『壹』 redis 適合用在業務系統中嗎
Redis在很多方面與其他資料庫肢笑逗解決方案不同:它使用內存提供主存儲支持,而僅使用硬碟做持久性的存儲;它的數據模型非常獨特,用的是單線程。另一個大區別在於,你可以在開發環境中使用Redis的功能,但卻不需要轉到Redis。
轉向Redis當然也是可取的,許多開發者從一升歲開始就把Redis作為首選資料庫;但設想如果你的開發環境已經搭建好,應用已經在上面運行了,那麼更換資料庫框架顯然不那麼容易。另外在一些需要大容量數據集的應用,Redis也並不適合,因為它的數據集不會超過系統可用的內存。所以如果你有大數據應用,而且主要是讀取訪問模式,那麼Redis並不是正確的選擇。
然而我喜歡Redis的一點就是你可以把它融入到你的系統中來,這就能夠解決很多問題,比如那些你現歷賣有的資料庫處理起來感到緩慢的任務。這些你就可以通過Redis來進行優化,或者為應用創建些新的功能。在本文中,我就想探討一些怎樣將Redis加入到現有的環境中,並利用它的原語命令等功能來解決傳統環境中碰到的一些常見問題。在這些例子中,Redis都不是作為首選資料庫。
『貳』 Kafka,Mq和Redis作為消息隊列使用
kafka是個日誌處理緩沖組件,在大數據信息處理中使用。和傳統的消息隊列相比較簡化了隊列結構和功能,以流形式處理存儲(持久化)消息(主要是日誌)。日誌數據量巨大,處理組件一般會處理不過來,所以作為孝衫神緩沖層的kafka,支持巨大吞吐量。為了防止信息丟失,其消息被調用後不直接丟棄,要多存儲一段時間,等過期時間過了才丟棄。這是mq和redis不能具備的。主要特點如下:巨型存儲量: 支持TB甚至PB級別數據。高吞吐,高IO:一般配置的伺服器能實現單機每秒100K以上消息的傳輸。消息分區,分布式消費:能保消息順序傳輸。 支持離線數據處理和實時數據處理。Scale out:支持在線水平擴展,以支持更大數塌洞據處理量
redis只是提供一個高性能的、原子操作內存鍵值對,具有高速訪問能力,可用做消息隊列的存儲,但是不具備消息隊列的任何功能和邏輯,要作為消息隊列來實現的話,功能和邏輯要通過上層應用自己實現。
我們以RabbitMQ為例介紹。它是用Erlang語言開發的開源的消息隊列,支持多種協議,包括AMQP,XMPP, SMTP, STOMP。適合於企業級的開發。
MQ支持Broker構架,消息發送給客戶端時需要在中心隊列排隊。對路由,負載均衡或者數據持久化都有很好的支持。
還有ActiveMq,ZeroMq等。功能基本上大同小異。並發吞吐TPS比較,ZeroMq 最好,RabbitMq 次之, ActiveMq 最差巧虧。
原文:
『叄』 數據多的時候為什麼要使用redis而不用mysql
通常來說,當數據多、並發量大的時候,架構中可以引入Redis,幫助提升架構的整體性能,減少Mysql(或其他資料庫)的壓力,但不是使用Redis,就不用MySQL。
因為Redis的性能十分優越,可以支持每秒十幾萬此的讀/寫操作,並孫唯高且它還支持持久化、集群部署、分布式、主從同步等,Redis在高並發的場景下數據的安全和一致性,所以它經常用於兩個場景:
緩存
判斷數據是否適合緩存到Redis中,可以從幾個方面考慮: 會經常查詢么?命中率如何?寫操作多麼?數據大小?
我們經常採用這樣的方式將數據刷到Redis中:查詢的請求過來,現在Redis中查詢,如果查詢不到,就查詢資料庫拿到數據,再放到緩存中,這樣第二次相同的查詢請求過來,就可以直接在Redis中拿到數據;不過要注意【緩存穿透】的問題。
緩存的刷新會比較復雜,通常是修改完資料庫之後,還需要對Redis中的數據進行操作;代碼很簡單,但是需要保證這兩步為同一事務,或最終的事務一致性。
高速讀寫
常見的就是計數器,比如一篇文章的閱讀量,不可能每一次閱讀就在資料庫裡面update一次。
高並發的場景很適合使用Redis,比如雙11秒殺,庫存一共就一千件,到了秒殺的時間,通常會在極為短暫的時間內,有數萬級的請求達到伺服器,如果使用資料庫的話,很可能在這一瞬間造成資料庫的崩潰,所以通常會使用Redis(秒殺的場景會比較復雜,Redis只是其中之一,例如如果請求超過某個數量的時候,多餘的請求就會被限流)。
這種高並發的場景,是當請求達到伺服器的時候,直接山或在Redis上讀寫,請求不會訪問到資料庫;程序會在合適的時間,比如一千件庫存都被秒殺,再將數據批量寫到資料庫中。
所以通常來說,在必要的時候引入Redis,可以減少MySQL(或其他)資料庫的壓力,兩者不是替代的關系 。
我將持續分享Java開發、架構設計、程序員職業發展等方面的見解,希望能得到你的關注。
Redis和MySQL的應用場景是不同的。
通常來說,沒有說用Redis就不用MySQL的這種情況。
因為Redis是一種非關系型資料庫(NoSQL),而MySQL是一種關系型資料庫。
和Redis同類的資料庫還有MongoDB和Memchache(其實並沒有持久化數據)
那關系型資料庫現在常用的一般有MySQL,SQL Server,Oracle。
我們先來了解一下關系型資料庫和非關系型資料庫的區別吧。
1.存儲方式關系型資料庫是表格式的,因此存儲在表的行和列中。他們之間很容易關聯協作存儲,提取數據很方便。而Nosql資料庫則與其相反,他是大塊的組合在一起。通常存儲在數據集中,就像文檔、鍵值對或者圖結構。
2.存儲結構關系型資料庫對應的是結構化數據,數據表都預先定義了結構(列的定義),結構描述了數據的形式和內容。這一點對數據建模至關重要,雖然預定義結構帶來了可靠性和穩定性,但是修改這些數據比較困難。而Nosql資料庫基於動態結構,使用與非結構化數據。因為Nosql資料庫是動態結構,可以很容易適應數據類型和結構的變化。
3.存儲規范關系型資料庫的數據存儲為了更高的規范性,把數據分割為最小的關系表以避免重復,獲得精簡的空間利用。雖然管理起來很清晰,但是單個操作設計到多張表的時候,數據管理就顯得有點麻煩。而Nosql數據存儲在平面數據集中,數據經常可能會重復。單個資料庫很少被分隔開,而是存儲成了一個整體,這樣整塊數據更加便於讀寫
4.存儲擴展這可能是兩者之間最大的區別,關系型資料庫是縱向擴展,也就是說想要提高處理能力,要使用速度更快的計算機。因為數據存儲在關系表中,操作的性能瓶頸可能涉及到多個表,需要通過提升計算機性能來克服。雖然有很大的擴展空間,但是最終會達到縱向擴展的上限。而Nosql資料庫是橫向擴展的,它的存儲天然就是分布式的,可以通過給資源池添加更多的普通資料庫則尺伺服器來分擔負載。
5.查詢方式關系型資料庫通過結構化查詢語言來操作資料庫(就是我們通常說的SQL)。SQL支持資料庫CURD操作的功能非常強大,是業界的標准用法。而Nosql查詢以塊為單元操作數據,使用的是非結構化查詢語言(UnQl),它是沒有標準的。關系型資料庫表中主鍵的概念對應Nosql中存儲文檔的ID。關系型資料庫使用預定義優化方式(比如索引)來加快查詢操作,而Nosql更簡單更精確的數據訪問模式。
6.事務關系型資料庫遵循ACID規則(原子性(Atomicity)、一致性(Consistency)、隔離性(Isolation)、持久性(Durability)),而Nosql資料庫遵循BASE原則(基本可用(Basically Availble)、軟/柔性事務(Soft-state )、最終一致性(Eventual Consistency))。由於關系型資料庫的數據強一致性,所以對事務的支持很好。關系型資料庫支持對事務原子性細粒度控制,並且易於回滾事務。而Nosql資料庫是在CAP(一致性、可用性、分區容忍度)中任選兩項,因為基於節點的分布式系統中,很難全部滿足,所以對事務的支持不是很好,雖然也可以使用事務,但是並不是Nosql的閃光點。
7.性能關系型資料庫為了維護數據的一致性付出了巨大的代價,讀寫性能比較差。在面對高並發讀寫性能非常差,面對海量數據的時候效率非常低。而Nosql存儲的格式都是key-value類型的,並且存儲在內存中,非常容易存儲,而且對於數據的 一致性是 弱要求。Nosql無需sql的解析,提高了讀寫性能。
8.授權方式大多數的關系型資料庫都是付費的並且價格昂貴,成本較大(MySQL是開源的,所以應用的場景最多),而Nosql資料庫通常都是開源的。
所以,在實際的應用環境中,我們一般會使用MySQL存儲我們的業務過程中的數據,因為這些數據之間的關系比較復雜,我們常常會需要在查詢一個表的數據時候,將其他關系表的數據查詢出來,例如,查詢某個用戶的訂單,那至少是需要用戶表和訂單表的數據。
查詢某個商品的銷售數據,那可能就會需要用戶表,訂單表,訂單明細表,商品表等等。
而在這樣的使用場景中,我們使用Redis來存儲的話,也就是KeyValue形式存儲的話,其實並不能滿足我們的需要。
即使Redis的讀取效率再高,我們也沒法用。
但,對於某些沒有關聯少,且需要高頻率讀寫,我們使用Redis就能夠很好的提高整個體統的並發能力。
例如商品的庫存信息,我們雖然在MySQL中會有這樣的欄位,但是我們並不想MySQL的資料庫被高頻的讀寫,因為使用這樣會導致我的商品表或者庫存表IO非常高,從而影響整個體統的效率。
所以,對於這樣的數據,且有沒有什麼復雜邏輯關系(就只是隸屬於SKU)的數據,我們就可以放在Redis裡面,下單直接在Redis中減掉庫存,這樣,我們的訂單的並發能力就能夠提高了。
個人覺得應該站出來更正一下,相反的數據量大,更不應該用redis。
因為redis是內存型資料庫啊,是放在內存里的。
設想一下,假如你的電腦100G的資料,都用redis來存儲,那麼你需要100G以上的內存!
