Ⅰ 藉助大數據分析課堂教學有助於提升課堂教學效果正確嗎
正確。
首先,教學評價的方式不再是經驗式的,而是可以通過大量數據的歸納地,找出教學活動的規律。比如新一代的在線學習平台,就多出了行為和學習誘導的部分。通過記錄學習者滑鼠的點擊,可以研究學習者的活動軌跡,發現不同的人對不同知識點有何不同反應,用了多長時間,以及哪些知識點需要重復或強調。對於學習活動來說,學習的效果體現在日常行為中,哪些知識沒有掌握,哪類問題最易犯錯等成為分析每個學生個體行為的直接結果。
大數據時代已來臨,並對社會各方面產生深遠影響,大大加快了社會信息化進展。也必將在教育教學領域產生積極的作用。大數據技術通過對教師與學生長期行為進行分析,得出具有個性化的教學行為、習慣、方式,從而更好的提升教學效果。
Ⅱ 教育大數據分析模型包含哪些
根據數據的類型可以分為以下幾類:
一是降維。方法有很多,目前主流的是因子分析、主成分、隨機森林
二是回歸。比較傳統的方法,根據因變數類型,可以分為一般回歸和離散回歸,商業上離散回歸用得比較多,比如logit模型probit模型
三是聚類。這也是大數據分析的主要方法之一,演算法有很多,說起來也復雜,沒辦法一一敘述。
四是分類。機器學習方面比較多、
五是時間序列。
六是關聯。
大概就這幾類,具體要看你有哪些數據,想要學習哪個模型,用哪個軟體,這樣回答起來可能更加准確。
Ⅲ 大數據如何影響課堂教學
「大數據」(BIG DATA)這個詞,是2008年在維克托·邁爾-舍恩伯格及肯尼斯·庫克耶編寫的《大數據時代》這本書中首次提出的。「大數據」指不用隨機分析法(抽樣調查)這樣的捷徑,而是對所有的數據(近似於全樣本)進行分析處理的一種方法。
1.什麼是我們身邊的大數據?
「大數據」已經滲透到我們生活中的方方面面。比如我們打開手機淘寶,呈現在我們面前的界面是不一樣的。它推送給我們的商品是不同的,而且這些商品往往真的能夠抓住我們的需求和心理,這是為什麼呢?
其實這就是大數據分析出的結論。
淘寶這個平台,對每一個瀏覽過商品的人,購買過商品的人,都進行了全數據分析,可以輕松獲取我們的很多信息。
例如我們的性別、年齡、家庭成員、喜好、是否結婚、是否有孩子、孩子的性別,甚至可以細致到你是愛穿休閑類的服飾,還是喜歡小清新類的服飾,或者是職業裝類的服飾等等。通過你的每一次操作,收集到了這些數據之後,它經過分析和處理,進一步推測出了你可能會訂購的商品,從而推送給你,讓你花更少的時間檢索而要花更多的錢進行消費。
例如你購買了一些孕婦類產品,可能在不久之後,它就會推送相關聯的一些嬰兒用品給你。
而我們消費後的評價與反饋,又使得他們不斷改進自己,例如不同賣家的鑽石星級,或者清退一些不合格的賣家等等這些行為,就是淘寶對自身的調整。
這種互利互惠的雙迴路的運轉模式,可以看作是賣家與買家間的一種良性的互動方式,而這種互動方式在傳統的賣場裡面是不可想像,也難以實現的。
2.什麼是課堂教學互動方式?
