1. 互聯網金融借力大數據玩轉風險控制
互聯網金融借力大數據玩轉風險控制
近兩年,金融行業內競爭在網路平台上全面展開。大數據時代,這種競爭說到底就是「數據為王」。為什麼大數據在互聯網金融領域扮演著如此重要的角色?業內人士認為,「互聯網+金融」具有共享性,提供了「大數據」和更充分的信息,即通過更完善的價格信號,幫助協調不同經濟部門非集中化決策。
信息占據核心地位
信息占金融市場核心地位。金融市場是進行資本配置和監管的一種制度安排,而資本配置及其監管從本質上來說是信息問題。因此,金融市場即進行信息的生產、傳遞、擴散和利用的市場。
在「互聯網+金融」時代,信息的傳遞和擴散更加便捷,信息的生產成本更為低廉,信息的利用渠道和方式也愈發多元化,從而越來越容易實現信息共享。這種共享不僅包含著各類不同金融機構之間的信息共享,而且包含著金融機構與其他行業之間的信息共享、金融機構和監管機構及企業間的共享等。
信息共享並由此形成的「大數據」,降低了單個金融機構獲得信息、甄別信息的成本,提高了信息利用的效率,使信息的生產和傳播充分而順暢,從而極大地降低了信息的不完備和不對稱程度。「大數據」不僅使投資者可以獲取各種投資品種的價格及影響這些價格的因素的信息,而且籌資者也能獲取不同的融資方式的成本的信息,管理部門能夠獲取金融交易是否正常進行、各種規則是否得到遵守的信息,使金融體系的不同參與者都能作出各自的決策。
正確看待大數據徵信
互聯網金融的發展帶火了P2P市場,也折射出風控體系建設的缺失。P2P跑路現象主要原因就是風控缺失,體現在「重擔保、輕風控」和「重線上風控、輕線下調查」。
當前,多數P2P平台「重擔保、輕風控」的思路是不正確的,擔保是外界因素,風控是內在因素,一味強調用外在的因素而不解決自身的問題,不可能實現良好運轉。互聯網金融的風險管理不在規則之中,而在互聯網和金融雙重疊加的對象之中,其最基本的風險邊界應是保證投資者的資產安全。守住了安全底線,這些平台才能健康成長。所以,P2P平台根本的安全底線還在於加強自身對象的風控。
另一方面,風控分為貸前、貸中、貸後風控。目前有些P2P平台從最開始的貸前風控就缺失,貸前風控最重要的是要實現「線下調查」,即通過線下實地走訪和考察,對客戶信息進行交叉驗證和真實性驗證,包括對借款人銀行流水、徵信報告、財產證明、工作證明等的審查,通過審查評估借款人還款能力。這些線下風控是不可或缺的,不能迷信或過分誇大「互聯網+」的效率和普惠,線上的大數據和線下的實地考察必須結合。
基於大數據、個人徵信的風控手段已有很多,大數據徵信是實現P2P風控的創新路徑。但是也需要正確看待,既不能要求大數據徵信一步登天,一下子帶來質的改變;也不能風聲鶴唳,一有創新就以各種名義圍追堵截,而需要給予更多理性的包容和試錯的空間,在漸進創新中不斷完善大數據徵信體系。
目前存在的困難:
一是數據的虛擬性和「信息噪音」。雖然大數據及其分析提高了信息獲取的數量和精度,但由於虛擬世界中信息大爆炸造成的「信息噪音」,導致交易者身份、交易真實性、信用評價的驗證難度更大,反而可能在另一層面更強化信息不對稱程度,也更容易存在信息壟斷。
二是信用數據關聯的不確定性。信用數據是多樣化的,包括朋友信用、愛情信用、事業信用等。所謂忠孝不能兩全,一個對朋友忠誠的人不一定對事業忠誠。對事業或工作忠誠,也不一定能說明他的金融信用好。大數據通過日常信用來判斷金融信用會出現偏差。
三是「數據孤島」不能實現數據共享。互聯網平台具有強烈的規模效應,平台越大越容易產生數據,越容易使用數據。例如,阿里小貸主要通過賣家累計的海量交易信息及資金流水,也可通過大數據的分析在幾秒內完成對商家的授信。但是,阿里小貸的數據,不可能提供給其他公司使用。因此,下一步應推動數據的整合和共享。
玩轉大數據風控系統
傳統的風控模式更多關注的是靜態風險,對風險進行預判。而P2P市場讓越來越多的傳統金融企業轉型互聯網金融,大數據技術要對風險進行實時把握,要做到兩點:大數據和雲計算結合以及大數據的流處理模式。
大數據和雲計算結合,實現了實時監控。雲計算為大數據實時把握提供了硬體基礎,可以實現秒級的數據採集、分析和挖掘。流處理模式實現了靜態風險和動態風險的有效結合。一種人習慣先把信息存下來,然後一次性地處理掉,也叫批處理,如定期處理過期郵件;另一種人喜歡信息來一點處理一點,無用信息直接過濾掉,有用的存起來。後者就是流處理的基本範式,實現了實時監控。
怎樣才能針對企業自身的發展和業務方向,玩轉大數據風控系統,使其發揮到最大作用?我認為,要關注「大眾數據」。要意識到互聯網「長尾效應」的作用,互聯網環境下「得大眾者得天下」,關注大眾數據,要了解大眾心態,在歸屬感、成就感和參與感上下功夫。
還要將業務驅動轉向數據驅動。理解數據的價值,通過數據處理創造商業價值,看似零散的數據背後尋找消費邏輯。此外,還應改造公司數據相關的IT部門,將其從「成本中心」轉化為「利潤中心」,充分認識大數據是核心競爭力,重視其挖掘和預測的能力。
當然,實時大數據風控還需要很多方面的探索,如何藉助大數據建立全生命風控體系,形成貸前、貸中、貸後流程管理系統和決策系統。另外,還需加強信用數據相關性研究和量化模型的開發,金融信用(主要指借貸數據)可獲得性比日常信用數據難,以金融信用為中心,通過日常信用,構建個人信用評估體系。
2. 中小企業大數據應用之道:思維在借力
中小企業大數據應用之道:思維在借力
大數據思維
要想大數據落地,特別是中小企業,首先得有大數據思維,否則大數據的案例不能直接借鑒,自己摸索又怕不專業、坑太多。
何謂大數據思維,個人認為不是什麼決策都參考數據,也不是什麼問題都要足夠精準,更不是我要花巨資打造大數據系統或平台。個人以為是「數據借力」
為啥這么說呢,因為任何企業都有不足的地方,只是供需平衡問題,導致有的方強勢,有的方弱勢退讓,就如BAT的大數據,如果大家都不用他們的大數據,市值馬上爆降,反之我們也需要巨頭的超級大數據,其核心無非是有需求的更迫切,所以你會顯得弱勢些。
如何借力大數據
做任何事情都要考慮成本,假設你要去搜集這些大數據然後自己用,得養一個團隊來服務,成本太高。而借用,是一個非常好的,特別適合中小微企業的方法,大概有這么幾種借力方法:
1. 你花錢買大數據服務,例如搜索關鍵字投放,投放DSP廣告等。這種就要參考行業內是否有較多的成功案例,如果有,就嘗試,沒有什麼成功案例的,肯定有一些不容易邁過去的灣,例如用戶行為很難定位和你的行業匹配。
2. 用虛擬人脈換取,就是自媒體的操作方式,除了最早的互粉、互相介紹外,還有一種模式就是自媒體的人脈互相交換,各取所需,可以2個方式,一是大號帶小號方式,一是同等級號的資源互換。注意,交換的時候最好你們是不同行業領域,效果更好