使用場景Redis最明顯的用例之一是將其用作緩存。只是保存熱數據,或者具有過期的cache。
例如facebook,使用Memcached來作為其會話緩存。
總之,沒有見過哪個大公司數據量大了,換掉mysql用redis的。
題主你錯了,不是用redis代替MySQL,而是引入redis來優化。
BAT里越來越多的項目組已經採用了redis+MySQL的架構來開發平台工具。
如題主所說,當數據多的時候,MySQL的查詢效率會大打折扣。我們通常默認如果查詢的欄位包含索引的話,返回是毫秒級別的。但是在實際工作中,我曾經遇到過一張包含10個欄位的表,1800萬+條數據,當某種場景下,我們不得不根據一個未加索引的欄位進行精確查詢的時候,單條sql語句的執行時長有時能夠達到2min以上,就更別提如果用like這種模糊查詢的話,其效率將會多麼低下。
我們最開始是希望能夠通過增加索引的方式解決,但是面對千萬級別的數據量,我們也不敢貿然加索引,因為一旦資料庫hang住,期間的所有資料庫寫入請求都會被放到等待隊列中,如果請求是通過http請求發過來的,很有可能導致服務發生分鍾級別的超時不響應。
經過一番調研,最終敲定的解決方案是引入redis作為緩存。redis具有運行效率高,數據查詢速度快,支持多種存儲類型以及事務等優勢,我們把經常讀取,而不經常改動的數據放入redis中,伺服器讀取這類數據的時候時候,直接與redis通信,極大的緩解了MySQL的壓力。
然而,我在上面也說了,是redis+MySQL結合的方式,而不是替代。原因就是redis雖然讀寫很快,但是不適合做數據持久層,主要原因是使用redis做數據落盤是要以效率作為代價的,即每隔制定的時間,redis就要去進行數據備份/落盤,這對於單線程的它來說,勢必會因「分心」而影響效率,結果得不償失。
樓主你好,首先糾正下,數據多並不是一定就用Redis,Redis歸屬於NoSQL資料庫中,其特點擁有高性能讀寫數據速度,主要解決業務效率瓶頸。下面就詳細說下Redis的相比MySQL優點。( 關於Redis詳細了解參見我近期文章:https://www.toutiao.com/i6543810796214813187/ )
讀寫異常快
Redis非常快,每秒可執行大約10萬次的讀寫速度。
Redis支持豐富的數據類型,有二進制字元串、列表、集合、排序集和散列等等。這使得Redis很容易被用來解決各種問題,因為我們知道哪些問題可以更好使用地哪些數據類型來處理解決。
原子性Redis的所有操作都是原子操作,這確保如果兩個客戶端並發訪問,Redis伺服器能接收更新的值。
豐富實用工具 支持異機主從復制Redis支持主從復制的配置,它可以實現主伺服器的完全拷貝。
以上為開發者青睞Redis的主要幾個可取之處。但是,請注意實際生產環境中企業都是結合Redis和MySQL的特定進行不同應用場景的取捨。 如緩存——熱數據、計數器、消息隊列(與ActiveMQ,RocketMQ等工具類似)、位操作(大數據處理)、分布式鎖與單線程機制、最新列表(如新聞列表頁面最新的新聞列表)以及排行榜等等 可以看見Redis大顯身手的場景。可是對於嚴謹的數據准確度和復雜的關系型應用MySQL等關系型資料庫依然不可替。
web應用中一般採用MySQL+Redis的方式,web應用每次先訪問Redis,如果沒有找到數據,才去訪問MySQL。
本質區別1、mysql:數據放在磁碟 redis:數據放在內存。
首先要知道mysql存儲在磁碟里,redis存儲在內存里,redis既可以用來做持久存儲,也可以做緩存,而目前大多數公司的存儲都是mysql + redis,mysql作為主存儲,redis作為輔助存儲被用作緩存,加快訪問讀取的速度,提高性能。
使用場景區別1、mysql支持sql查詢,可以實現一些關聯的查詢以及統計;
2、redis對內存要求比較高,在有限的條件下不能把所有數據都放在redis;
3、mysql偏向於存數據,redis偏向於快速取數據,但redis查詢復雜的表關系時不如mysql,所以可以把熱門的數據放redis,mysql存基本數據。
mysql的運行機制mysql作為持久化存儲的關系型資料庫,相對薄弱的地方在於每次請求訪問資料庫時,都存在著I/O操作,如果反復頻繁的訪問資料庫。第一:會在反復鏈接資料庫上花費大量時間,從而導致運行效率過慢;第二:反復地訪問資料庫也會導致資料庫的負載過高,那麼此時緩存的概念就衍生了出來。
Redis持久化由於Redis的數據都存放在內存中,如果沒有配置持久化,redis重啟後數據就全丟失了,於是需要開啟redis的持久化功能,將數據保存到磁碟上,當redis重啟後,可以從磁碟中恢復數據。redis提供兩種方式進行持久化,一種是RDB持久化(原理是將Reids在內存中的資料庫記錄定時mp到磁碟上的RDB持久化),另外一種是AOF(append only file)持久化(原理是將Reids的操作日誌以追加的方式寫入文件)。
redis是放在內存的~!