課堂教學互動方式,則是指在課堂上,教師與學生之間的一種信息交流方式。
在傳統的課堂中,師生之間的互動交流方式比較單一,上課就是教師在講,學生在聽,一種單方向的傳導過程。
有人說,教師就是知識的搬運工,課堂上很少有師生之間的交流。
還有一種觀念是,教師對學生提問,學生回答,就是師生互動。
顯然,這種認識是膚淺的,這將使師生互動流於形式。師生互動的根本目的是要引導和培養學生的高階思維。
因此,真正的師生互動應該定義為思維的碰撞、智慧火花的生發之源。
近些年來一直被提及的可汗學院的教學與學習方式,之所以受到關注的原因,恰恰就是它基於大數據分析,解決了課堂教學互動這個難題。
大數據之所以能實現課堂教學互動,是因為它具有三個主要特徵:反饋、個性化和概率預測。
我們傳統的課堂教學是一種單迴路的學習,即教師給予,學生接受。我們對學生進行考核,然後對他們進行評價。
我們不會或者沒有條件來通過學生的成績來反思自己的教學內容或者方式是否是恰當的。
我們不能從學生身上獲得真正有用的反饋信息來改變自己的教學內容和行為。
所以說,傳統的課堂教學是一種單迴路的方式,根本沒有實現師生間的良性互動。
此外我們的教學內容在編排上,考慮的是處於平均水平的學生,而這種水平的學生其實在現實中可能根本是不存在的。
換句話說,我們的教學沒有照顧到「好」學生,也忽略掉了那些「差」學生,甚至連我們認為的中等水平的學生,也是不存在的,因為他們是平均後虛構出來的群體。
所以,我們的教學根本沒有針對學生做出個性化的設計,這是教育普及大眾化不得不做出的取捨。
傳統的教學是沒有反饋或反饋較少(沒有時間或實在照顧不到,分身乏術),沒有個性化,從而更談不上有概率預測的一種教學。
而大數據下的新的課堂教學互動方式,卻可以改變這種狀況。
1.參考案例
維克托·邁爾-舍恩伯格及肯尼斯·庫克耶編寫的《與大數據同行——學習和教育的未來》一書,舉了可汗學院的例子。
2004年,可汗是一個剛從哈佛商學院畢業一年的基金分析師,給自己的表妹輔導數學。
由於他們生活在不同的城市,因此,他在互聯網上為她進行輔導,從此永遠地改變了教育的世界。
他編寫了若干程序來協助教學,這些程序能生成數學習題,並顯示孩子們提交的答案是否正確。
同時,也收集數據,程序可以追蹤每個學生的答對和答錯的習題數量,以及他們每天用於作業的時間等等。
後來在此基礎上創建的可汗學院,之所以可以聞名於世,就是因為它收集有關學生行為的數據,從中獲取有用的信息來改變教學內容的設計,為每個學生定製個性化的學習方案。
可以說數據就是可汗學院運作的核心所在,大數據的支撐,互聯網技術的飛速發展,使得相隔千里的師生之間形成了有效的課堂教學互動。
它改變了我們對面對面才能達成互動的傳統認識。
此外,還有一個關於斯坦福大學吳恩達與他的機器學習課程的例子。
吳教授將課程放到了網上,他追蹤學生與視頻互動的行為。
在什麼地方按了暫停鍵,什麼地位按了重復鍵,在什麼地方放棄了繼續聽課,他的目的不是督促學生學習,而是反思學生卡在了什麼問題上,哪些教學內容難以理解,從而對課程進行調整。
例如,他發現學生本來都是正常的按順序進行網上學習,但是很多學生在學習第7課時,都會去回看第3課的一個關於數學知識的復習課。
於是他發現,原來是因為第7課解決某個問題時,需要用到第3課復習到的一個數學公式,而很多學生並沒有記住,因此他就對第7課時的教學視頻做了改變,會自動彈出一個彈窗幫助學生來復習數學公式。
還有一次,他發現學生在學習第75課到第80課時,正常的學習秩序被打亂了,學生以各種各樣的順序反復觀看這幾節課。
