
但是即便是統計了上述的數據,我們還是對全班同學的分數分布,沒有一個全面的了解。 原始數據太雜亂無章,難以看出規律性,只依賴數字來描述集中趨勢與離散程度讓人難以對數據產生直觀地印象,這是我們就需要用到圖標來展示這些數字。
1.找出上面數據中的最大值和最小是,確定數據的范圍。
將成績排序後很容易得到最大值是95,最小值是53
2.整理數據,將數據按照成績分為幾個組。成績按照一般50-60,60-70,70-80,80-90,90-100這幾個分段來劃分(一般都分為5-10組),然後統計這幾個分段內部的頻數。 可以看到80-90這個分段的人數是最多的。 注意在繪制直方圖的時候,一定要知道是左閉右開還是左開右閉。 因為這個可能會直接影響到頻數的統計。
上圖就是:頻數直方圖。頻數作為縱坐標,成績作為橫坐標。通過直方圖我們可以對成績有一個非常直觀的印象。 除了頻數直方圖,還有一種直方圖:頻率直方圖。與頻數直方圖相比,頻率直方圖的縱坐標有所改變,使用了頻率/組距。 頻率=頻數/總數;組距就是分組的極差,這里的組距是10.
除了直方圖外,畫一個簡單的箱線圖也可以大致看出數據的分布。
想要看懂箱線圖,必須要學習一些箱線圖專業的名詞: 下四分位數:Q1,將所有的數據按照從小到大的順序排序,排在第25%位置的數字。 上四分位數:Q3,將所有的數據按照從小到大的順序排序,排在第75%位置的數字。 四分距:IQR,等於Q3-Q1,衡量數據離散程度的一個統計量。 異常點:小於Q1-1.5IQR或者大於Q3+1.5IQR的值。 (注意是1.5倍的IQR) 上邊緣:除異常點以外的數據中的最大值 下邊緣:除異常點以外的數據種的最小值
莖葉圖可以在保留全部數據信息的情況下,直觀地顯示出數據的分布情況。 左邊是莖,右邊是葉。 若將莖葉圖旋轉90度,則可以得到一個類似於直方圖的圖。跟直方圖一樣,也可以直觀地知道數據的分布情況。 並且可以保留所有的數據信息。 莖葉圖的畫法也非常的簡單: 將數據分為莖和葉兩部分,這里的莖是指十位上的數字,葉是指給上的數字。 將莖部份(十位)從小到大,從上到下寫出來 相對於各自的莖,將同一莖(十位)從小到大,從左往右寫出來。
但是莖葉圖也有缺陷,因為百位和十位同時畫在莖葉圖的時候,容易區分不開。同時也可能出現卻葉的情況。
以時間作為橫坐標,變數作為縱坐標,反映變數隨時間推移的變化趨勢。
顯示一段時間內的數據變化或者顯示各項之間的比較情況。
根據各項所佔百分比決定在餅圖中扇形的面積。簡單易懂,通俗明了。可以更加形象地看出各個項目所佔的比例大小。 適當的運用一些統計圖表,可以更生動形象的說明,不再只是純數字的枯燥描述。
學習鏈接: https://www.bilibili.com/video/BV1Ut411r7RG
『玖』 如何進行大數據分析及處理
1.可視化分析
大數據分析的使用者有大數據分析專家,同時還有普通用戶,但是他們二者對於大數據分析最基本的要求就是可視化分析,因為可視化分析能夠直觀的呈現大數據特點,同時能夠非常容易被讀者所接受,就如同看圖說話一樣簡單明了。
2. 數據挖掘演算法
大數據分析的理論核心就是數據挖掘演算法,各種數據挖掘的演算法基於不同的數據類型和格式才能更加科學的呈現出數據本身具備的特點,也正是因為這些被全世界統計 學家所公認的各種統計方法(可以稱之為真理)才能深入數據內部,挖掘出公認的價值。
另外一個方面也是因為有這些數據挖掘的演算法才能更快速的處理大數據,如 果一個演算法得花上好幾年才能得出結論,那大數據的價值也就無從說起了。