數據量多少絕對不是選擇redis和mysql的准則,因為無論是mysql和redis都可以集群擴展,約束它們的只是硬體(即你有沒有那麼多錢搭建上千個組成的集群),我個人覺得數據讀取的快慢可能是選擇的標准之一,另外工作中往往是兩者同是使用,因為mysql存儲在硬碟,做持久化存儲,而redis存儲在內存中做緩存提升效率。
關系型資料庫是必不可少的,因為只有關系型資料庫才能提供給你各種各樣的查詢方式。如果有一系列的數據會頻繁的查詢,那麼就用redis進行非持久化的存儲,以供查詢使用,是解決並發性能問題的其中一個手段
『肆』 Redis 和 Memcached 各有什麼優缺點,主要的應用場景是什麼樣的
Redis的作者Salvatore Sanfilippo曾經對這兩種基於內存的數據存儲系統進行過比較:
1、Redis支持伺服器端的數據操作:Redis相比Memcached來說,擁有更多的數據結構和並支持更豐富的數據操作,通常在Memcached里,你需要將數據拿到客戶端來進行類似的修改再set回去。這大大增加了網路IO的次數和數據體積。在Redis中,這些復雜的操作通常和一般的GET/SET一樣高效。所以,如果需要緩存能夠支持更復雜的結構和操作,那麼Redis會是不錯的選擇。
2、內存使用效率對比:使用簡單的key-value存儲的話,Memcached的內存利用率更高,而如果Redis採用hash結構來做key-value存儲,由於其組合式的壓縮,其內存利用率會高於Memcached。
3、性能對比:由於Redis只使用單核,而Memcached可以使用多核,所以平均每一個核上Redis在存儲小數據時比Memcached性能更高。而在100k以上的數據中,Memcached性能要高於Redis,雖然Redis最近也在存儲大數據的性能上進行優化,但是比起Memcached,還是稍有遜色。
具體為什麼會出現上面的結論,以下為收集到的資料:
1、數據類型支持不同
與Memcached僅支持簡單的key-value結構的數據記錄不同,Redis支持的數據類型要豐富得多。最為常用的數據類型主要由五種:String、Hash、List、Set和Sorted Set。Redis內部使用一個redisObject對象來表示所有的key和value。redisObject最主要的信息如圖所示:
type代表一個value對象具體是何種數據類型,encoding是不同數據類型在redis內部的存儲方式,比如:type=string代表value存儲的是一個普通字元串,那麼對應的encoding可以是raw或者是int,如果是int則代表實際redis內部是按數值型類存儲和表示這個字元串的,當然前提是這個字元串本身可以用數值表示,比如:」123″ 「456」這樣的字元串。只有打開了Redis的虛擬內存功能,vm欄位欄位才會真正的分配內存,該功能默認是關閉狀態的。
1)String
常用命令:set/get/decr/incr/mget等;
應用場景:String是最常用的一種數據類型,普通的key/value存儲都可以歸為此類;
實現方式:String在redis內部存儲默認就是一個字元串,被redisObject所引用,當遇到incr、decr等操作時會轉成數值型進行計算,此時redisObject的encoding欄位為int。
2)Hash
常用命令:hget/hset/hgetall等
應用場景:我們要存儲一個用戶信息對象數據,其中包括用戶ID、用戶姓名、年齡和生日,通過用戶ID我們希望獲取該用戶的姓名或者年齡或者生日;
實現方式:Redis的Hash實際是內部存儲的Value為一個HashMap,並提供了直接存取這個Map成員的介面。如圖所示,Key是用戶ID, value是一個Map。這個Map的key是成員的屬性名,value是屬性值。這樣對數據的修改和存取都可以直接通過其內部Map的Key(Redis里稱內部Map的key為field), 也就是通過 key(用戶ID) + field(屬性標簽) 就可以操作對應屬性數據。當前HashMap的實現有兩種方式:當HashMap的成員比較少時Redis為了節省內存會採用類似一維數組的方式來緊湊存儲,而不會採用真正的HashMap結構,這時對應的value的redisObject的encoding為zipmap,當成員數量增大時會自動轉成真正的HashMap,此時encoding為ht。
3)List
常用命令:lpush/rpush/lpop/rpop/lrange等;
應用場景:Redis list的應用場景非常多,也是Redis最重要的數據結構之一,比如twitter的關注列表,粉絲列表等都可以用Redis的list結構來實現;
實現方式:Redis list的實現為一個雙向鏈表,即可以支持反向查找和遍歷,更方便操作,不過帶來了部分額外的內存開銷,Redis內部的很多實現,包括發送緩沖隊列等也都是用的這個數據結構。
4)Set
常用命令:sadd/spop/smembers/sunion等;
應用場景:Redis set對外提供的功能與list類似是一個列表的功能,特殊之處在於set是可以自動排重的,當你需要存儲一個列表數據,又不希望出現重復數據時,set是一個很好的選擇,並且set提供了判斷某個成員是否在一個set集合內的重要介面,這個也是list所不能提供的;
實現方式:set 的內部實現是一個 value永遠為null的HashMap,實際就是通過計算hash的方式來快速排重的,這也是set能提供判斷一個成員是否在集合內的原因。
5)Sorted Set
常用命令:zadd/zrange/zrem/zcard等;
應用場景:Redis sorted set的使用場景與set類似,區別是set不是自動有序的,而sorted set可以通過用戶額外提供一個優先順序(score)的參數來為成員排序,並且是插入有序的,即自動排序。當你需要一個有序的並且不重復的集合列表,那麼可以選擇sorted set數據結構,比如twitter 的public timeline可以以發表時間作為score來存儲,這樣獲取時就是自動按時間排好序的。
實現方式:Redis sorted set的內部使用HashMap和跳躍表(SkipList)來保證數據的存儲和有序,HashMap里放的是成員到score的映射,而跳躍表裡存放的是所有的成員,排序依據是HashMap里存的score,使用跳躍表的結構可以獲得比較高的查找效率,並且在實現上比較簡單。
2、內存管理機制不同
在Redis中,並不是所有的數據都一直存儲在內存中的。這是和Memcached相比一個最大的區別。當物理內存用完時,Redis可以將一些很久沒用到的value交換到磁碟。Redis只會緩存所有的key的信息,如果Redis發現內存的使用量超過了某一個閥值,將觸發swap的操作,Redis根據「swappability = age*log(size_in_memory)」計算出哪些key對應的value需要swap到磁碟。然後再將這些key對應的value持久化到磁碟中,同時在內存中清除。這種特性使得Redis可以保持超過其機器本身內存大小的數據。當然,機器本身的內存必須要能夠保持所有的key,畢竟這些數據是不會進行swap操作的。同時由於Redis將內存中的數據swap到磁碟中的時候,提供服務的主線程和進行swap操作的子線程會共享這部分內存,所以如果更新需要swap的數據,Redis將阻塞這個操作,直到子線程完成swap操作後才可以進行修改。當從Redis中讀取數據的時候,如果讀取的key對應的value不在內存中,那麼Redis就需要從swap文件中載入相應數據,然後再返回給請求方。 這里就存在一個I/O線程池的問題。在默認的情況下,Redis會出現阻塞,即完成所有的swap文件載入後才會相應。這種策略在客戶端的數量較小,進行批量操作的時候比較合適。但是如果將Redis應用在一個大型的網站應用程序中,這顯然是無法滿足大並發的情況的。所以Redis運行我們設置I/O線程池的大小,對需要從swap文件中載入相應數據的讀取請求進行並發操作,減少阻塞的時間。
對於像Redis和Memcached這種基於內存的資料庫系統來說,內存管理的效率高低是影響系統性能的關鍵因素。傳統C語言中的malloc/free函數是最常用的分配和釋放內存的方法,但是這種方法存在著很大的缺陷:首先,對於開發人員來說不匹配的malloc和free容易造成內存泄露;其次頻繁調用會造成大量內存碎片無法回收重新利用,降低內存利用率;最後作為系統調用,其系統開銷遠遠大於一般函數調用。所以,為了提高內存的管理效率,高效的內存管理方案都不會直接使用malloc/free調用。Redis和Memcached均使用了自身設計的內存管理機制,但是實現方法存在很大的差異,下面將會對兩者的內存管理機制分別進行介紹。