他通過反復分析,發現學生的行為是在反復理解概念,於是他將這部分的教學內容製作的更加精細,更有助於幫助學生理解概念。
【 評價】
這是一個典型的大數據分析下,課堂教學互動變革實現了教學反饋的例子。
覺得我們傳統的教學,只是通過每天判一判學生的作業,看一看他們的考試成績,是無法得到這些動態的數據的,更無法得到改變我們教學內容與方式的有價值的信息。
於是我們的教學可能幾年甚至幾十年都在重復相同的內容和動作。因為我們不知道學生究竟是如何進行學習的。
2.參考案例
還有一個例子是關於「半島大學」的暑期班項目,他們使用可汗學院的數學課程教授來自舊金山灣區貧困社區的中學生。
在課程一開始,一個七年級的女生的成績在班裡一直墊底,在整個暑期的大部分時間中,她一直是學得最慢的一個學生,但是在課程結束後,她的成績是班上的第二名。
可汗對此感到好奇,於是調取了她完整的學習記錄,查看她每一道習題和解題的時間,系統創建的圖表對她學習進行的描繪,發現他很長時間都徘徊在班級的底部,直到在某個事件點上突然直線上升,超過了幾乎所有的學生。
這充分說明,當學生以自己最適合的步調和順序進行學習時,即使一個被看似沒有能力的「差生」也是可以變為優等生的。
【 評價】
這是一個典型的大數據分析下,課堂教學互動變革實現了個性化教學的例子。
如果這個女孩放在我們傳統的基於小數據的教學課堂上,幾次考試的成績都不理想,可能她就會被我們歸類為「差生」,於是各種補習加各種輔導,完全打擊了她的自信心,成績的陰影甚至會影響到她的一生。
而可汗學院的課程,利用數據監控了她的所有的學習過程,時間是一個連續的變數,針對她的特點設計了適合她的習題,循序漸進,激發出了她最大的能量。
她完全根據這種個性化的定製,按照自己的學習節奏進行學習,不用去關注到其他人的學習進度與成績。細思極恐,我在想我們的教育究竟扼殺掉了多少這樣的人才?
我們真的應該好好認清大數據帶給我們的課堂教學互動的變革,這種變革很多時候甚至不是技術上的,而是理念上的。
在反饋與個性化的基礎上,大數據的更大的優勢就體現在了概率預測這方面了。
例如我們可以對學生個體為提高其學業成績需要實施的行為作出預測。比如選擇最有效的教材、教學風格、反饋機制等等。
其實,在小數據時代,我們跟學生家長所說的某些建議,比如您的孩子應該加強數學這方面的學習,您的孩子適合去學文科等等這些建議,其實也不是肯定的事實,也只是概率性的干預。
因為可能根據老師所謂的經驗,這個學生選擇學習文科,將來考上一本的可能性更高。而大數據與過去最大的區別是,我們是通過對事物加以測量和量化,以更高的精確度說話。它的預測准確率更高。
比如,大學的選課方面,可以根據你以往的學習基礎以及學習行為,預測出你選哪門課的通過率會更高,你未來的職業規劃怎樣進行會更加順利等等。
大數據所實現的這種概率預測,似乎與課堂教學互動方式的變革沒有直接的關系。
但是仔細分析不難發現,這種預測其實是師生間互動的一種延續,我們對學生的影響不只局限於課堂上,而是延續到了未來選擇的層面上,使得互動交流更上了一個台階。
1.利用數據反饋信息調整課堂教學策略
以高考備考為例:
上圖是追蹤某高中四年所有學生高考數學各知識點得分率的情況,我們可以看出對其中一部分知識點的得分率維持在高位。
這就說明學校一貫的培養策略與日常教學方法是正確的,只需要保持即可,無論教師還是學生不需要過於焦慮,因為大數據反饋的結果對未來教學效果有一定的預測功能。
2.關注學生的個性化發展
大數據不僅對規模龐大的數據進行全樣本分析,得到一般規律,更重要的是很能體現出個性,它可以記錄下每一個學生的變化,方便教師針對每一個學生調整課堂教學方式。