3. 其他借力方式,例如通過不斷轉發優質內容來獲得自己的粉絲,或者通過線下人脈,找到優質的高端群體用戶,雖然人數少,但你通過收集其詳細資料、行為愛好,然後存儲到自己的系統,就是優質的大數據資源。
總結
如果僅僅是口頭上的大數據思維,做營銷只借概念,沒借到數據,很可能就做虧本的買賣,做大數據應用和創業一樣,先去掉不可靠譜的Idea尤為重要。
以上是小編為大家分享的關於中小企業大數據應用之道:思維在借力的相關內容,更多信息可以關注環球青藤分享更多干貨
3. 大數據如何助力人力資源管理
大數據如何助力人力資源管理
挖掘數據價值的利器
「啤酒與尿布」的故事,在這個時代已經人盡皆知。
作為最經典的營銷案例之一,「啤酒」和「尿布」這兩個看上去並無關系的商品,擺放在一起進行銷售卻獲得了很好的收益,其奧秘就在於巧妙地利用了商品之間的關聯性。
而如今能夠有效挖掘這種關聯性及其價值的工具,就是大數據。
馬雲說:「當我們還沒有弄清什麼是個人計算機的時候,互聯網就到來了;當我們還沒有弄清什麼是互聯網的時候,大數據時代已經到來了。」
大數據時代,各行各業都在經受著大數據浪潮的洗禮,他們開始重新審視自己的行業定位,將數據資源和數據價值逐漸提升到核心戰略之中,唯恐落於時代的後端,人力資源行業也不例外。
在9月16日北京才源國際文化交流公司舉辦的「大數據應用研討會上」,中國人事科學研究院研究員王通訊教授、美國摩根大通副總裁李翔博士、北京才源國際文化交流有限公司總經理譚燦玉女士等具有豐富大數據經驗的專家學者出席了此次會議,就大數據在人力資源方面如何進行建設的話題為與會嘉賓進行了分享。
大數據人力資源管理
作為中央人才工作協調小組《國家中長期人才規劃綱要(2010-2020年)》專家顧問、中國人才研究會副會長,王通訊教授對9月5日國家發布的《促進大數據發展行動綱要》進行了深度解讀。
王教授認為,大數據是以容量大、類型多、存取速度快、應用價值高為主要特點的數據集合,具有充足、抓取力強、刷新及時的神通力量,本質是用來洞察關系、需求和趨勢,是人類認識新世界的工具。所謂「大數據促進熱力資源管理升級」,就是向精細化、及時化、人性化、智能化方向轉型升級。
王教授表示,大數據人力資源管理大致可從以下7個環節來解讀:
1. 大數據育人
基於互聯網、大數據、雲計算的人才培育,能夠大大提升人才培育的質量和效率,而且人們可以在任何時間、任何地點、隨時進行學習活動。
大數據育人,可以利用雲課本、雲學堂、雲考試等。北大通過基於互聯網與大數據的幕課,使北大對社會人才的培養貢獻翻了一番,兩千多年前孔夫子所謂的「有教無類」,到了今天真正得以實現。
2.大數據招聘
以往由於缺少對招聘對象的准確描述,對合適的人選到底是誰很難把握;再加上不公開透明,很容易產生不公平、不公正的招聘,乃至於「蘿卜招聘」。在大數據方法的支持下,國外已經改進了這一過程,明顯提升招聘質量。
招聘者可以從各個維度給出求職者一個分值,如職業背景、專業影響力、能力狀況、性格特徵、職業傾向等,這樣的好處在於,以數據作為衡量人才的前提,以模型作為評價人才的標准,能夠迅速有效地進行篩選,保證招聘質量。
3.大數據管人
大數據管人能做到精細而准確。企業員工的日常管理,比如考勤狀況、勤奮狀況,都可以藉助大數據進行。
4.大數據用人
每家企業都會產生大量的數據蹤跡,通過分析員工之間的數據溝通,不僅能夠了解員工的個人表現,還可以掌握員工的合作狀況,從而能夠採取有效地措施提高企業內團隊的合作效率,甚至在團隊組成之前就能預測出隊員間的合作情況以及可能出現的問題,讓公司長期收益。
5.大數據考核
考核是人力資源管理的重要環節。在大數據思想的指導下,組織可以通過軟體記錄員工每天的工作量、具體工作內容、工作業績,仁厚使用雲計算處理,分析這些數據,了解到員工的工作態度、忠誠度、進取心等等。
6、大數據薪酬
為了獲得國內外同行之間的競爭力,需要參考大數據提供的數據來調控企業薪酬水準。雲計算技術使你能夠快速解決此類問題。
7、大數據評測
大數據能夠評測人才,這個一個新的思路。
王通訊教授認為,在大數據時代來到之前,沒有人能把一個人的「社會關系綜合」搞清楚,但如今社會上已經出現「搜索引擎」,信息倉庫里的信息越來越多,不良分子難以遁形藏身,而優秀的人才也能依次進行挖掘,因此他認為大數據方法是人才研究的利器。
此外,他還特別向與會者解讀了綱要傳達了什麼:
(1)大數據成為推動經濟發展轉型的新動力;
(2)大數據成為提升政府治理能力的新途徑;
(3)大數據能夠建設以人為本、惠及全民的民生服務新體系;
(4)大數據應率先在就業保障、教育培訓領域推廣應用,激發大眾創業、萬眾創新;
(5)大數據發展,要求加強信息採集、保存和分析建設能力;
(6)大數據能夠推動政府治理精準化;
(7)政府要與社會合作開發大數據試點,包括勞動就業與收入分配領域;
(8)發展大數據科學,積極培育大數據技術與應用人才。
《綱要》明確要求抓緊建立七個方面政策機制:
1、建立國家大數據發展和應用統籌協調機制。
2、加快法規制度建設,積極研究數據開發、保護等方面制度。
3、健全市場發展機制,鼓勵政府與企業、社會機構開展合作。
4、建立標准規范體系,積極參與相關國際標准制定工作。
5、加大財政金融支持,推動建設一批國際領先的重大示範工程。
6、加強專業人才培養,建立健全多層次、多類型的大數據人才培養體系。
7、促進國際交流合作,建設完善國際合作機制。
從商業視角看大數據
在此次上,美國摩根大通副總裁李翔以「從商業視角看大數據」為主題對大數據的特徵、技術基礎、應用心得進行了詮釋。
李翔認為,大數據仍面臨不堪重負的任務,需要正確的人來解決問題。日益增加的成本也讓人無法做到捕捉100%的數據。除此之外,隱私權的問題和數據質量不均等都是目前大數據縮面臨的困難。
當然,大數據的的益處也顯而易見,它讓企業擁有更好的競爭優勢,做出趨勢預估和預測,從而做出更好的商業決策。有效的營銷能讓顧客滿意度增加,大數據也能增加創新和下一代產品的開發。
大數據助力人才培養
作為一家與國家相關部委研究機構及高校合作開展項目的專業機構,北京才源國際文化交流有限公司主要業務包括大數據相關的培訓、合作、咨詢等,也會進行禮儀項目的培訓與企業管理咨詢。
對於此次會議的圓滿舉辦,北京才源國際文化交流有限公司總經理譚燦玉給予了高度肯定,並表示在各位專家學者的通力合作下,公司將借力政策東風,為大數據產業健康發展貢獻出自己的力量,為產業培養和輸送更多優良人才。
以上是小編為大家分享的關於大數據如何助力人力資源管理的相關內容,更多信息可以關注環球青藤分享更多干貨
4. 大數據對網路營銷的影響
大數據對網路營銷的影響
在這股大數據時代背景下,消費者行為的變遷也越來越趨於不確定,移動互聯網更是加速了這種不確定因素,那麼,大數據對網路營銷有何影響呢?