Memcached默認使用Slab Allocation機制管理內存,其主要思想是按照預先規定的大小,將分配的內存分割成特定長度的塊以存儲相應長度的key-value數據記錄,以完全解決內存碎片問題。Slab Allocation機制只為存儲外部數據而設計,也就是說所有的key-value數據都存儲在Slab Allocation系統里,而Memcached的其它內存請求則通過普通的malloc/free來申請,因為這些請求的數量和頻率決定了它們不會對整個系統的性能造成影響Slab Allocation的原理相當簡單。 如圖所示,它首先從操作系統申請一大塊內存,並將其分割成各種尺寸的塊Chunk,並把尺寸相同的塊分成組Slab Class。其中,Chunk就是用來存儲key-value數據的最小單位。每個Slab Class的大小,可以在Memcached啟動的時候通過制定Growth Factor來控制。假定圖中Growth Factor的取值為1.25,如果第一組Chunk的大小為88個位元組,第二組Chunk的大小就為112個位元組,依此類推。
當Memcached接收到客戶端發送過來的數據時首先會根據收到數據的大小選擇一個最合適的Slab Class,然後通過查詢Memcached保存著的該Slab Class內空閑Chunk的列表就可以找到一個可用於存儲數據的Chunk。當一條資料庫過期或者丟棄時,該記錄所佔用的Chunk就可以回收,重新添加到空閑列表中。從以上過程我們可以看出Memcached的內存管理制效率高,而且不會造成內存碎片,但是它最大的缺點就是會導致空間浪費。因為每個Chunk都分配了特定長度的內存空間,所以變長數據無法充分利用這些空間。如圖 所示,將100個位元組的數據緩存到128個位元組的Chunk中,剩餘的28個位元組就浪費掉了。
Redis的內存管理主要通過源碼中zmalloc.h和zmalloc.c兩個文件來實現的。Redis為了方便內存的管理,在分配一塊內存之後,會將這塊內存的大小存入內存塊的頭部。如圖所示,real_ptr是redis調用malloc後返回的指針。redis將內存塊的大小size存入頭部,size所佔據的內存大小是已知的,為size_t類型的長度,然後返回ret_ptr。當需要釋放內存的時候,ret_ptr被傳給內存管理程序。通過ret_ptr,程序可以很容易的算出real_ptr的值,然後將real_ptr傳給free釋放內存。
Redis通過定義一個數組來記錄所有的內存分配情況,這個數組的長度為ZMALLOC_MAX_ALLOC_STAT。數組的每一個元素代表當前程序所分配的內存塊的個數,且內存塊的大小為該元素的下標。在源碼中,這個數組為zmalloc_allocations。zmalloc_allocations[16]代表已經分配的長度為16bytes的內存塊的個數。zmalloc.c中有一個靜態變數used_memory用來記錄當前分配的內存總大小。所以,總的來看,Redis採用的是包裝的mallc/free,相較於Memcached的內存管理方法來說,要簡單很多。
3、數據持久化支持
Redis雖然是基於內存的存儲系統,但是它本身是支持內存數據的持久化的,而且提供兩種主要的持久化策略:RDB快照和AOF日誌。而memcached是不支持數據持久化操作的。
1)RDB快照
Redis支持將當前數據的快照存成一個數據文件的持久化機制,即RDB快照。但是一個持續寫入的資料庫如何生成快照呢?Redis藉助了fork命令的 on write機制。在生成快照時,將當前進程fork出一個子進程,然後在子進程中循環所有的數據,將數據寫成為RDB文件。我們可以通過Redis的save指令來配置RDB快照生成的時機,比如配置10分鍾就生成快照,也可以配置有1000次寫入就生成快照,也可以多個規則一起實施。這些規則的定義就在Redis的配置文件中,你也可以通過Redis的CONFIG SET命令在Redis運行時設置規則,不需要重啟Redis。
Redis的RDB文件不會壞掉,因為其寫操作是在一個新進程中進行的,當生成一個新的RDB文件時,Redis生成的子進程會先將數據寫到一個臨時文件中,然後通過原子性rename系統調用將臨時文件重命名為RDB文件,這樣在任何時候出現故障,Redis的RDB文件都總是可用的。同時,Redis的RDB文件也是Redis主從同步內部實現中的一環。RDB有他的不足,就是一旦資料庫出現問題,那麼我們的RDB文件中保存的數據並不是全新的,從上次RDB文件生成到Redis停機這段時間的數據全部丟掉了。在某些業務下,這是可以忍受的。
2)AOF日誌
AOF日誌的全稱是append only file,它是一個追加寫入的日誌文件。與一般資料庫的binlog不同的是,AOF文件是可識別的純文本,它的內容就是一個個的Redis標准命令。只有那些會導致數據發生修改的命令才會追加到AOF文件。每一條修改數據的命令都生成一條日誌,AOF文件會越來越大,所以Redis又提供了一個功能,叫做AOF rewrite。其功能就是重新生成一份AOF文件,新的AOF文件中一條記錄的操作只會有一次,而不像一份老文件那樣,可能記錄了對同一個值的多次操作。其生成過程和RDB類似,也是fork一個進程,直接遍歷數據,寫入新的AOF臨時文件。在寫入新文件的過程中,所有的寫操作日誌還是會寫到原來老的AOF文件中,同時還會記錄在內存緩沖區中。當重完操作完成後,會將所有緩沖區中的日誌一次性寫入到臨時文件中。然後調用原子性的rename命令用新的AOF文件取代老的AOF文件。
AOF是一個寫文件操作,其目的是將操作日誌寫到磁碟上,所以它也同樣會遇到我們上面說的寫操作的流程。在Redis中對AOF調用write寫入後,通過appendfsync選項來控制調用fsync將其寫到磁碟上的時間,下面appendfsync的三個設置項,安全強度逐漸變強。
appendfsync no 當設置appendfsync為no的時候,Redis不會主動調用fsync去將AOF日誌內容同步到磁碟,所以這一切就完全依賴於操作系統的調試了。對大多數Linux操作系統,是每30秒進行一次fsync,將緩沖區中的數據寫到磁碟上。
appendfsync everysec 當設置appendfsync為everysec的時候,Redis會默認每隔一秒進行一次fsync調用,將緩沖區中的數據寫到磁碟。但是當這一次的fsync調用時長超過1秒時。Redis會採取延遲fsync的策略,再等一秒鍾。也就是在兩秒後再進行fsync,這一次的fsync就不管會執行多長時間都會進行。這時候由於在fsync時文件描述符會被阻塞,所以當前的寫操作就會阻塞。所以結論就是,在絕大多數情況下,Redis會每隔一秒進行一次fsync。在最壞的情況下,兩秒鍾會進行一次fsync操作。這一操作在大多數資料庫系統中被稱為group commit,就是組合多次寫操作的數據,一次性將日誌寫到磁碟。
appednfsync always 當設置appendfsync為always時,每一次寫操作都會調用一次fsync,這時數據是最安全的,當然,由於每次都會執行fsync,所以其性能也會受到影響。
對於一般性的業務需求,建議使用RDB的方式進行持久化,原因是RDB的開銷並相比AOF日誌要低很多,對於那些無法忍數據丟失的應用,建議使用AOF日誌。
4、集群管理的不同
Memcached是全內存的數據緩沖系統,Redis雖然支持數據的持久化,但是全內存畢竟才是其高性能的本質。作為基於內存的存儲系統來說,機器物理內存的大小就是系統能夠容納的最大數據量。如果需要處理的數據量超過了單台機器的物理內存大小,就需要構建分布式集群來擴展存儲能力。
Memcached本身並不支持分布式,因此只能在客戶端通過像一致性哈希這樣的分布式演算法來實現Memcached的分布式存儲。下圖給出了Memcached的分布式存儲實現架構。當客戶端向Memcached集群發送數據之前,首先會通過內置的分布式演算法計算出該條數據的目標節點,然後數據會直接發送到該節點上存儲。但客戶端查詢數據時,同樣要計算出查詢數據所在的節點,然後直接向該節點發送查詢請求以獲取數據。
相較於Memcached只能採用客戶端實現分布式存儲,Redis更偏向於在伺服器端構建分布式存儲。最新版本的Redis已經支持了分布式存儲功能。Redis Cluster是一個實現了分布式且允許單點故障的Redis高級版本,它沒有中心節點,具有線性可伸縮的功能。下圖給出Redis Cluster的分布式存儲架構,其中節點與節點之間通過二進制協議進行通信,節點與客戶端之間通過ascii協議進行通信。在數據的放置策略上,Redis Cluster將整個key的數值域分成4096個哈希槽,每個節點上可以存儲一個或多個哈希槽,也就是說當前Redis Cluster支持的最大節點數就是4096。Redis Cluster使用的分布式演算法也很簡單:crc16( key ) % HASH_SLOTS_NUMBER。