上圖是大數據分析系統給出的某一個學生在一次考試中的情況,從圖中可以看出,數學與物理是這個學生的優勢學科,英語是這個學生最薄弱的學科,那麼在進行改進策略制定時,要多聽取英語老師的建議。
大數據可以幫助教師的課堂教學行為不像傳統課堂那樣,針對的是所謂的「平均水平」的學生授課,而是能照顧到每一名學生。
例如,利用信息技術監控學生的課堂測試與課堂練習情況,隨時調取任意學生的過程進行點評,統計每一名學生過程中出現的問題,這樣教師對課堂進程的判斷不是根據經驗,而是根據實際情況隨時調整。
總之,課堂教學互動方式的變革,不應該只是技術層面上的變革,媒體技術,網路平台的建設已經非常的成熟了,我們需要的變革是組織變革,是思想的變革。
現在流行的微課、慕課(MOOCs)其實就是大數據滲透到教學互動領域冰山的一角,形式並不重要,重要的是隱藏在這些形式下的數據所反映出來的學生行為,以及反饋給教師的教學信息,從而引起他們的思考和改變,形成雙向的迴路,實現真正的「互動」,這才是大數據真正的價值。
大數據下的教師要成為「數據脫盲者」,我們需要通過讀取數據來追蹤學生的進步,通過概率預測解釋什麼是對學生最有效的學習。
我想這應該意味著我們需要建立一套完善的系統,在這個系統中,有數據處理的專家,有解讀數據分析數據的分析師,有利用數據改善教學的教師。
只有在這個良性循環的系統中,才能真正實現課堂教學互動,呈現個性化的教學,讓教育針對每一個孩子。
希望我們的教育和教學可以因為大數據而發生真正的變革。
Ⅳ 利用教育大數據,建立學生個性化分析指導
這是互聯網+時代,這是大數據時代。但是 「不得不承認,對於學生,我們了解的太少!」 (卡耐基)
比較2500年前孔子時代的教育,和現今國內大部分中小學的教育模式,基本都是以教師主講,學生聽課,先進一些加上互助探究。課堂關注學生整體發展,對學生個體研究則少之又少。因材施教,有教無類,喊了2500年的教育口號,至今仍難實現。
大數據支持的教育,是智慧教育,是結合教育經驗和大數據支持的全新教育教學改革。教育大數據具備以下特徵:周期性強,復雜度高,價值高。中小學階段,教育大數據應用主要體現在反饋,個性化和概率預測三個層面。教育大數據可以全面反饋個體學習者的學習狀況,提供全方位的數據展示。從而根據每一位學生的實際,制定個性化的干預和指導,促進學生的自主成長和個性發展。提升對教育規律的認識深度、教育政策的制定方式,完善整個教育系統的結構,預測教育結果。通過大數據支持,現代教育將逐步成為一門實證科學,有據可依,有章可循的教育科學。
利用教育局建立的教學發展性評價系統,可以更加直觀地發現學生的真實,真實學習狀況,生活狀況,甚至思想狀況。
1,建立數據驅動的新型學習流程
傳統課堂上,教師設計教學,引領、指導學生的學習活動,學生選擇參與學習活動。
數據驅動的新型學習模式,教師依據大數據設計教學活動,進行教學測評,挖掘學生學習數據,確立新的教學目標,調整教學策略,重新設計教學活動。學生依據自身學習狀況,確立學習角色,參與學習活動,在活動中調整學習策略,確立新的學習目標,投入到新的學習中。利用互聯網+的技術支持,記錄,分析,反饋,促進教、學進步。
2,建立學生個人知識圖譜
傳統課堂上,教師的教學內容統一,教師講授什麼,學生學習什麼。對於學生個體而言沒有選擇性,有些同學基礎薄弱,對於先行知識還沒有掌握,學習新知困難重重,課堂一知半解。有些同學已經完全掌握相關知識,課堂上不得不亦步亦趨,浪費時間。教師對於每個學生的知識體系了解不足,教學針對性不足,教學效率低下。