[摘要] 互聯網時代的發展推動了數據和信息加速傳播。大數據在這種大背景下應運而生,並逐步滲入到各行各業。而互聯網企業通過大數據,促進信息的實效轉化,為網路營銷的精準決策和整個營銷行業的發展提供了數據來源與支撐。文章主要通過闡述了大數據的定義、大數據的處理,進而總結大數據下網路營銷管理優化措施及有效的網路營銷策略,力求為各互聯網企業的網路營銷決策提供參考與借鑒。
[關鍵詞] 大數據;網路營銷;互聯網
1前言
21世紀是一個信息大爆炸的時代,各種各樣雜亂無章數據的出現,一方面給企業以及人們的日常生活造成了一定程度的困擾;另一方面人們也想從這繁雜的數據中找出規律,發現商機,從而抓住商機,開拓新的市場。大數據的出現恰恰能妥善地解決這一問題,大數據分析技術是通過對海量的數據信息進行系統的篩選與分析,力求尋求其中的規律,從而為企業的經營決策提供有力依據與支撐,使企業的經營決策變得更加准確且高效。現今,社會上人們之間的交流越來越密切,科技在高速發展,大數據就應運而生。阿里巴巴創辦人馬雲曾經在演講中提到,未來的時代將是DT的時代,DT即DataTechnology數據科技,對大數據的分析是阿里巴巴的重點工作之一。[1]互聯網在改變人們生活方式的同時也在改變企業的運作模式,這是信息技術發展的必然。然而隨著大數據的來臨,網路營銷也在不斷地進行營銷模式與管理模式的創新,試圖尋求企業與消費者的利益最大化。現在越來越多的企業通過互聯網平台抓取到的消費者的各種數據進行分析整理,獲取消費者的消費趨向及特徵,以此為依據來制定相應營銷策略,不僅可以提高市場決策的准確性,還能大大縮短市場調查與決策分析的時間,提高了企業的經濟效益,促進企業各個環節的高效運作。因此大數據與網路營銷的結合將是必然的,它將為企業開創全新局面,帶來前所未有的.機遇,同時也帶來了挑戰。
2大數據概述
麥肯錫全球研究對大數據的定義是:一種規模大到在獲取、存儲、管理、分析方面大大超出了傳統資料庫軟體工具能力范圍的數據集合。[2]大數據技術在互聯網時代的戰略意義,不是在於掌握海量的數據信息,而在於對收集到的數據進行高度專業化處理,力求找出其中的規律與價值,為企業經營決策服務。[3]簡而言之,大數據技術關鍵在於提高對數據的「加工處理能力」,通過「高加工」實現數據的「高增值」。它具有以下四大特徵:分別為海量的數據規模、多樣的數據類型、快速的數據流轉和價值密度低,具體分析如下:
(1)海量的數據。從互聯網或傳統渠道收集到的海量數據,涉及面更廣、種類繁多,只有運用大數據技術對數據進行分類,才能夠滿足企業的需求。
(2)多樣的數據類型。大數據容納的信息量大,信息種類也繁多,容量也比傳統的數據倉庫更大,通常有用戶的查詢信息、瀏覽信息、消費記錄、消費周期等數據。
(3)快速的數據流轉。大數據技術要求在短時間內對海量的數據進行高速處理,對龐大的數據進行分析、處理,從中找出有價值的數據資料,因此對數據的處理速度有很高的要求。(4)商業價值高,價值密度低。大數據需要從海量的數據當中提取出有價值的信息,對技術的要求很高,往往數據的價值密度低而商業價值高。
3大數據處理與網路營銷
3.1大數據時代下的網路營銷
網路營銷是藉助網路、通信和數字媒體技術實現營銷目標的商務活動。其中可以利用多種手段,如微信營銷、微博及博客營銷、E-mail營銷、視頻營銷等。大數據技術為網路營銷帶來了技術創新,也為企業帶來了前所未有的機遇與挑戰。網路營銷的發展主要依賴於對消費者消費信息的了解,掌握了消費者消費信息相關的數據,就能夠以此來制定合理化的營銷策略,能夠提前預測市場的發展方向,提高企業的生產效率,降低了企業的運營成本。同時也為企業開發新產品提供數據來源與支撐,有利於提高企業產品在市場的佔有率。
3.2網路營銷需要借力大數據
(1)科技的發展。互聯網時代的到來,收集海量的數據信息顯得更加簡單可行,人們可以通過互聯網平台收集到各種數據,還可以對數據進行反復的使用與共享,實現數據的循環利用,使數據創造出更多的價值。
(2)個性化需求的增加。社會的發展使人們的消費習慣與心理發生了顯著的變化,不再希望自己所使用的產品與別人一樣,希望自己是獨特的,與眾不同的,而企業恰恰能通過對消費者的消費偏好進行大數據分析,來為其制定個性化消費方案。
(3)用戶數據易獲取。互聯網企業與傳統的企業相比,其不同點之一就是數據的獲取方式不同。傳統企業能知道客戶當時的需求和購買意向,但是無法獲得更多與客戶有關的信息與資料;而互聯網企業通過用戶的訪問記錄和消費行為
3.3商業定位的轉變
大數據時代背景下,消費者對品牌的忠誠度不斷下降,使得大數據時代商業模式必須從以品牌為中心向以消費者為中心轉變。[3]阿里巴巴於2016年提出了以「消費者的生命周期」來做銷售。充分體現了現在商業社會對品牌的轉變逐步增加到了以消費者為中心的轉變。在工業時代,我們無法獲知消費者的翔實數據,但是在大數據時代下數據的原始積累和獲取變得容易,藉助於智能手機和穿戴設備等科技的發展,數據變得越來越翔實,因此讓商家更容易全方位了解消費者,能夠針對消費者做到千人千面。從而增加產品的依賴性和忠誠度。所以未來企業的競爭力逐步轉變為:誰能提供專業化的產品和服務,誰能全面了解和分析信息,誰就會站在商業的浪潮上。
3.4商業理念
從以商品為主向服務轉型大數據時代,消費者的知識水平越來越高,消費者會從已有的大量數據中全面了解商品的功能、價值等,如果僅僅是在商場或互聯網簡單的介紹商品品牌、包裝及使用方法已經遠遠不能滿足消費者的需求了。消費者依據大量的數據,對產品的了解程度甚至比營業員還要充分,因此企業不僅要非常精準地把商品構架、各種性能指標等解剖出來外,還必須向消費者提供大量的解決方案,即大數據時代企業賣出的不僅僅是簡單的商品,而是方案的系統集成和商品的服務。所以轉型勢在必行,從以商品為主轉向以服務為主,增加顧客對商品的忠誠度和依賴度,迎接新一輪的商業變革。
4結論
2016年是大數據的發展年,據保守估計,未來大數據的市場規模至少達到萬億元以上。在這股大數據時代背景下,消費者行為的變遷也越來越趨於不確定,移動互聯網更是加速了這種不確定因素,電商和傳統企業變得越來越離不開數據,數據即將成為未來企業的核心競爭力,企業要不斷完善自己的企業治理結構,抓住市場潮流的變化,讓不確定的消費者變得確定,這樣才能有針對性地做到千人千面,提供個性化的商品和服務,在未來競爭格局中占據一席之地。
參考文獻:
[1]AllisonCerra,KevinEasterwood,JerryPower.商業模式重構:大數據、移動化和全球化[M].北京:人民郵電出版社,2014:29-43.
[2]蔡承秉.掘金大數據數據驅動商業變革[M].北京:時代華文書局,2013:103-110.
[3]黃升民,劉珊.「大數據」背景下營銷體系的解構與重構[J].現代傳播: 中國傳媒大學學報,2012 ( 11) : 13 - 20.