為了保證單點故障下的數據可用性,Redis Cluster引入了Master節點和Slave節點。在Redis Cluster中,每個Master節點都會有對應的兩個用於冗餘的Slave節點。這樣在整個集群中,任意兩個節點的宕機都不會導致數據的不可用。當Master節點退出後,集群會自動選擇一個Slave節點成為新的Master節點。
『伍』 redis一般用來幹嘛
『陸』 Redis的五種數據結構及其底層實現原理
redis的字元串類型是由一種叫做簡單動態字元串(SDS)的數據類型來實現
SDC和C語言字元串的區別:
1:SDS保存了字元串的長度,而C語言不保存,盯棚凱只能遍歷找到第一個 的結束符才能確定字元串的長度
2:修改SDS,會檢查空間是否足夠,不足會先擴展空間,防止緩沖區溢出,C字元串不會檢查
3:SDS的預分配空間機制,可以減少為字元串重新分配空間的次數
備註:重新分配空間方式,小於1M的數據 翻倍+1,例如:13K+13K+1,如果大於1M,每次多分配1M,例如:10M+1M+1,如果字元串變短,並不會立即縮短,而是採用惰性空間釋放,有專門的API可以釋放多餘空間
hash結構里其實是一個字典,有許多的鍵值對
redis的哈希表是一個dictht結構體:
哈希表節點的結構體如下:
hash演算法:
當要將一個新的鍵值對添加到字典裡面時, 程序需要先根據鍵值對的鍵計算出哈希值和索引值, 然後再根據索引值, 將包含新鍵值對的哈希表節點放到哈希表數組的指定索引上面。
hash沖突解決方式:鏈表法,後入的放到最前面
rehash:
鍵值數據量變動時,時為了讓哈希表的負載因子(load factor)維持在一個合理的范圍之內, 當哈希表保存的鍵值對數量太多或者太少時, 程序需要對哈希表的大小進行相應的擴展或和仿者收縮。
如果是擴充,新數組的空間大小為 大於2*used的2的n次方,比如:used=5,則去大於10的第一個2的n次方,為16
如果是縮小,新數組的空間大小為第一個不大於used的2的n次方,比如:used=5,則新大小為4
redis的list列表是使用雙向鏈表來實現的
···
typedef struct listNode {
struct listNode * pre; //前置節點
struct listNode * next; //後置節點
void * value; //節點的值
}
typedef struct list {
listNode *head; //表頭節點
listNode tail; //表尾節點
unsigned long len; //鏈表所包含的節點數量
void ( p) (void ptr); //節點值賦值函數 這里有問題
void ( free) (void ptr); //節點值釋放函數
int ( match) (void *ptr, void *key) //節點值對比函數
}
···
1:有序集合的底層實現之一是跳錶, 除此之外跳錶它在 Redis 中沒有其他應用。
2:整數集合(intset)是集合鍵的底層實現之一: 當一個集合只包含整數值元素, 並且這個集合的元素數量不多時, Redis 就會使用整數集合作為集合鍵的底層實現。
3:數據少是,使用ziplist(壓縮列表),佔用連續內存,每項元素都是(數據+score)的方式連續存儲,按照score從小到大排序。ziplist為了節省內存,每個元素佔用的空間可以不同,對於大數據(long long),就多用一些位元組存儲,而對於小的數據(short),就少用一些位元組來存儲。因此查找的時候需要按順序遍歷。ziplist省內存但是查找效率低。
無序集合可以用整數集合(intset)或者凱喚字典實現
Redis的5.0版本中,放出一個新的數據結構Stream。其實也是一個隊列,沒一個不同的key對應的是不同的隊列,沒個隊列的元素,也就是消息,都有一個msgid,並且需要保證msgid是嚴格遞增的。在Stream當中,消息是默認持久化的,即便是Redis重啟,也能夠讀取到信息。
Stream的多播,與其它隊列系統相似,對不同的消費者,也有消費者Group這樣的概念,不同的消費組,可以消費通一個消息,對於不同的消費組,都維護一個Idx下標,表示這一個消費群組費到了哪裡,每次進行消費,都會更新一下這個下標,往後面一位進行偏移。
跳躍表是一種有序數據結構,它通過在每個節點中維持多個指向其它節點的指針,從而大道快速訪問節點的目的,具有以下性質:
1:有很多層結構組成
2:每一層都是一個有序的鏈表,排列順序為由高到低,都至少包含兩個鏈表節點,分別是前面的head節點和後面的nil節點
3:最底層的鏈表包含了所有的元素
4:如果一個元素出現在某一層的鏈表中,那麼在該層之下的鏈表也全部都會出現
5:鏈表中的每個節點都包含兩個指針,一個指向同一層的下一個鏈表節點,另一個指向下一層的通一個鏈表節點
多個跳躍表節點構成一個跳躍表
1:搜索,從最高層的鏈表節點開始,如果比當前節點要大和比當前層的下一個節點要小,那麼則往下找,也及時和當前層的下一層的節點下一個節點
2:插入,首先確定插入的層數,有一種方法是拋一個硬幣,如果是正面就累加,直到遇到反面為止,最後記錄正面的次數作為插入的層數,當確定插入的層數K後,則需要將新元素插入從底層到K層
3:刪除,在各個層中找到包含指定值得節點,然後將節點從鏈表中刪除即可,如果刪除以後只剩下頭尾兩個節點,則刪除這一層。
整數集合是Redis用於保存整數值集合的抽象數據類型,它可以保存int16_t、int32_t、int64_t的整數值,並且保證集合中不會出現重復元素。
整數集合的每個元素都是contents數組的一個數據項,他們按照從小到大的順序排列,並且不包含任何重復項。
length屬性記錄了contents數組的大小。
需要注意的是雖然contents數組聲明為int8_t類型,但是實際上contents數組並不保存任何int8_t類型的值,其真正類型由encoding來決定。
壓縮列表(ziplist)是Redis為了節省內存而開發的,是由一系列特殊編碼的連續內存塊組成的順序型數據結構,一個壓縮列表可以包含任意多個節點(entry),每個節點可以保存一個位元組數組或一個整數值。
壓縮列表的原理:壓縮列表並不是對數據利用某種演算法進行壓縮的,而是將數據按照一定規則編碼在一塊連續的內存區域,目的是節省內存。
壓縮列表的每個節點構成如下:
『柒』 談談redis,memcache,mongodb的區別和具體應用場景
從以下幾個維度,對 redis、memcache、mongoDB 做了對比。
1、性能
都比較高,性能對我們來說應該都不是瓶頸。
總體來講,TPS 方面 redis 和 memcache 差不多,要大於 mongodb。
2、操作的便利性
memcache 數據結構單一。(key-value)
redis 豐富一些,數據操作方面,redis 更好一些,較少的網路 IO 次數,同時還提供 list,set,
hash 等數據結構的存儲。
mongodb 支持豐富的數據表達,索引,最類似關系型資料庫,支持的查詢語言非常豐富。
3、內存空間的大小和數據量的大小
redis 在 2.0 版本後增加了自己的 VM 特性,突破物理內存的限制;可以對 key value 設置過
期時間(類似 memcache)
memcache 可以修改最大可用內存,採用 LRU 演算法。Memcached 代理軟體 magent,比如建立
10 台 4G 的 Memcache 集群,就相當於有了 40G。 magent -s 10.1.2.1 -s 10.1.2.2:11211 -b
10.1.2.3:14000 mongoDB 適合大數據量的存儲,依賴操作系統 VM 做內存管理,吃內存也比較厲害,服務
不要和別的服務在一起。
4、可用性(單點問題)
對於單點問題,
redis,依賴客戶端來實現分布式讀寫;主從復制時,每次從節點重新連接主節點都要依賴整
個快照,無增量復制,因性能和效率問題,
所以單點問題比較復雜;不支持自動 sharding,需要依賴程序設定一致 hash 機制。
一種替代方案是,不用 redis 本身的復制機制,採用自己做主動復制(多份存儲),或者改成
增量復制的方式(需要自己實現),一致性問題和性能的權衡
Memcache 本身沒有數據冗餘機制,也沒必要;對於故障預防,採用依賴成熟的 hash 或者環
狀的演算法,解決單點故障引起的抖動問題。
mongoDB 支持 master-slave,replicaset(內部採用 paxos 選舉演算法,自動故障恢復),auto sharding 機制,對客戶端屏蔽了故障轉移和切分機制。
5、可靠性(持久化)
對於數據持久化和數據恢復,
redis 支持(快照、AOF):依賴快照進行持久化,aof 增強了可靠性的同時,對性能有所影
響
memcache 不支持,通常用在做緩存,提升性能;
MongoDB 從 1.8 版本開始採用 binlog 方式支持持久化的可靠性
6、數據一致性(事務支持)
Memcache 在並發場景下,用 cas 保證一致性redis 事務支持比較弱,只能保證事務中的每個操作連續執行
mongoDB 不支持事務