大數據驅動下的智慧教學,提供給每一位學生相應科目,相應學習單元的知識圖譜,通過學習、檢測、反饋、應用等活動,記錄每個知識點的學習情況。教師依據學生個體知識圖譜,安排教學活動,布置個性化學習活動。課堂的教學,從圍繞時間展開,轉為圍繞學習進度展開,促進學生個體的進步發展。
3,針對學生採取個性化分析指導。
大數據改善了學生學習的三個層次:反饋,個性化和概率預測。通過對教育大數據,建立學生成長模型,包括品德發展、學業發展、身心健康、興趣特長四個維度,使學生發展顯示可視化、數據化,探索各種變數之間的關系,形成診斷性的預測。
通過大數據的分析,建立學生個性化的學業診斷。依據大數據,觀察學生的出勤、課堂表現、平時作業以及考試等過程性評價的數據,就可以分析出學業成績和學習行為各要素的相關性,進而針對學生個體形成診斷意見,提出個性化分析指導。
2014級有一學生,中考入學成績居年段20名,英語成績處於中上層次。在高一上學期期中考試和期末考試中,英語學習成績一路下滑,接近及格邊緣。班主任、科任教師發現情況,及時到教研室查閱該生的各項成長數據,發現學習作息時間正常,在單詞背誦、閱讀理解、以及英語學習總時間上與其他優等生一致,唯有課時練習完成不及時不主動。
與學生座談,分析英語成績下滑原因:在英語學習時間無差別的基礎上,由於時間分配存在差異,在同步練習上花時間偏少,導致成績與優等生差距拉大。引導學生改正學習習慣,課後及時復習,完成課時練習。
數據顯示,干預後,該生的英語成績穩步上升,達到高點。
學生的成長具有特異性,利用大數據觀察、記錄、分析學生的成長歷程,預測學生發展潛力,引導學生職業規劃,促進學生個性化發展和健康成長。
Ⅳ 教育大數據的技術體系框架
一般而言,大數據的處理流程包括數據採集、數據處理、數據分析與應用服務四個環節。
從下往上依次是:教育數據採集層、教育數據處理層、教育數據分析與展現層和教育數據應用服務層——通過數據傳輸介面,數據採集層將採集到的各類教育數據傳遞給數據處理層,並通過數據整合、存儲形成教育數據平台;基於該教育數據平台,分析與展現層可實現教育數據的可視化展現和大數據的分析與挖掘,並將分析結果通過數據介面傳遞給應用服務層。
安全與監控貫穿整個流程,以保證教育數據各個環節的安全性和可控性;標准與規范則是整個框架的基礎,以保障各個環節之間以及整個系統教育數據的融通與共享。
各個環節的主要任務及其涉及的關鍵技術如下:
1、教育數據採集
數據採集涉及的關鍵技術包括:數據源的選擇和高質量原始數據的採集方法,多源數據的實體識別和解析方法,數據清洗和自動修復方法,數據演化的溯源管理,數據載入、流計算、信息傳輸技術等。
2、教育數據處理
教育數據處理環節包含慎並 數據整合和數據存儲 。其中,數據整合是指通過高質量的數據整合方法,對數據進行加工處理,並在盡可能保留原有語義的情況下去粗取精、消除雜訊,從全局的角度保證數據的一致性和相關性;數據存儲是所有數據的集中存放地,主要用來存放各種結構化、半結構化和非結構化的歷史數據、預測數據、匯總數據以及需要共享的數據等。
3、教育數據分析與展現
(1)教育數據挖掘
教育數據挖掘是一個將來自各教育系統的原始數據轉換為寬拿跡有用信息的過程,這些有用信息可為教師、學生、家長、教育研究人員以及教育軟體系統開發人員所利用。
(2)學習分析
學習分析是指通過測量、收集、分析、匯報學習者和他們所處環境的數據,用以理解和優化學習以及學習發生的環境。
目前,學習分析領域常用的分析方法包括網路分析法、話語分析法和內容分析法。
4、教育數據應用服務