[摘要]
文章對當前有關大數據時代網路營銷模式的相關概述進行了梳理和分析,進而對大數據時代網路營銷模式的創新、精準性以及效果性研究作以歸納,最後進行了總結與展望。
[關鍵詞]
大數據;網路營銷模式;綜述
1引言
大數據對時展產生了深遠影響,網路營銷模式如何充分發揮數據帶來的機遇,從而促進其發展成為當前熱門話題。數據具有的四大特點能為企業網路營銷模式發展提供更加精準、個性化的信息,此外,大數據時代下的網路營銷模式不僅重視創新性、精準性,也重視效果性。
2大數據與網路營銷模式相關概述
2.1大數據的定義
20世紀80年代大數據被提出,到2008年才廣泛傳播。麥肯錫定義其為在一定時間內使用傳統資料庫軟體無法對數據內容進行搜集、存儲等的數據集合;《Science》將其定義為數據集規模無法在可容忍的時間內用目前的技術、方法等去獲取、管理的數據;[3]維基網路將大數據定義為運用當前主流軟體工具難以在合理時間內為企業經營決策提供完整分析過程的資源。比較有影響力的是Gartner的定義,其認為大數據通過新的處理模式能增強決策力、洞察力以及流程能力,並具備多樣、快速增長性以及數據量大的信息資產。本文將大數據定義為以其主要特徵為基礎,通過運用科學的大數據處理技術能夠增強其精準性、效果性等價值的信息資產。
2.2網路營銷模式的定義
Rafi-AMohammed和RobertFisher等將網路營銷定義為在線維護客戶和公司在產品、服務等方面的關系;孫志宏認為網路營銷是通過計算機網路、通信技術等為實現營銷目標的市場營銷方式;蘆文娟、韓德昌認為其是以網路通信技術以及數字互動式為基礎的營銷活動;徐艷旻將網路營銷定義為藉助網路開展市場服務的營銷活動。閻斌認為網路營銷模式是企業通過有效運用互聯網信息技術平台力求實現企業經營目標的營銷活動。本文認為網路營銷模式是藉助網路、通信技術以及數字互動式媒體等進行的市場營銷活動。
2.3網路營銷模式主要類別
蘆文娟、韓德昌認為網路營銷模式主要有創建企業網站、參與網路社區、博客營銷、網上廣告投放;張在宏將其分為廣告商、網上商店和服務、價值鏈服務提供商、網路渠道和虛擬社區;玄文啟認為其可分為電子郵件、微博營銷、病毒性營銷、搜索引擎營銷和博客營銷;本文認為較有影響力的是周曙東等將其分為在線商店模式、中立交易平台模式、企業間網路營銷模式、網上采購模式、網路拍賣模式、電子郵件營銷模式、電子報關模式等的觀點。
2.4大數據時代網路營銷模式的特徵
陳慧、王明宇認為大數據網路營銷具有性價比高、時效性強、互動性強和個性化營銷的特點。胡江濤研究認為關聯性緊也是其主要的特點。
3大數據時代網路營銷模式創新研究
張冠鳳認為大數據時代網路營銷模式主要包括商品關聯挖掘營銷、現代通信的大數據分析、大數據的用戶行為分析營銷和個性化推薦營銷模式。張艷紅認為大數據時代網路營銷模式的革新還包括基於大數據的搜索引擎營銷和DSP網路廣告模式。高源、張桂剛認為其還包括基於大數據的商品地理營銷模式。吳英鷹認為大數據背景下旅遊企業網路營銷新模式主要包括關聯推薦和精準網路營銷模式;王雯研究了大數據下電影整合營銷和O2O營銷模式。以上學者對大數據時代下網路營銷模式創新研究較為全面,但總體上相關理論研究較少。
4大數據時代網路營銷模式精準性研究
李曉龍、馮俊文提出了大數據環境下電商精準網路營銷策略。牛艷紅、王春國認為大數據時代網路營銷模式精準性策略主要有搜索引擎、再鎖定精準營銷和博客營銷。樊永梅發現了全數據精確制導、汽車銷售整合信息對於汽車精確營銷實現的重要性。倪寧、金韶認為其主要有精準定位目標消費群、精準挖掘消費需求、精準可控廣告投放和精準評估廣告效果。林燕提出了傳播和廣告精準營銷策略。以上研究豐富了理論成果,但沒系統分析大數據時代網路營銷模式精準性營銷的基本原理。
5大數據時代網路營銷模式效果性研究
胡江濤發現了大數據時代網路營銷實現從精準營銷到效果營銷的轉變的關鍵問題,張艷紅提出從政府層面、企業層面實現網路營銷的效果性,目前學者對大數據時代網路營銷模式效果性研究不多,還處在逐步認識的階段。
6總結與展望
本文認為大數據時代下網路營銷模式的研究還處在積極探索階段,具體體現在缺乏成熟的網路營銷模式劃分標准;大數據時代下網路營銷模式研究視角較單一和對其精準性和效果性缺乏深入研究,對於兩者的交叉研究更是缺乏。本文認為未來研究可以結合大數據時代下網路營銷模式的精準性和效果性進行綜合研究;從多視角和結合具體的實際加強對其效果性研究;加強網路營銷模式的系統性研究,實現大數據時代網路營銷模式時效精準、效果統一。
;5. 製造企業如何借力工業大數據
製造企業如何借力工業大數據
工業大數據和原來的信息化有何區別?
簡單來說,1990年代以前,大部分企業都在做企業內部信息化,這被稱為第一次浪潮。1990年代以後,互聯網開始席捲全球,企業相繼進行互聯網化。而隨著信息化與工業化的深度融合,工業大數據悄然興起,這也將成為下一個提升製造業生產力的技術前沿。在清華大學工業大數據研究中心主任王建民看來,工業大數據即第三次工業變革,它以智能互聯的產品為核心載體,而不單純只是通過互聯網增值。
王建民認為,在製造業的利潤越來越低的情況下,工業大數據可以幫助中國企業提高產品在使用維護階段的利潤。最重要的是,利用數據進行跨界運營,能夠為企業帶來新的生存空間。
利用大數據搶占價值高地
為什麼工業大數據對當下的中國企業來說,有著如此深遠的意義?
事實上,在王建民看來,一個復雜裝備的生命周期分三個階段,即:開發製造階段(Beginning of Life,簡稱BOL)、使用維護階段(Middle of Life,簡稱MOL)、回收利用階段(即End of Life,簡稱EOL)。
原來,製造企業將重心放在開發製造階段,企業的核心目標就是將裝備設計製造出來。而產品售賣給消費者後,就和企業沒有關系或者變得無關緊要了。所以生命周期的第二、三階段,常常被企業忽略。但裝備的價值真正體現在用戶的使用體驗上,而不在於製造,盡管製造由質量決定。但消費者在使用階段的流暢程度,才能反映出產品的最終功效。
加工製造環節的確能夠產生很多利潤,但在當前環境下,生產製造的利潤越來越薄,使企業越來越難以為繼。而中國是一個製造大國,更是一個使用大國,製造業的興衰事關重大。王建民認為,只有利用大數據搶占價值高地,實現產品智能化,才能實現從「中國製造」到「中國創造」的轉變,從「生產型製造」到「服務型製造」轉變,這也是「中國製造2025」戰略的應有之義。
跨界運營是工業互聯網轉型的核心
和之前很多技術一樣,工業大數據並非橫空出世,而是一脈相承。但又有新的變化,這種新的變化,在王建民看來,其核心在於連接,將原來孤立的機器連接起來,將人和機器連接起來,將不同的企業、行業連接起來。
事實上,這種連接已經產生了巨大的價值,有很多企業已經開始實踐了。
例如:將人和產品聯系起來,可以實現產品創新。日本科研人員設計出一種新型汽車座椅,根據駕駛者的體重、壓力值等數據識別主人,以判斷駕駛者是否為主人,從而決定是否啟動。
又例如:將兩個不同領域連接起來,可以實現銷售模式的創新。歐洲人可以做到今天賣明天的風電,怎麼賣?他們根據一系列數據,對明天的風力精準地進行測算,從而實現當天交易。這是風電裝備在整個大氣環境下進行的跨界運營的絕佳案例。
還有一個例子,《哈佛商業評論》曾經發表過一篇文章叫《智慧的互聯產品》。美國人認為未來的工業產品應該分為五個階段,到第四個階段的時候,裝備、產品會進入到一個產品的系統階段,機器和機器之間可以對話和合作。比如在農業領域,播種器械、收獲器械會聯合起來到一個農場去作業。而終極階段是:農業機器的集群和天氣的數據,會和種子的數據、灌溉系統的數據聯合起來,通過全方位的連接來解決農業生產中的綠色節能問題。
王建民說,通過跨界運營來創新是工業互聯網轉型的核心。在使用階段做一個簡單的維修、更換配件,不管是預防性維修還是主動維修,都還處於工業互聯網的初級階段。只有通過數據進行跨界運營,才抓住了整個裝備製造業在服務階段轉型升級的核心。
工業大數據應避免的三個誤區
聽上去很美好的工業大數據,如何實踐呢?王建民梳理了三大誤區,以供企業參考:
一、維修=運行