7、數據分析
mongoDB 內置了數據分析的功能(maprece),其他不支持
8、應用場景
redis:數據量較小的更性能操作和運算上
memcache:用於在動態系統中減少資料庫負載,提升性能;做緩存,提高性能(適合讀多寫
少,對於數據量比較大,可以採用 sharding)
MongoDB:主要解決海量數據的訪問效率問題。
表格比較:
memcache redis 類型 內存資料庫 內存資料庫
數據類型 在定義 value 時就要固定數據類型 不需要
有字元串,鏈表,集 合和有序集合
虛擬內存 不支持 支持
過期策略 支持 支持
分布式 magent master-slave,一主一從或一主多從
存儲數據安全 不支持 使用 save 存儲到 mp.rdb 中
災難恢復 不支持 append only file(aof)用於數據恢復
性能
1、類型——memcache 和 redis 都是將數據存放在內存,所以是內存資料庫。當然,memcache 也可用於緩存其他東西,例如圖片等等。
2、 數據類型——Memcache 在添加數據時就要指定數據的位元組長度,而 redis 不需要。
3、 虛擬內存——當物理內存用完時,可以將一些很久沒用到的 value 交換到磁碟。
4、 過期策略——memcache 在 set 時就指定,例如 set key1 0 0 8,即永不過期。Redis 可以通
過例如 expire 設定,例如 expire name 10。
5、 分布式——設定 memcache 集群,利用 magent 做一主多從;redis 可以做一主多從。都可
以一主一從。
6、 存儲數據安全——memcache 斷電就斷了,數據沒了;redis 可以定期 save 到磁碟。
7、 災難恢復——memcache 同上,redis 丟了後可以通過 aof 恢復。
Memecache 埠 11211
yum -y install memcached
yum -y install php-pecl-memcache
/etc/init.d/memcached start memcached -d -p 11211 -u memcached -m 64 -c 1024 -P /var/run/memcached/memcached.pid
-d 啟動一個守護進程
-p 埠
-m 分配的內存是 M
-c 最大運行並發數-P memcache 的 pid
//0 壓縮(是否 MEMCACHE_COMPRESSED) 30 秒失效時間
//delete 5 是 timeout <?php
$memcache = new Memcache; $memcache -> connect('127.0.0.1', 11211); $memcache -> set('name','yang',0,30);
if(!$memcache->add('name','susan',0, 30)) {
//echo 'susan is exist'; }$memcache -> replace('name', 'lion', 0, 300); echo $memcache -> get('name');
//$memcache -> delete('name', 5);
printf "stats\r\n" | nc 127.0.0.1 11211
telnet localhost 11211 stats quit 退出
Redis 的配置文件 埠 6379
/etc/redis.conf 啟動 Redis
redis-server /etc/redis.conf 插入一個值
redis-cli set test "phper.yang" 獲取鍵值
redis-cli get test 關閉 Redis
redis-cli shutdown 關閉所有
redis-cli -p 6379 shutdown <?php
$redis=new
Redis(); $redis->connect('127.0.0.1',6379); $redis->set('test',
'Hello World'); echo $redis->get('test'); Mongodb
apt-get install mongo mongo 可以進入 shell 命令行
pecl install mongo Mongodb 類似 phpmyadmin 操作平台 RockMongo
『捌』 Redis的主要功能
緩存:這應該是 Redis 最主要的功能了,也是大型網站必備機制,合理地使用緩存不僅可以加 快數據的訪問速度,而且能夠有效地降低後端數據源的壓力。
共享Session:對於一些依賴 session 功能的服務來說,如果需要從單機變成集群的話,可以選擇 redis 來統一管理 session。消息隊列系統:消息隊列系統可以說是一個大型網站的必備基礎組件,因為其具有業務 解耦、非實時業務削峰等特性。Redis提供了發布訂閱功能和阻塞隊列的功 能,雖然和專業的消息隊列比還不夠足夠強大,但是對於一般的消息隊列功能基本可以滿足。比如在分布式爬蟲系統中,使用 redis 來統一管理 url隊列。
分布式鎖:在分布式服務中。可以利用Redis的setnx功能來編寫分布式的鎖,雖然這個可能不是太常用。 當然還有諸如排行榜、點贊功能都可以使用 Redis 來實現,但是 Redis 也不是什麼都可以做,比如數據量特別大時,不適合 Redis,我們知道 Redis 是基於內存的,雖然內存很便宜,但是如果你每天的數據量特別大,比如幾億條的用戶行為日誌數據,用 Redis 來存儲的話,成本相當的高。
『玖』 Redis資料庫適合使用於哪些應用場景
redis開創了一種新的數據存儲思路,使用redis,我們不用在面對功能單調的資料庫時,而是利用redis靈活多變的數據結構和數據操作。
『拾』 大數據三大核心技術:拿數據、算數據、賣數據!
大數據的由來
對於「大數據」(Big data)研究機構Gartner給出了這樣的定義。「大數據」是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力來適應海量、高增長率和多樣化的信息資產。
1
麥肯錫全球研究所給出的定義是:一種規模大到在獲取、存儲、管理、分析方面大大超出了傳統資料庫軟體工具能力范圍的數據集合,具有海量的數據規模、快速的數據流轉、多樣的數據類型和價值密度低四大特徵。
大數據技術的戰略意義不在於掌握龐大的數據信息,而在於對這些含有意義的數據進行專業化處理。換而言之,如果把大數據比作一種產業,那麼這種產業實現盈利的關鍵,在於提高對數據的「加工能力」,通過「加工」實現數據的「增值」。
從技術上看,大數據與雲計算的關系就像一枚硬幣的正反面一樣密不可分。大數據必然無法用單台的計算機進行處理,必須採用分布式架構。它的特色在於對海量數據進行分布式數據挖掘。但它必須依託雲計算的分布式處理、分布式資料庫和雲存儲、虛擬化技術。
大數據需要特殊的技術,以有效地處理大量的容忍經過時間內的數據。適用於大數據的技術,包括大規模並行處理(MPP)資料庫、數據挖掘、分布式文件系統、分布式資料庫、雲計算平台、互聯網和可擴展的存儲系統。
最小的基本單位是bit,按順序給出所有單位:bit、Byte、KB、MB、GB、TB、PB、EB、ZB、YB、BB、NB、DB。
大數據的應用領域
大數據無處不在,大數據應用於各個行業,包括金融、 汽車 、餐飲、電信、能源、體能和 娛樂 等在內的 社會 各行各業都已經融入了大數據的印跡。
製造業,利用工業大數據提升製造業水平,包括產品故障診斷與預測、分析工藝流程、改進生產工藝,優化生產過程能耗、工業供應鏈分析與優化、生產計劃與排程。
金融行業,大數據在高頻交易、社交情緒分析和信貸風險分析三大金融創新領域發揮重大作用。
汽車 行業,利用大數據和物聯網技術的無人駕駛 汽車 ,在不遠的未來將走入我們的日常生活。
互聯網行業,藉助於大數據技術,可以分析客戶行為,進行商品推薦和針對性廣告投放。
電信行業,利用大數據技術實現客戶離網分析,及時掌握客戶離網傾向,出台客戶挽留措施。
能源行業,隨著智能電網的發展,電力公司可以掌握海量的用戶用電信息,利用大數據技術分析用戶用電模式,可以改進電網運行,合理設計電力需求響應系統,確保電網運行安全。
物流行業,利用大數據優化物流網路,提高物流效率,降低物流成本。
城市管理,可以利用大數據實現智能交通、環保監測、城市規劃和智能安防。
體育 娛樂 ,大數據可以幫助我們訓練球隊,決定投拍哪種 題財的 影視作品,以及預測比賽結果。
安全領域,政府可以利用大數據技術構建起強大的國家安全保障體系,企業可以利用大數據抵禦網路攻擊,警察可以藉助大數據來預防犯罪。
個人生活, 大數據還可以應用於個人生活,利用與每個人相關聯的「個人大數據」,分析個人生活行為習慣,為其提供更加周到的個性化服務。
大數據的價值,遠遠不止於此,大數據對各行各業的滲透,大大推動了 社會 生產和生活,未來必將產生重大而深遠的影響。
大數據方面核心技術有哪些?