通過對教育大數據的分析,可以輔助教師更好地調整和改進教學策略,重構教學計劃,完善課程的設計與開發;向學生推薦個性化的學習資源、學習任務、學習活動和學習路徑;幫助家長更加全面、真實地認識孩子,與學校一起促進孩子的個性化成長;幫助教育管理者進行更科學的管理決策;幫助社會公眾把握教育的發展現狀,享受更具針對性、更適合自己的終身學習服務。
後續深入介紹。
參考文獻
教育敏碧大數據的技術體系框架與發展趨勢——「教育大數據研究與實踐專欄」之整體框架篇 楊現民
Ⅵ 教育大數據與其他行業大數據的主要區別是什麼
教育大數據,顧名思義就是教育行業的數據分析應用。而大數據,則需要具備5V的特點(IBM提出):Volume(大量)、Velocity(高速)、Variety(多樣)、Value(低價值密度)、Veracity(真實性)。
其中的「大」主要指的是 Volume(大量),我們現階段用的數據分析,大部分情況下的數據量還達不到這個「大」的級別。
教育行業在數據分析的應用方面,主要痛點有以下四個方面:
1.數據涉及面窄
數據主要來源為數字化校園系統產生的,其他教學管理的數據多為手工錄入非結構化數據,數據維度少,數據來源不足。
2.數據介面不完善
內部信息系統的教務系統、一卡通系統、圖書館系統、財務系統等數據都不規范一致,數據結構也不一樣,各業務系統介面對接難度大,業務介面與數據結構還不規范。
3.缺乏統一的數據管理平台
沒有統一的數據處理中心對數據進行管理,沒有人力維護各系統的接入,有效數據量少,數據質量差,達不到大數據處理分析要求。
大數據與教育相結合是大勢所趨,在教育大數據背景下,知識教學不再只能在學校進行,作為教師,應該清醒地認識到教育的功能究竟是什麼,就是教育即生長。在這樣一個大數據的時代,應該把關注人的生長提升到重要的地位。
Ⅶ 大數據分析的具體內容包括哪些
大數據分析的具體內容可以分為這幾個步驟,具體如下:
1.數據獲取:需要把握對問題的商業理解,轉化成數據問題來解決,直白點講就是需要哪些數據,從哪些角度來分析,界定問題後,再進行數據採集。這樣,就需要數據分析師具備結構化的邏輯思維。
2.數據處理:數據的處理需要掌握有效率的工具,例如:Excel基礎、常用函數和公式、數據透視表、VBA程序開發等式必備的;其次是Oracle和SQL sever。這是企業大數據分析不可缺少的技能;還有Hadoop之類的分布式資料庫,也應該掌握。
3.分析數據:分析數據需要各類統計分析模型,如關聯規則、聚類、分類、預測模型等等。SPSS、SAS、Python、R等工具,多多益善。達內教育大數據雲計算課程體系,內容較全,技術深,涉及JavaEE架構級技術,分布式高並發技術,雲計算架構技術,雲計算技術,雲計算架構技術等。
4.數據呈現:可視化工具,有開源的Tableau可用,也有一些商業BI軟體,根據實際情況掌握即可。
想了解更多有關大數據分析的詳情,推薦咨詢達內教育。達內教育已從事19年IT技術培訓,累計培養100萬學員,並且獨創TTS8.0教學系統,1v1督學,跟蹤式學習,有疑問隨時溝通;自主研發的26大課程體系更是緊跟企業需求,企業級項目,課程穿插大廠真實項目講解,對標企業人才標准,制定專業學習計劃,囊括主流熱點技術,助力學員更好的提高。感興趣的話點擊此處,免費學習一下
Ⅷ 教育大數據是什麼教育大數據作用有哪些
本文主要內容是介紹教育大數據的定義與作用,在了解教育大數據前我們首先要了解什麼是大數據。大數據技術是21世紀最具時代標志的技術之一。國務院發布的《促進大數據發展行動綱要》中提出「大數據是以容量大、類型多、存取速度快、應用價值高為主要特徵的數據集合」。簡單的說,大數據就是將海量碎片化的信息數據能夠及時地進行篩選、分析,並最終歸納、整理出我們需要的資訊。