3. 預測性分析
大數據分析最終要的應用領域之一就是預測性分析,從大數據中挖掘出特點,通過科學的建立模型,之後便可以通過模型帶入新的數據,從而預測未來的數據。
4. 語義引擎
非結構化數據的多元化給數據分析帶來新的挑戰,我們需要一套工具系統的去分析,提煉數據。
語義引擎需要設計到有足夠的人工智慧以足以從數據中主動地提取信息。
5.數據質量和數據管理。
大數據分析離不開數據質量和數據管理,高質量的數據和有效的數據管理,無論是在學術研究還是在商業應用領域,都能夠保證分析結果的真實和有價值。
大數據分析的基礎就是以上五個方面,當然更加深入大數據分析的話,還有很多很多更加有特點的、更加深入的、更加專業的大數據分析方法。
大數據的技術
數據採集: ETL工具負責將分布的、異構數據源中的數據如關系數據、平面數據文件等抽取到臨時中間層後進行清洗、轉換、集成,最後載入到數據倉庫或數據集市中,成為聯機分析處理、數據挖掘的基礎。
數據存取: 關系資料庫、NOSQL、SQL等。
基礎架構: 雲存儲、分布式文件存儲等。
數據處理: 自然語言處理(NLP,Natural Language Processing)是研究人與計算機交互的語言問題的一門學科。
處理自然語言的關鍵是要讓計算機」理解」自然語言,所以自然語言處理又叫做自然語言理解也稱為計算語言學。
一方面它是語言信息處理的一個分支,另一方面它是人工智慧的核心課題之一。
統計分析: 假設檢驗、顯著性檢驗、差異分析、相關分析、T檢驗、 方差分析 、 卡方分析、偏相關分析、距離分析、回歸分析、簡單回歸分析、多元回歸分析、逐步回歸、回歸預測與殘差分析、嶺回歸、logistic回歸分析、曲線估計、 因子分析、聚類分析、主成分分析、因子分析、快速聚類法與聚類法、判別分析、對應分析、多元對應分析(最優尺度分析)、bootstrap技術等等。
數據挖掘: 分類 (Classification)、估計(Estimation)、預測(Prediction)、相關性分組或關聯規則(Affinity grouping or association rules)、聚類(Clustering)、描述和可視化、Description and Visualization)、復雜數據類型挖掘(Text, Web ,圖形圖像,視頻,音頻等)
模型預測 :預測模型、機器學習、建模模擬。
結果呈現: 雲計算、標簽雲、關系圖等。
大數據的處理
1. 大數據處理之一:採集
大數據的採集是指利用多個資料庫來接收發自客戶端(Web、App或者感測器形式等)的 數據,並且用戶可以通過這些資料庫來進行簡單的查詢和處理工作。
比如,電商會使用傳統的關系型資料庫MySQL和Oracle等來存儲每一筆事務數據,除 此之外,Redis和MongoDB這樣的NoSQL資料庫也常用於數據的採集。
在大數據的採集過程中,其主要特點和挑戰是並發數高,因為同時有可能會有成千上萬的用戶 來進行訪問和操作,比如火車票售票網站和淘寶,它們並發的訪問量在峰值時達到上百萬,所以需要在採集端部署大量資料庫才能支撐。
並且如何在這些資料庫之間 進行負載均衡和分片的確是需要深入的思考和設計。
2. 大數據處理之二:導入/預處理
雖然採集端本身會有很多資料庫,但是如果要對這些海量數據進行有效的分析,還是應該將這 些來自前端的數據導入到一個集中的大型分布式資料庫,或者分布式存儲集群,並且可以在導入基礎上做一些簡單的清洗和預處理工作。