大數據技術的體系龐大且復雜,基礎的技術包含數據的採集、數據預處理、分布式存儲、NoSQL資料庫、數據倉庫、機器學習、並行計算、可視化等各種技術范疇和不同的技術層面。首先給出一個通用化的大數據處理框架,主要分為下面幾個方面:數據採集與預處理、數據存儲、數據清洗、數據查詢分析和數據可視化。
數據採集與預處理
對於各種來源的數據,包括移動互聯網數據、社交網路的數據等,這些結構化和非結構化的海量數據是零散的,也就是所謂的數據孤島,此時的這些數據並沒有什麼意義,數據採集就是將這些數據寫入數據倉庫中,把零散的數據整合在一起,對這些數據綜合起來進行分析。數據採集包括文件日誌的採集、資料庫日誌的採集、關系型資料庫的接入和應用程序的接入等。在數據量比較小的時候,可以寫個定時的腳本將日誌寫入存儲系統,但隨著數據量的增長,這些方法無法提供數據安全保障,並且運維困難,需要更強壯的解決方案。
Flume NG
Flume NG作為實時日誌收集系統,支持在日誌系統中定製各類數據發送方,用於收集數據,同時,對數據進行簡單處理,並寫到各種數據接收方(比如文本,HDFS,Hbase等)。Flume NG採用的是三層架構:Agent層,Collector層和Store層,每一層均可水平拓展。其中Agent包含Source,Channel和 Sink,source用來消費(收集)數據源到channel組件中,channel作為中間臨時存儲,保存所有source的組件信息,sink從channel中讀取數據,讀取成功之後會刪除channel中的信息。
NDC
Logstash
Logstash是開源的伺服器端數據處理管道,能夠同時從多個來源採集數據、轉換數據,然後將數據發送到您最喜歡的 「存儲庫」 中。一般常用的存儲庫是Elasticsearch。Logstash 支持各種輸入選擇,可以在同一時間從眾多常用的數據來源捕捉事件,能夠以連續的流式傳輸方式,輕松地從您的日誌、指標、Web 應用、數據存儲以及各種 AWS 服務採集數據。
Sqoop
Sqoop,用來將關系型資料庫和Hadoop中的數據進行相互轉移的工具,可以將一個關系型資料庫(例如Mysql、Oracle)中的數據導入到Hadoop(例如HDFS、Hive、Hbase)中,也可以將Hadoop(例如HDFS、Hive、Hbase)中的數據導入到關系型資料庫(例如Mysql、Oracle)中。Sqoop 啟用了一個 MapRece 作業(極其容錯的分布式並行計算)來執行任務。Sqoop 的另一大優勢是其傳輸大量結構化或半結構化數據的過程是完全自動化的。
流式計算
流式計算是行業研究的一個熱點,流式計算對多個高吞吐量的數據源進行實時的清洗、聚合和分析,可以對存在於社交網站、新聞等的數據信息流進行快速的處理並反饋,目前大數據流分析工具有很多,比如開源的strom,spark streaming等。
Strom集群結構是有一個主節點(nimbus)和多個工作節點(supervisor)組成的主從結構,主節點通過配置靜態指定或者在運行時動態選舉,nimbus與supervisor都是Storm提供的後台守護進程,之間的通信是結合Zookeeper的狀態變更通知和監控通知來處理。nimbus進程的主要職責是管理、協調和監控集群上運行的topology(包括topology的發布、任務指派、事件處理時重新指派任務等)。supervisor進程等待nimbus分配任務後生成並監控worker(jvm進程)執行任務。supervisor與worker運行在不同的jvm上,如果由supervisor啟動的某個worker因為錯誤異常退出(或被kill掉),supervisor會嘗試重新生成新的worker進程。
Zookeeper
Zookeeper是一個分布式的,開放源碼的分布式應用程序協調服務,提供數據同步服務。它的作用主要有配置管理、名字服務、分布式鎖和集群管理。配置管理指的是在一個地方修改了配置,那麼對這個地方的配置感興趣的所有的都可以獲得變更,省去了手動拷貝配置的繁瑣,還很好的保證了數據的可靠和一致性,同時它可以通過名字來獲取資源或者服務的地址等信息,可以監控集群中機器的變化,實現了類似於心跳機制的功能。
數據存儲
Hadoop作為一個開源的框架,專為離線和大規模數據分析而設計,HDFS作為其核心的存儲引擎,已被廣泛用於數據存儲。
HBase
HBase,是一個分布式的、面向列的開源資料庫,可以認為是hdfs的封裝,本質是數據存儲、NoSQL資料庫。HBase是一種Key/Value系統,部署在hdfs上,克服了hdfs在隨機讀寫這個方面的缺點,與hadoop一樣,Hbase目標主要依靠橫向擴展,通過不斷增加廉價的商用伺服器,來增加計算和存儲能力。
Phoenix
Phoenix,相當於一個Java中間件,幫助開發工程師能夠像使用JDBC訪問關系型資料庫一樣訪問NoSQL資料庫HBase。
Yarn
Yarn是一種Hadoop資源管理器,可為上層應用提供統一的資源管理和調度,它的引入為集群在利用率、資源統一管理和數據共享等方面帶來了巨大好處。Yarn由下面的幾大組件構成:一個全局的資源管理器ResourceManager、ResourceManager的每個節點代理NodeManager、表示每個應用的Application以及每一個ApplicationMaster擁有多個Container在NodeManager上運行。
Mesos
Mesos是一款開源的集群管理軟體,支持Hadoop、ElasticSearch、Spark、Storm 和Kafka等應用架構。
Redis
Redis是一種速度非常快的非關系資料庫,可以存儲鍵與5種不同類型的值之間的映射,可以將存儲在內存的鍵值對數據持久化到硬碟中,使用復制特性來擴展性能,還可以使用客戶端分片來擴展寫性能。
Atlas
Atlas是一個位於應用程序與MySQL之間的中間件。在後端DB看來,Atlas相當於連接它的客戶端,在前端應用看來,Atlas相當於一個DB。Atlas作為服務端與應用程序通訊,它實現了MySQL的客戶端和服務端協議,同時作為客戶端與MySQL通訊。它對應用程序屏蔽了DB的細節,同時為了降低MySQL負擔,它還維護了連接池。Atlas啟動後會創建多個線程,其中一個為主線程,其餘為工作線程。主線程負責監聽所有的客戶端連接請求,工作線程只監聽主線程的命令請求。
Ku
Ku是圍繞Hadoop生態圈建立的存儲引擎,Ku擁有和Hadoop生態圈共同的設計理念,它運行在普通的伺服器上、可分布式規模化部署、並且滿足工業界的高可用要求。其設計理念為fast analytics on fast data。作為一個開源的存儲引擎,可以同時提供低延遲的隨機讀寫和高效的數據分析能力。Ku不但提供了行級的插入、更新、刪除API,同時也提供了接近Parquet性能的批量掃描操作。使用同一份存儲,既可以進行隨機讀寫,也可以滿足數據分析的要求。Ku的應用場景很廣泛,比如可以進行實時的數據分析,用於數據可能會存在變化的時序數據應用等。
在數據存儲過程中,涉及到的數據表都是成千上百列,包含各種復雜的Query,推薦使用列式存儲方法,比如parquent,ORC等對數據進行壓縮。Parquet 可以支持靈活的壓縮選項,顯著減少磁碟上的存儲。
數據清洗
MapRece作為Hadoop的查詢引擎,用於大規模數據集的並行計算,」Map(映射)」和」Rece(歸約)」,是它的主要思想。它極大的方便了編程人員在不會分布式並行編程的情況下,將自己的程序運行在分布式系統中。