教育大數據,顧名思義就是教育行業的數據分析應用。
而大數據,則需要具備5V的特點(IBM提出):Volume(大量)、Velocity(高速)、Variety(多樣)、Value(低價值密度)、Veracity(真實性)。
其中的「大」主要指的是 Volume(大量),我們現階段用的數據分析,大部分情況下的數據量還達不到這個「大」的級別。
教育行業在數據分析的應用方面,主要痛點有以下四個方面:
1.數據涉及面窄
數據主要來源為數字化校園系統產生的,其他教學管理的數據多為手工錄入非結構化數據
數據維度少,數據來源不足。
2.數據介面不完善
內部信息系統的教務系統、一卡通系統、圖書館系統、財務系統等數據都不規范一致,數據結構也不一樣,各業務系統介面對接難度大
業務介面與數據結構還不規范
3.缺乏統一的數據管理平台
沒有統一的數據處理中心對數據進行管理,沒有人力維護各系統的接入
有效數據量少,數據質量差,達不到大數據處理分析要求
在具體的應用方面,即數據分析體系搭建上,可以在以下四個方面開展。
1.教務管理
在這方面可以進行招生分析、就業分析、住宿分析、圖書館分析、資產數據統計分析等。
2.教學創新
在這里可以進行教學質量評估、上網行為分析、學生成績分析、學生特長能力分析
3.應用創新
可以進行學生軌跡分析、學生畫像、學生輿情監控
4.科研支撐
可以開展科研成果分析統計、科研項目研究、科研經費跟蹤研究,對整個科研情況有全面的了解和掌握。
1.大數據或把老師從作業批改中解放
在線教育除了能以優質教育資源為學生提供幫助外,對廣大家長、老師和學校也大有裨益。蘇靜以作業幫家長版的「口算批改」功能為例介紹,家長或老師只需要用手機對著學生作業一掃,就能立刻對作業完成智能批改,顯示出批改結果,能夠大大節省老師和家長批改作業的時間。
事實上,隨著人工智慧等新興技術的深入應用,在線教育平台能夠為家長、老師、學校提供更有效的教學輔助。
2.因材施教,將更有的放矢
「人工智慧+大數據精準教育」系統能利用大數據技術,完成對學生學習進度、學力、習慣的跟蹤和分析,系統後台能夠准確對用戶進行用戶畫像,找到他們的知識薄弱點,形成用戶學情報告,這可以幫助老師和學校更細致地了解每一個學生的情況,並有的放矢地制定更精準的學生學習計劃。
Ⅸ 教育大數據分析方法主要包括哪三類
一、大數據與大數據分析概述
隨著數據獲取、存儲等技術的不斷發展,以及人們對數據的重視程度不斷提高,大數據得到了廣泛的重視,不僅僅在IT領域,包括經濟學領域、醫療領域、營銷領域等等。例如,在移動社交網路中,用戶拍照片、上網、評論、點贊等信息積累起來都構成大數據;醫療系統中的病例、醫學影像等積累起來也構成大數據;在商務系統中,顧客購買東西的行為被記錄下來,也形成了大數據。
時至今日,大數據並沒有特別公認的定義。有三個不同角度的定義:(1)「大數據」指的是所涉及的數據量規模巨大到無法通過人工在合理時間內達到截取、管理、處理並整理成為人類所能解讀的信息[1]。(2)「大數據」指不用隨機分析法(抽樣調查)這樣的捷徑,而採用所有數據進行分析處理的方法的數據[2]。(3)「大數據」是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。
通常把大數據的特點歸納為4個V,即數據量大(Volume)、數據類型多(Varity)、數據的價值密度低(Value)以及數據產生和處理的速度非常快(Velocity)。