也有一些用戶會在導入時使 用來自Twitter的Storm來對數據進行流式計算,來滿足部分業務的實時計算需求。
導入與預處理過程的特點和挑戰主要是導入的數據量大,每秒鍾的導入量經常會達到百兆,甚至千兆級別。
3. 大數據處理之三:統計/分析
統計與分析主要利用分布式資料庫,或者分布式計算集群來對存儲於其內的海量數據進行普通 的分析和分類匯總等,以滿足大多數常見的分析需求,在這方面,一些實時性需求會用到EMC的GreenPlum、Oracle的Exadata,以及基於 MySQL的列式存儲Infobright等,而一些批處理,或者基於半結構化數據的需求可以使用Hadoop。
統計與分析這部分的主要特點和挑戰是分析涉及的數據量大,其對系統資源,特別是I/O會有極大的佔用。
4. 大數據處理之四:挖掘
與前面統計和分析過程不同的是,數據挖掘一般沒有什麼預先設定好的主題,主要是在現有數 據上面進行基於各種演算法的計算,從而起到預測(Predict)的效果,從而實現一些高級別數據分析的需求。
比較典型演算法有用於聚類的Kmeans、用於 統計學習的SVM和用於分類的NaiveBayes,主要使用的工具有Hadoop的Mahout等。
該過程的特點和挑戰主要是用於挖掘的演算法很復雜,並 且計算涉及的數據量和計算量都很大,常用數據挖掘演算法都以單線程為主。
整個大數據處理的普遍流程至少應該滿足這四個方面的步驟,才能算得上是一個比較完整的大數據處理。
『拾』 深入解讀SPC在質量分析中的應用,附demo演示
統計工具在質量控制和生產質量分析中有廣泛的用途。通過統計工具,能深入分析質量現象,得到很多有用的信息。圖表有著很直觀的表達能力,能簡潔直觀的表達意思,也容易得到共識灶鎮岩。
本文將為大家演示SPC統計工具,在製造業質量分析中隱御的重要應用:
一、質量異常追溯分析
在對不良品的生產質旅並量分析,要找到質量異常產品在生產過程中各工序的生產時間、工序的工藝參數,機台記錄的備注(生產異常說明)、交接班的備注(生產異常說明)、各工序的評審記錄、品檢信息、工器具信息、輔材信息、停機記錄、班廠量、設備運維狀況等信息,並判斷是否出現異常。
二、質量缺陷關鍵因子及根因分析
分析產線上的工藝參數和感測器數據(一共大約400個左右)與產出產品質量的關聯影響關系,找出關鍵影響參數(特徵選取),然後結合相應的標簽數據作為數據集,通過多種模型訓練(包括LDA+Knn分類器、人工神經網路ANN、SVM等),最後使用「留一法交叉驗證」評估驗證集上的准確率,最終構建相應產品的質量缺陷及優化模型。
三、SPC與大數據質量分析--相關性分析
系統具備分析因子間關聯關系的重要統計方法,相關性分析,它通過相關系數來度量各因素間的關聯關系方向及強度,主要實現如下功能:
1、找出對過程輸出(因變數y)有影響的因子(自變數x);
2、分析對的影響重要程度及影響方向;
3、相關系數r及其解釋。
四、SPC與生產質量分析--方差分析
具有強大方差分析能力,並能生成專業化的、易於解讀的方差分析報告。支持的方差分析模型有:單因子方差分析、多因素方差分析設計、混合效應模型、分級嵌套模型、失衡數據。
五、SPC與質量大數據分析--假設檢驗
假設檢驗在質量可靠性數據分析中的主要作用如下:
1、改善效果的驗證;
2、潛在原因的確認;
3、不同過程的對比;
4、不同供應商的質量可靠性水平的對比等。
系統支持常用的統計假設檢驗方法,包括參數方法與非參數方法,如:單樣本均值檢驗、雙樣本均值檢驗、配對樣本均值檢驗、方差檢驗、比例檢驗等等。