在工業領域,維修和運行基本不會分開。但是在工業大數據里,二者是分開的。維修指的是,當產品性能下降的時候,通過更換零件或者其他手段,恢復其產品性能。而運行是指如何使用機器,使它產生價值。
二、產業大數據等同於消費大數據
工業大數據最核心的問題在於分析結果的可靠性。在消費大數據上,如果產品的廣告推薦能達到20‰的可靠性,就是搜索引擎的最好水平。但這一數據在工業領域,顯然遠遠不夠。因為在工業領域,往往是失之毫釐,差之千里。工業的應用場景對數據准確率的要求達到99.9%,甚至更高,否則就會造成嚴重的經濟損失乃至安全事故的發生。所以,王建民建議,從人員結構上來講,工業大數據需要數據和產業的人才一起來做。
三、採集的數據越多越好
對於企業而言,機器採集的數據有時候是一個災難,不是企業採集的所有數據都是有用的。不產生價值的數據就是垃圾信息,對於企業而言就是負擔。企業在收集數據之前,首要任務是給數據畫像,弄明白自己到底需要什麼樣的數據。
王建民認為,無論如何,大數據仍然要圍繞裝備增值服務的業務邏輯,在達到這個目的的過程中,讓數據發揮作用,而非簡單地只看到數據,而忽略了根本的邏輯。
6. 如何治理大數據殺熟現象
治理「大數據殺熟」現象,不是要「殺死」大數據,而是要善於借力,形成監管和治理的合力。監管部門應建立和完善大數據網上監管平台,提高對各種隱性「大數據利用」違法行為的查處能力。要將消費評價權保障、旅遊者信息使用等納入重點監管和治理范疇,與時俱進升級監管手段,打造讓消費者「說走就走」、安全旅遊的法治環境。
國慶節將至,一條與在線旅遊相關的話題——「大數據殺熟行為10月1日起明令禁止」登上微博熱搜榜。該話題緣於文化和旅遊部印發的《在線旅遊經營服務管理暫行規定》(簡稱《規定》)今年10月1日起正式施行,《規定》第十五條明確,在線旅遊經營者不得濫用大數據分析等技術手段,基於旅遊者消費記錄、旅遊偏好等設置不公平的交易條件,侵犯旅遊者合法權益。這條規定針對的,就是近年來飽受詬病的「大數據殺熟」行為。
「大數據時代」到來,給人們帶來了諸多便利,同時也帶來了一些負面影響,「大數據殺熟」便是其中之一。去年10月文化和旅遊部發布的《在線旅遊經營服務管理暫行規定》(徵求意見稿)中,禁止「大數據殺熟」被定義為「在線旅遊經營者不得利用大數據等技術手段,針對不同消費特徵的旅遊者,對同一產品或服務在相同條件下設置差異化的價格」。
綜合《規定》(徵求意見稿)和《規定》的這兩條規定,「大數據殺熟」可以簡單理解為:在線旅遊經營者濫用大數據分析手段,利用自身掌握的信息優勢,對老客戶設置比新客戶更高的價格,造成老客戶吃虧。去年3月,北京市消協發布的一項調查結果顯示,近九成被調查者認為「大數據殺熟」現象普遍存在,56.92%的被調查者表示有過被「大數據殺熟」的經歷,其中網購、在線旅遊、酒店住宿、網約車、外賣、影視等消費場景最容易被「大數據殺熟」。
7. 借力大數據提升公共服務質量
借力大數據提升公共服務質量_數據分析師考試
大數據時代,公共管理領域的決策將日益基於數據分析而作出,大數據在政府公共服務領域必將發揮重要的決策支撐作用,甚至能夠為公共服務提供方式帶來革命性影響。可以說,大數據不僅是技術變革,更是一場社會治理方式的變革,政府應當因勢利導,借力大數據優化公共服務方式,提升公共服務質量。
准確把握公共服務需求
公共服務本質上屬於以服務形式提供的公共產品。由於服務具有不可分割性,服務的生產過程同時也是消費過程,因此,對於作為服務提供者的政府來講,要想讓自己提供的公共服務「合口味」、進而提升公共服務質量,必須在提供服務之前掌握大量的決策支撐信息,特別是准確把握服務對象對於公共服務種類以及質和量等方面的需求。這其中就涉及如何高效地將社會成員的真實需求收集起來並進行有效的整合。
在收集和獲取公共服務需求信息時,傳統的入戶調查式方法不僅費時費力,而且還得「一事一查」,效率極差;而運用大數據技術則可以輕而易舉地解決這個問題。我們只需要將多部門建立的信息資料庫加以歸集、整合、轉化,並進行挖掘、處理和分析,就可以很快地准確把握服務對象的公共服務需求。當中可能的困難是需要將不同部門數據格式、採集標准、顯示規范都不同的海量數據讀取、轉換並統一呈現出來,數據清理的工作量和難度還是很大的。對此,政府可以設立或指定專司大數據歸集、處理、挖掘和分析的部門來專門負責,並藉助最新數據處理技術來解決,政府其他業務部門有數據使用需要時只須「按需下單」即可,省時省力、效率倍增。
精確核算公共服務成本
現代政府在每出台一項公共政策的時候,都需要進行成本核算。同樣,在開展公共服務時,政府也需要進行成本——效益分析,將成本費用分析法運用於政府部門的計劃決策中,以尋求在公共服務決策上如何以最小的成本獲取最大的收益。這是公共決策科學性以及經濟性原則所要求的。
以往,政府在開展公共決策可行性論證以及編制公共服務預算時,往往只能依靠已有的零散信息直接進行成本概算,或者依靠外部專家進行所謂的「充分」論證。事實上,這兩種常見的成本核算方式所能掌握的數據信息都是不完全的,一般業務部門和外部專家所能掌握的信息處理能力也相對有限,據此得出的成本核算結論往往距離真實情況較遠。因此,這些傳統的公共決策成本核算方式都不可避免地存在很大缺陷。主要表現在:政府在進行公共服務決策時,如果將成本和困難估計大了,可能導致該提供的公共服務沒能提供,影響服務需求的滿足和社會問題的解決;反之,如果將成本和困難估計小了,則可能導致公共服務的財務可持續性存疑,影響政府公信力。政府在編制公共服務預算時,如果將成本概算多了,可能導致公共服務項目經費結余過多、出現年底「突擊花錢」等非正常現象,影響公共資金使用效率;如果將成本概算少了,則可能導致公共服務項目經費短缺,致使原本應該提供的公共服務項目無法提供、原本能夠達到的服務水準也無法達到。
大數據時代,政府在進行公共決策或進行編制公共服務預算時,可以藉助大數據技術在海量數據處理和挖掘方面的優勢,對分散在政府各個部門的數據進行有效整合,剔除無效和干擾信息,進行深度挖掘,尋找數據間的關聯性,既考慮當前情況,也預測未來變化,從而能夠基於相對完全信息得出成本核算結論,提高決策科學性和預算準確性。
合理配置公共服務資源
政府提供公共服務,不可避免地會碰到一個可及性問題,也就是如何准確高效地將公共服務資源配置和遞送給有需要的社會成員。從社會成員的角度來講,就是他們能否更便捷、以更低的成本享受到政府提供的公共服務。公共服務的可及性問題不僅直接影響公共服務的供給效率,也關繫到公共服務項目能否最終「落地」、滿足社會成員的服務需求。從理論和實踐兩個方面來看,民生服務可及性主要受到公共服務資源配置均等化水平、公共服務管理服務體系及具體服務流程完善程度這兩個方面的制約和影響。大數據時代,政府完全可以借力大數據技術優化公共服務資源配置,並對公共服務管理服務體系及具體服務流程進行再造。這一點不僅對於公共服務資源配置頂層設計重要,而且對處在公共服務「最後一公里」的基層末梢也是至關重要。
具體而言,在優化公共服務資源配置方面,大數據技術能夠在以人口為核心的關鍵數據、各種類型構成數據以及公共服務機構和設施分布數據的支撐下,很清楚地提示公共決策者哪個地方公共服務資源過於集中,哪個地方相對缺乏。這樣就能夠有效防止政府部門在進行公共服務資源配置時將「均等」標准變成「平均」指標,搞平均主義、「撒胡椒面」,有助於政府將公共服務資源向欠發達區域、鄉村地區以及困難群體重點傾斜。
在公共服務管理服務體系及具體服務流程再造方面,大數據技術能夠幫助政府部門在公共服務供給過程中實時定位公共服務的重點對象,迅速找到管理服務體系中的薄弱環節及具體服務流程中的遺漏缺憾與服務盲區,並據此提出再造公共服務體系及具體服務流程的合理化建議,使得政府提供的公共服務能夠靠前接近最有需要的重點人群。
以上是小編為大家分享的關於借力大數據提升公共服務質量的相關內容,更多信息可以關注環球青藤分享更多干貨
8. 淺談計算機與大數據的相關論文
在大數據環境下,計算機信息處理技術也面臨新的挑戰,要求計算機信息處理技術必須不斷的更新發展,以能夠對當前的計算機信息處理需求滿足。下面是我給大家推薦的計算機與大數據的相關論文,希望大家喜歡!