對大數據進行分析可以產生新的價值。數據分析的概念誕生於大數據時代之前,但傳統的數據分析和大數據分析是不同的。傳統的數據分析往往是由客戶提出一個問題,分析者圍繞該問題建立一個系統,進而基於該系統解釋這個問題;而大數據分析有時候並沒有明確的問題,而是通過搜集數據,瀏覽數據來提出問題。
另一方面,傳統的數據分析是在可用的信息上進行抽樣,大數據分析則是對數據進行不斷的探索,通過全局分析連接數據,達到數據分析的目的。
傳統的數據分析的方法,往往是大膽假設小心求證,先做出假設,再對數據進行分析,從而驗證先前的假設;而大數據分析則是對大數據進行探索來發現結果,甚至發現錯誤的結果,之後再通過數據驗證結果是否正確。
因此,傳統的數據分析可以看成一種靜態的分析,大數據分析可以看成一種動態的分析。盡管如此,大數據分析和傳統數據分析也並非是涇渭分明的,傳統數據分析的方法是大數據分析的基礎,在很多大數據分析的工作中仍沿用了傳統數據分析的方法。
基於上述討論,我們給出「大數據分析」的定義:用適當的統計分析方法對大數據進行分析,提取有用信息並形成結論,從而對數據加以詳細研究和概括總結的過程。
大數據分析分為三個層次[3],即描述分析、預測分析和規范分析。描述分析是探索歷史數據並描述發生了什麼(分析已經發生的行為),預測分析用於預測未來的概率和趨勢(分析可能發生的行為),規范分析根據期望的結果、特定場景、資源以及對過去和當前事件的了解對未來的決策給出建議(分析應該發生的行為)。例如,對於學生學習成績的分析,描述分析是通過分析描述學生的行為,如是否成績高的同學回答問題較多;預測分析是根據學生的學習行為數據對其分數進行預測,如根據學生回答問題的次數預測其成績;而規范分析則是根據學生的數據得到學生下一步的學習計劃,如對學生回答問題的最優次數提出建議。
大數據分析的過程可以劃分為如下7個步驟:(1)業務調研,即明確分析的目標;(2)數據准備,收集需要的數據;(3)數據瀏覽,發現數據可能存在的關聯;(4)變數選擇,找出自變數與因變數;(5)定義模式,確定模型;(6)計算模型的參數;(7)模型評估。
我們以預測學生學習成績為例解釋上述過程。首先,我們的目的是根據學生的行為預測學習成績。接下來,對於傳統的方法來說,通過專家的分析確定需要什麼數據,比如專家提出對學生成績有影響的數據,包括出勤率、作業的完成率等,可以從數據源獲取這樣的數據;大數據分析的方法有所不同,是找到所有可能相關的數據,甚至包括血型等,這些數據與成績之間的關系未必有影響,就算發現了關系也未必可以解釋,但是獲取盡可能多的數據有可能發現未知的關聯關系。
Ⅹ 教育大數據分析的三大方法
一、常用大數據分析方法
1、描述性分析
這是業務上使用最多的分析方法,也是最簡單的數據分析方法,為企業提供重要的指標和業務衡量方法,可以通過企業各種數據獲得很多客戶的情況,例如客戶的喜好,使用產品習慣等。
2、診斷分析
做好描述性分析之後就可以進行診斷分析了,主要是通過評估描述性數據,診斷分析工具可以使數據分析對數據進行深入分析,並深入數據的核心,一個設計良好的數據分析工具可以集成數據讀取、特徵過濾和按時間序列進行數據鑽取的功能,從而更好地分析數據。
3、預測分析
預測分析是用於預測未來事件發生的可能性,一個可量化值的預測,或者事件發生時間點的預測,都可以通過預測模型來完成,預測模型也是一種重要的方法,在許多領域得到應用。
4、指令分析
數據和復雜性分析的下一步是指令分析,指令模型可以幫助用戶決定應該採取什麼措施。