隨著業務數據量的增多,需要進行訓練和清洗的數據會變得越來越復雜,這個時候就需要任務調度系統,比如oozie或者azkaban,對關鍵任務進行調度和監控。
Oozie
Oozie是用於Hadoop平台的一種工作流調度引擎,提供了RESTful API介面來接受用戶的提交請求(提交工作流作業),當提交了workflow後,由工作流引擎負責workflow的執行以及狀態的轉換。用戶在HDFS上部署好作業(MR作業),然後向Oozie提交Workflow,Oozie以非同步方式將作業(MR作業)提交給Hadoop。這也是為什麼當調用Oozie 的RESTful介面提交作業之後能立即返回一個JobId的原因,用戶程序不必等待作業執行完成(因為有些大作業可能會執行很久(幾個小時甚至幾天))。Oozie在後台以非同步方式,再將workflow對應的Action提交給hadoop執行。
Azkaban
Azkaban也是一種工作流的控制引擎,可以用來解決有多個hadoop或者spark等離線計算任務之間的依賴關系問題。azkaban主要是由三部分構成:Relational Database,Azkaban Web Server和Azkaban Executor Server。azkaban將大多數的狀態信息都保存在MySQL中,Azkaban Web Server提供了Web UI,是azkaban主要的管理者,包括project的管理、認證、調度以及對工作流執行過程中的監控等;Azkaban Executor Server用來調度工作流和任務,記錄工作流或者任務的日誌。
流計算任務的處理平台Sloth,是網易首個自研流計算平台,旨在解決公司內各產品日益增長的流計算需求。作為一個計算服務平台,其特點是易用、實時、可靠,為用戶節省技術方面(開發、運維)的投入,幫助用戶專注於解決產品本身的流計算需求
數據查詢分析
Hive
Hive的核心工作就是把SQL語句翻譯成MR程序,可以將結構化的數據映射為一張資料庫表,並提供 HQL(Hive SQL)查詢功能。Hive本身不存儲和計算數據,它完全依賴於HDFS和MapRece。可以將Hive理解為一個客戶端工具,將SQL操作轉換為相應的MapRece jobs,然後在hadoop上面運行。Hive支持標準的SQL語法,免去了用戶編寫MapRece程序的過程,它的出現可以讓那些精通SQL技能、但是不熟悉MapRece 、編程能力較弱與不擅長Java語言的用戶能夠在HDFS大規模數據集上很方便地利用SQL 語言查詢、匯總、分析數據。
Hive是為大數據批量處理而生的,Hive的出現解決了傳統的關系型資料庫(MySql、Oracle)在大數據處理上的瓶頸 。Hive 將執行計劃分成map->shuffle->rece->map->shuffle->rece…的模型。如果一個Query會被編譯成多輪MapRece,則會有更多的寫中間結果。由於MapRece執行框架本身的特點,過多的中間過程會增加整個Query的執行時間。在Hive的運行過程中,用戶只需要創建表,導入數據,編寫SQL分析語句即可。剩下的過程由Hive框架自動的完成。
Impala
Impala是對Hive的一個補充,可以實現高效的SQL查詢。使用Impala來實現SQL on Hadoop,用來進行大數據實時查詢分析。通過熟悉的傳統關系型資料庫的SQL風格來操作大數據,同時數據也是可以存儲到HDFS和HBase中的。Impala沒有再使用緩慢的Hive+MapRece批處理,而是通過使用與商用並行關系資料庫中類似的分布式查詢引擎(由Query Planner、Query Coordinator和Query Exec Engine三部分組成),可以直接從HDFS或HBase中用SELECT、JOIN和統計函數查詢數據,從而大大降低了延遲。Impala將整個查詢分成一執行計劃樹,而不是一連串的MapRece任務,相比Hive沒了MapRece啟動時間。
Hive 適合於長時間的批處理查詢分析,而Impala適合於實時互動式SQL查詢,Impala給數據人員提供了快速實驗,驗證想法的大數據分析工具,可以先使用Hive進行數據轉換處理,之後使用Impala在Hive處理好後的數據集上進行快速的數據分析。總的來說:Impala把執行計劃表現為一棵完整的執行計劃樹,可以更自然地分發執行計劃到各個Impalad執行查詢,而不用像Hive那樣把它組合成管道型的map->rece模式,以此保證Impala有更好的並發性和避免不必要的中間sort與shuffle。但是Impala不支持UDF,能處理的問題有一定的限制。
Spark
Spark擁有Hadoop MapRece所具有的特點,它將Job中間輸出結果保存在內存中,從而不需要讀取HDFS。Spark 啟用了內存分布數據集,除了能夠提供互動式查詢外,它還可以優化迭代工作負載。Spark 是在 Scala 語言中實現的,它將 Scala 用作其應用程序框架。與 Hadoop 不同,Spark 和 Scala 能夠緊密集成,其中的 Scala 可以像操作本地集合對象一樣輕松地操作分布式數據集。
Nutch
Nutch 是一個開源Java 實現的搜索引擎。它提供了我們運行自己的搜索引擎所需的全部工具,包括全文搜索和Web爬蟲。
Solr
Solr用Java編寫、運行在Servlet容器(如Apache Tomcat或Jetty)的一個獨立的企業級搜索應用的全文搜索伺服器。它對外提供類似於Web-service的API介面,用戶可以通過http請求,向搜索引擎伺服器提交一定格式的XML文件,生成索引;也可以通過Http Get操作提出查找請求,並得到XML格式的返回結果。
Elasticsearch
Elasticsearch是一個開源的全文搜索引擎,基於Lucene的搜索伺服器,可以快速的儲存、搜索和分析海量的數據。設計用於雲計算中,能夠達到實時搜索,穩定,可靠,快速,安裝使用方便。
還涉及到一些機器學習語言,比如,Mahout主要目標是創建一些可伸縮的機器學習演算法,供開發人員在Apache的許可下免費使用;深度學習框架Caffe以及使用數據流圖進行數值計算的開源軟體庫TensorFlow等,常用的機器學習演算法比如,貝葉斯、邏輯回歸、決策樹、神經網路、協同過濾等。
數據可視化
對接一些BI平台,將分析得到的數據進行可視化,用於指導決策服務。主流的BI平台比如,國外的敏捷BI Tableau、Qlikview、PowrerBI等,國內的SmallBI和新興的網易有數等。
在上面的每一個階段,保障數據的安全是不可忽視的問題。
基於網路身份認證的協議Kerberos,用來在非安全網路中,對個人通信以安全的手段進行身份認證,它允許某實體在非安全網路環境下通信,向另一個實體以一種安全的方式證明自己的身份。
控制許可權的ranger是一個Hadoop集群許可權框架,提供操作、監控、管理復雜的數據許可權,它提供一個集中的管理機制,管理基於yarn的Hadoop生態圈的所有數據許可權。可以對Hadoop生態的組件如Hive,Hbase進行細粒度的數據訪問控制。通過操作Ranger控制台,管理員可以輕松的通過配置策略來控制用戶訪問HDFS文件夾、HDFS文件、資料庫、表、欄位許可權。這些策略可以為不同的用戶和組來設置,同時許可權可與hadoop無縫對接。
簡單說有三大核心技術:拿數據,算數據,賣數據。