計算機與大數據的相關論文篇一
淺談“大數據”時代的計算機信息處理技術
[摘 要]在大數據環境下,計算機信息處理技術也面臨新的挑戰,要求計算機信息處理技術必須不斷的更新發展,以能夠對當前的計算機信息處理需求滿足。本文重點分析大數據時代的計算機信息處理技術。
[關鍵詞]大數據時代;計算機;信息處理技術
在科學技術迅速發展的當前,大數據時代已經到來,大數據時代已經佔領了整個環境,它對計算機的信息處理技術產生了很大的影響。計算機在短短的幾年內,從稀少到普及,使人們的生活有了翻天覆地的變化,計算機的快速發展和應用使人們走進了大數據時代,這就要求對計算機信息處理技術應用時,則也就需要在之前基礎上對技術實施創新,優化結構處理,從而讓計算機數據更符合當前時代發展。
一、大數據時代信息及其傳播特點
自從“大數據”時代的到來,人們的信息接收量有明顯加大,在信息傳播中也出現傳播速度快、數據量大以及多樣化等特點。其中數據量大是目前信息最顯著的特點,隨著時間的不斷變化計算機信息處理量也有顯著加大,只能夠用海量還對當前信息數量之大形容;傳播速度快也是當前信息的主要特點,計算機在信息傳播中傳播途徑相當廣泛,傳播速度也相當驚人,1s內可以完成整個信息傳播任務,具有較高傳播效率。在傳播信息過程中,還需要實施一定的信息處理,在此過程中則需要應用相應的信息處理工具,實現對信息的專門處理,隨著目前信息處理任務的不斷加強,信息處理工具也有不斷的進行創新[1];信息多樣化,則也就是目前數據具有多種類型,在龐大的資料庫中,信息以不同的類型存在著,其中包括有文字、圖片、視頻等等。這些信息類型的格式也在不斷發生著變化,從而進一步提高了計算機信息處理難度。目前計算機的處理能力、列印能力等各項能力均有顯著提升,尤其是當前軟體技術的迅速發展,進一步提高了計算機應用便利性。微電子技術的發展促進了微型計算機的應用發展,進一步強化了計算機應用管理條件。
大數據信息不但具有較大容量,同時相對於傳統數據來講進一步增強了信息間關聯性,同時關聯結構也越來越復雜,導致在進行信息處理中需要面臨新的難度。在 網路技術 發展中重點集中在傳輸結構發展上,在這種情況下計算機必須要首先實現網路傳輸結構的開放性設定,從而打破之前計算機信息處理中,硬體所具有的限製作用。因為在當前計算機網路發展中還存在一定的不足,在完成雲計算機網路構建之後,才能夠在信息處理過程中,真正的實現收放自如[2]。
二、大數據時代的計算機信息處理技術
(一)數據收集和傳播技術
現在人們通過電腦也就可以接收到不同的信息類型,但是在進行信息發布之前,工作人員必須要根據需要採用信息處理技術實施相應的信息處理。計算機採用信息處理技術實施信息處理,此過程具有一定復雜性,首先需要進行數據收集,在將相關有效信息收集之後首先對這些信息實施初步分析,完成信息的初級操作處理,總體上來說信息處理主要包括:分類、分析以及整理。只有將這三步操作全部都完成之後,才能夠把這些信息完整的在計算機網路上進行傳播,讓用戶依照自己的實際需求篩選滿足自己需求的信息,藉助於計算機傳播特點將信息數據的閱讀價值有效的實現。
(二)信息存儲技術
在目前計算機網路中出現了很多視頻和虛擬網頁等內容,隨著人們信息接收量的不斷加大,對信息儲存空間也有較大需求,這也就是對計算機信息存儲技術提供了一個新的要求。在數據存儲過程中,已經出現一系列存儲空間無法滿足當前存儲要求,因此必須要對當前計算機存儲技術實施創新發展。一般來講計算機數據存儲空間可以對當前用戶關於不同信息的存儲需求滿足,但是也有一部分用戶對於計算機存儲具有較高要求,在這種情況下也就必須要提高計算機數據存儲性能[3],從而為計算機存儲效率提供有效保障。因此可以在大數據存儲特點上完成計算機信息新存儲方式,不但可以有效的滿足用戶信息存儲需求,同時還可以有效的保障普通儲存空間不會出現被大數據消耗問題。
(三)信息安全技術
大量數據信息在計算機技術發展過程中的出現,導致有一部分信息內容已經出現和之前信息形式的偏移,構建出一些新的計算機信息關聯結構,同時具有非常強大的數據關聯性,從而也就導致在計算機信息處理中出現了新的問題,一旦在信息處理過程中某個信息出現問題,也就會導致與之關聯緊密的數據出現問題。在實施相應的計算機信息管理的時候,也不像之前一樣直接在單一數據信息之上建立,必須要實現整個資料庫中所有將數據的統一安全管理。從一些角度分析,這種模式可以對計算機信息處理技術水平有顯著提升,並且也為計算機信息處理技術發展指明了方向,但是因為在計算機硬體中存在一定的性能不足,也就導致在大數據信息安全管理中具有一定難度。想要為數據安全提供有效保障,就必須要注重數據安全技術管理技術的發展。加強當前信息安全體系建設,另外也必須要對計算機信息管理人員專業水平進行培養,提高管理人員專業素質和專業能力,從而更好的滿足當前網路信息管理體系發展需求,同時也要加強關於安全技術的全面深入研究工作[4]。目前在大數據時代下計算機信息安全管理技術發展還不夠成熟,對於大量的信息還不能夠實施全面的安全性檢測,因此在未來計算機信息技術研究中安全管理屬於重點方向。但是因為目前還沒有構建完善的計算機安全信息管理體系,因此首先應該強化關於計算機重點信息的安全管理,這些信息一旦發生泄漏,就有可能會導致出現非常嚴重的損失。目前來看,這種 方法 具有一定可行性。
(四)信息加工、傳輸技術
在實施計算機信息數據處理和傳輸過程中,首先需要完成數據採集,同時還要實時監控數據信息源,在資料庫中將採集來的各種信息數據進行存儲,所有數據信息的第一步均是完成採集。其次才能夠對這些採集來的信息進行加工處理,通常來說也就是各種分類及加工。最後把已經處理好的信息,通過數據傳送系統完整的傳輸到客戶端,為用戶閱讀提供便利。
結語:
在大數據時代下,計算機信息處理技術也存在一定的發展難度,從目前專業方面來看,還存在一些問題無法解決,但是這些難題均蘊含著信息技術發展的重要機遇。在當前計算機硬體中,想要完成計算機更新也存在一定的難度,但是目前計算機未來的發展方向依舊是雲計算網路,把網路數據和計算機硬體數據兩者分開,也就有助於實現雲計算機網路的有效轉化。隨著科學技術的不斷發展相信在未來的某一天定能夠進入到計算機信息處理的高速發展階段。
參考文獻
[1] 馮瀟婧.“大數據”時代背景下計算機信息處理技術的分析[J].計算機光碟軟體與應用,2014,(05):105+107.
[2] 詹少強.基於“大數據”時代剖析計算機信息處理技術[J].網路安全技術與應用,2014,(08):49-50.
[3] 曹婷.在信息網路下計算機信息處理技術的安全性[J].民營科技,2014, (12):89CNKI
[4] 申鵬.“大數據”時代的計算機信息處理技術初探[J].計算機光碟軟體與應用,2014,(21):109-110
計算機與大數據的相關論文篇二
試談計算機軟體技術在大數據時代的應用
摘要:大數據的爆炸式增長在大容量、多樣性和高增速方面,全面考驗著現代企業的數據處理和分析能力;同時,也為企業帶來了獲取更豐富、更深入和更准確地洞察市場行為的大量機會。對企業而言,能夠從大數據中獲得全新價值的消息是令人振奮的。然而,如何從大數據中發掘出“真金白銀”則是一個現實的挑戰。這就要求採用一套全新的、對企業決策具有深遠影響的解決方案。
關鍵詞:計算機 大數據時代 容量 准確 價值 影響 方案
1 概述
自從計算機出現以後,傳統的計算工作已經逐步被淘汰出去,為了在新的競爭與挑戰中取得勝利,許多網路公司開始致力於數據存儲與資料庫的研究,為互聯網用戶提供各種服務。隨著雲時代的來臨,大數據已經開始被人們廣泛關注。一般來講,大數據指的是這樣的一種現象:互聯網在不斷運營過程中逐步壯大,產生的數據越來越多,甚至已經達到了10億T。大數據時代的到來給計算機信息處理技術帶來了更多的機遇和挑戰,隨著科技的發展,計算機信息處理技術一定會越來越完善,為我們提供更大的方便。
大數據是IT行業在雲計算和物聯網之後的又一次技術變革,在企業的管理、國家的治理和人們的生活方式等領域都造成了巨大的影響。大數據將網民與消費的界限和企業之間的界限變得模糊,在這里,數據才是最核心的資產,對於企業的運營模式、組織結構以及 文化 塑造中起著很大的作用。所有的企業在大數據時代都將面對戰略、組織、文化、公共關系和人才培養等許多方面的挑戰,但是也會迎來很大的機遇,因為只是作為一種共享的公共網路資源,其層次化和商業化不但會為其自身發展帶來新的契機,而且良好的服務品質更會讓其充分具有獨創性和專用性的鮮明特點。所以,知識層次化和商業化勢必會開啟知識創造的嶄新時代。可見,這是一個競爭與機遇並存的時代。
2 大數據時代的數據整合應用
自從2013年,大數據應用帶來令人矚目的成績,不僅國內外的產業界與科技界,還有各國政府部門都在積極布局、制定戰略規劃。更多的機構和企業都准備好了迎接大數據時代的到來,大數據的內涵應是數據的資產化和服務化,而挖掘數據的內在價值是研究大數據技術的最終目標。在應用數據快速增長的背景下,為了降低成本獲得更好的能效,越來越趨向專用化的系統架構和數據處理技術逐漸擺脫傳統的通用技術體系。如何解決“通用”和“專用”體系和技術的取捨,以及如何解決數據資產化和價值挖掘問題。
企業數據的應用內容涵蓋數據獲取與清理、傳輸、存儲、計算、挖掘、展現、開發平台與應用市場等方面,覆蓋了數據生產的全生命周期。除了Hadoop版本2.0系統YARN,以及Spark等新型系統架構介紹外,還將探討研究流式計算(Storm,Samza,Puma,S4等)、實時計算(Dremel,Impala,Drill)、圖計算(Pregel,Hama,Graphlab)、NoSQL、NewSQL和BigSQL等的最新進展。在大數據時代,借力計算機智能(MI)技術,通過更透明、更可用的數據,企業可以釋放更多蘊含在數據中的價值。實時、有效的一線質量數據可以更好地幫助企業提高產品品質、降低生產成本。企業領導者也可根據真實可靠的數據制訂正確戰略經營決策,讓企業真正實現高度的計算機智能決策辦公,下面我們從通信和商業運營兩個方面進行闡述。
2.1 通信行業:XO Communications通過使用IBM SPSS預測分析軟體,減少了將近一半的客戶流失率。XO現在可以預測客戶的行為,發現行為趨勢,並找出存在缺陷的環節,從而幫助公司及時採取 措施 ,保留客戶。此外,IBM新的Netezza網路分析加速器,將通過提供單個端到端網路、服務、客戶分析視圖的可擴展平台,幫助通信企業制定更科學、合理決策。電信業者透過數以千萬計的客戶資料,能分析出多種使用者行為和趨勢,賣給需要的企業,這是全新的資料經濟。中國移動通過大數據分析,對 企業運營 的全業務進行針對性的監控、預警、跟蹤。系統在第一時間自動捕捉市場變化,再以最快捷的方式推送給指定負責人,使他在最短時間內獲知市場行情。
2.2 商業運營:辛辛那提動物園使用了Cognos,為iPad提供了單一視圖查看管理即時訪問的遊客和商務信息的服務。藉此,動物園可以獲得新的收入來源和提高營收,並根據這些信息及時調整營銷政策。數據收集和分析工具能夠幫助銀行設立最佳網點,確定最好的網點位置,幫助這個銀行更好地運作業務,推動業務的成長。
3 企業信息解決方案在大數據時代的應用
企業信息管理軟體廣泛應用於解決欺詐偵測、雇員流動、客戶獲取與維持、網路銷售、市場細分、風險分析、親和性分析、客戶滿意度、破產預測和投資組合分析等多樣化問題。根據大數據時代的企業挖掘的特徵,提出了數據挖掘的SEMMA方法論――在SAS/EM環境中,數據挖掘過程被劃分為Sample、Explore、Modify、Model、Assess這五個階段,簡記為SEMMA:
3.1 Sample 抽取一些代表性的樣本數據集(通常為訓練集、驗證集和測試集)。樣本容量的選擇標准為:包含足夠的重要信息,同時也要便於分析操作。該步驟涉及的處理工具為:數據導入、合並、粘貼、過濾以及統計抽樣方法。
3.2 Explore 通過考察關聯性、趨勢性以及異常值的方式來探索數據,增進對於數據的認識。該步驟涉及的工具為:統計 報告 、視圖探索、變數選擇以及變數聚類等方法。
3.3 Modify 以模型選擇為目標,通過創建、選擇以及轉換變數的方式來修改數據集。該步驟涉及工具為:變數轉換、缺失處理、重新編碼以及數據分箱等。
3.4 Model 為了獲得可靠的預測結果,我們需要藉助於分析工具來訓練統計模型或者機器學習模型。該步驟涉及技術為:線性及邏輯回歸、決策樹、神經網路、偏最小二乘法、LARS及LASSO、K近鄰法以及其他用戶(包括非SAS用戶)的模型演算法。
3.5 Assess 評估數據挖掘結果的有效性和可靠性。涉及技術為:比較模型及計算新的擬合統計量、臨界分析、決策支持、報告生成、評分代碼管理等。數據挖掘者可能不會使用全部SEMMA分析步驟。然而,在獲得滿意結果之前,可能需要多次重復其中部分或者全部步驟。
在完成SEMMA步驟後,可將從優選模型中獲取的評分公式應用於(可能不含目標變數的)新數據。將優選公式應用於新數據,這是大多數數據挖掘問題的目標。此外,先進的可視化工具使得用戶能在多維直方圖中快速、輕松地查閱大量數據並以圖形化方式比較模擬結果。SAS/EM包括了一些非同尋常的工具,比如:能用來產生數據挖掘流程圖的完整評分代碼(SAS、C以及Java代碼)的工具,以及交換式進行新數據評分計算和考察執行結果的工具。
如果您將優選模型注冊進入SAS元數據伺服器,便可以讓SAS/EG和SAS/DI Studio的用戶分享您的模型,從而將優選模型的評分代碼整合進入 工作報告 和生產流程之中。SAS模型管理系統,通過提供了開發、測試和生產系列環境的項目管理結構,進一步補充了數據挖掘過程,實現了與SAS/EM的無縫聯接。
在SAS/EM環境中,您可以從SEMMA工具欄上拖放節點進入工作區的工藝流程圖中,這種流程圖驅動著整個數據挖掘過程。SAS/EM的圖形用戶界面(GUI)是按照這樣的思路來設計的:一方面,掌握少量統計知識的商務分析者可以瀏覽數據挖掘過程的技術方法;另一方面,具備數量分析技術的專家可以用微調方式深入探索每一個分析節點。
4 結束語
在近十年時間里,數據採集、存儲和數據分析技術飛速發展,大大降低了數據儲存和處理的成本,一個大數據時代逐漸展現在我們的面前。大數據革新性地將海量數據處理變為可能,並且大幅降低了成本,使得越來越多跨專業學科的人投入到大數據的開發應用中來。
參考文獻:
[1]薛志文.淺析計算機網路技術及其發展趨勢[J].信息與電腦,2009.
[2]張帆,朱國仲.計算機網路技術發展綜述[J].光碟技術,2007.
[3]孫雅珍.計算機網路技術及其應用[J].東北水利水電,1994.
[4]史萍.計算機網路技術的發展及展望[J].五邑大學學報,1999.
[5]桑新民.步入信息時代的學習理論與實踐[M].中央廣播大學出版社,2000.
[6]張浩,郭燦.數據可視化技術應用趨勢與分類研究[J].軟體導刊.
[7]王丹.數字城市與城市地理信息產業化――機遇與挑戰[J].遙感信息,2000(02).
[8]楊鳳霞.淺析 Excel 2000對數據的安全管理[J].湖北商業高等專科學校學報,2001(01).
計算機與大數據的相關論文篇三
淺談利用大數據推進計算機審計的策略
[摘要]社會發展以及時代更新,在該種環境背景下大數據風潮席捲全球,尤其是在進入新時期之後數據方面處理技術更加成熟,各領域行業對此也給予了較高的關注,針對當前計算機審計(英文簡稱CAT)而言要想加速其發展腳步並將其質量拔高就需要結合大數據,依託於大數據實現長足發展,本文基於此就大數據於CAT影響進行著手分析,之後探討依託於大數據良好推進CAT,以期為後續關於CAT方面研究提供理論上參考依據。
[關鍵詞]大數據 計算機審計 影響
前言:相較於網路時代而言大數據風潮一方面提供了共享化以及開放化、深層次性資源,另一方面也促使信息管理具備精準性以及高效性,走進新時期CAT應該融合於大數據風潮中,相應CAT人員也需要積極應對大數據帶了的機遇和挑戰,正面CAT工作,進而促使CAT緊跟時代腳步。
一、初探大數據於CAT影響
1.1影響之機遇
大數據於CAT影響體現在為CAT帶來了較大發展機遇,具體來講,信息技術的更新以及其質量的提升促使數據方面處理技術受到了眾多領域行業的喜愛,當前在數據技術推廣普及階段中呈現三大變化趨勢:其一是大眾工作生活中涉及的數據開始由以往的樣本數據實際轉化為全數據。其二是全數據產生促使不同數據間具備復雜內部關系,而該種復雜關系從很大程度上也推動工作效率以及數據精準性日漸提升,尤其是數據間轉化關系等更為清晰明了。其三是大眾在當前處理數據環節中更加關注數據之間關系研究,相較於以往僅僅關注數據因果有了較大進步。基於上述三大變化趨勢,也深刻的代表著大眾對於數據處理的態度改變,尤其是在當下海量數據生成背景下,人工審計具備較強滯後性,只有依託於大數據並發揮其優勢才能真正滿足大眾需求,而這也是大數據對CAT帶來的重要發展機遇,更是促進CAT在新時期得以穩定發展重要手段。
1.2影響之挑戰
大數據於CAT影響還體現在為CAT帶來一定挑戰,具體來講,審計評估實際工作質量優劣依託於其中數據質量,數據具備的高質量則集中在可靠真實以及內容詳細和相應信息准確三方面,而在CAT實際工作環節中常常由於外界環境以及人為因素導致數據質量較低,如數據方面人為隨意修改刪除等等,而這些均是大數據環境背景下需要嚴格把控的重點工作內容。
二、探析依託於大數據良好推進CAT措施
2.1數據質量的有效保障
依託於大數據良好推進CAT措施集中在數據質量有效保障上,對數據質量予以有效保障需要從兩方面入手,其一是把控電子數據有效存儲,簡單來講就是信息存儲,對電子信息進行定期檢查,監督數據實際傳輸,對信息系統予以有效確認以及評估和相應的測試等等,進而將不合理數據及時發現並找出信息系統不可靠不準確地方;其二是把控電子數據採集,通常電子數據具備多樣化採集方式,如將審計單位相應資料庫直接連接採集庫進而實現數據採集,該種直接採集需要備份初始傳輸數據,避免數據採集之後相關人員隨意修改,更加可以與審計單位進行數據採集真實性 承諾書 簽訂等等,最終通過電子數據方面採集以及存儲兩大內容把控促使數據質量更高,從而推動CAT發展。
2.2公共數據平台的建立
依託於大數據良好推進CAT措施還集中在公共數據平台的建立,建立公共化分析平台一方面能夠將所有採集的相關數據予以集中化管理存儲,更能夠予以多角度全方面有效分析;另一方面也能夠推動CAT作業相關標准予以良好執行。如果將分析模型看作是CAT作業標准以及相應的核心技術,則公共分析平台則是標准執行和相應技術實現關鍵載體。依託於公共數據平台不僅能夠將基礎的CAT工作實現便捷化以及統一化,而且深層次的實質研究有利於CAT數據處理的高速性以及高效性,最終為推動CAT發展起到重要影響作用。
2.3審計人員的強化培訓
依託於大數據良好推進CAT措施除了集中在上述兩方面之外,還集中在審計人員的強化培訓上,具體來講,培訓重點關注審計工作於計算機上的具 體操 作以及操作重點難點,可以構建統一培訓平台,在該培訓平台中予以多元化資料的分享,聘請高技能豐富 經驗 人士予以平台授課,提供專業技能知識溝通互動等等機會,最終通過強化培訓提升審計人員綜合素質,更加推動CAT未來發展。
三、結論
綜上分析可知,當前大數據環境背景下CAT需要將日常工作予以不斷調整,依託於大數據促使審計人員得以素質提升,並利用公共數據平台建立和相應的數據質量保障促使CAT工作更加高效,而本文對依託於大數據良好推進CAT進行研究旨在為未來CAT優化發展獻出自己的一份研究力量。
猜你喜歡:
1. 人工智慧與大數據論文
2. 大數據和人工智慧論文
3. 計算機大數據論文參考
4. 計算機有關大數據的應用論文
5. 有關大數據應用的論文