導航:首頁 > 網路數據 > 大數據研究的目標是

大數據研究的目標是

發布時間:2023-03-20 16:02:55

大數據在軍事領域有哪些應用

在軍事上,用小數據時代的理念和技術,很難與大數據時代的思維和技能相對抗。面對大數據時代的軍事機遇和挑戰,要麼主動進擊,要麼被動跟進,難以置之度 外。其間的取捨與成敗,首先有賴於思維變革,其要求全體軍事人員尤其是指揮員,更加具備基於體系作戰的系統思維、基於數據模型的精確思維及基於對戰爭進行 科學預設的前瞻思維。
大數據創新了軍事管理方法,且這種創新是全方位的--除了可以提高包含閱兵在內的軍事訓練水平,還可以:
1.提高軍事管理水平
管理大師戴明與德魯克都曾提出:「不會量化就無法管理」。數據的根本價值之一,就是可作為管理依據。大數據應用的特點是強調分析與某事物相關的總體數據, 而不是抽取少量的數據樣本;大數據關注事物的混雜性,而不追求事物的精確性;大數據注重事物的相關關系,而不探求其間的因果關系。
將大數據應用於軍事領域,意味著軍事管理將更加剛性,基本不受人為因素的影響,且更加自動化。所以說,大數據強軍的內涵,本質上是軍事管理科學化程度的提 高,即與小數據比起來,由於有了大數據,軍事管理活動量化程度更高了,工具更加先進了,邊界更加寬廣了,管理質量、效率會隨之更高。
2.豐富軍事科研方法
通常人們研究戰爭機理、找尋戰爭規律的方法有三種,又稱為三大範式:實驗科學範式,在戰前通過反復的實兵對抗演習來論證和改進作戰方案;理論科學範式,採用數學公式描述交戰的過程,如經隱段典的蘭徹斯特方程;計算科學範式,基於計算機開發出模擬系統來模擬不同作戰單元之間的交戰場景。
但是,上述研究範式只能使人們感知交戰的過程和結果,並未有效提高對海量數據的管理、存儲和分析能力。
以大數據為核心技術的辯攜拿數據挖掘模式被稱為第四戰爭研究範式。人 們可以有效利用大數據,探尋信息化戰爭的內在規律,而不是被淹沒在海量數據中一籌莫展。大數據研究範式由軟體處理各種感測器或模擬實驗產生的大量數據,將 得到的信息或知識存儲在計算機中,基於數據而非已有規則編寫程序,再利用包括量子計算機在內的各種高性能計算機對海量信息進行挖掘,由計算機智能化尋找隱 藏在數據中的關聯,從而發現未知規律,捕獲有價值的情報信息。
例如,在第一次海灣戰爭前,美軍就利用改進的「兵棋」,對戰爭進程、結果及傷亡人數進行了推演,推演結果與戰爭的實際結果基本一致。而在伊拉克戰爭前,美 軍利用計算機兵棋系統進行演攜搭習,推演「打擊伊拉克」作戰預案。隨後美軍現實中進攻伊拉克並取得勝利的行動,也和兵棋推演的結果幾乎完全一致。
作戰模擬早已經從人工模式轉變為計算機模式,再加上大數據,戰前的模擬推演,從武器使用、戰爭打法到指揮手段,都可以清晰地顯現,是非常好的戰時決策依據。一旦發現作戰計劃有問題,可以及時調整,以確保實戰傷亡最小並取得勝利。
3.加速型武器裝備面世
大數據在武器裝備上的廣泛應用,意味著武器裝備建設將從重視研發信息系統到重視數據處理與應用的轉變,從注重信息系統的互聯互通到注重信息系統的透明性互 操作的轉變。當前武器裝備的信息化程度越來越高,裝備體系內各個節點之間的信息共享也越來越方便、可靠,但由此也帶來了一些突出問題,如原始信息規模過 大、價值不夠高、直接提取所需信息的難度增加等,從而使得武器裝備體系在信息獲取效率上大打折扣。在這種背景下產生的大數據為解決上述問題提供了有效方 法。
需要說明的是:大數據應用不僅意味著人們要以創新方式使用海量數據,還意味著人們要採用人工智慧技術來處理自然文本和進行知識表述,以替代目前依賴專家和技術人員昂貴而又耗時的信息處理方式。
大數據與人工智慧是一而二、二而一的關系。受益於大數據技術,武器裝備體系將從戰場上的信息使用者升級為高度智能化和自主化的系統。其具體流程為:經 過智能處理後的高價值信息進入戰場網路鏈路後,與戰場網路融為一體的武器裝備體系能實時自動感知面臨的有關威脅,各裝備節點自動感知包括我情和敵情在內的 戰場態勢,在作戰人員的有限參與下高度自主地分解作戰任務,確定作戰目標和行動方案,經過適當的審批流程後執行相關的作戰行動。
在這方面走在前列的仍然是美軍。美軍大數據研究的第一個重要目標是通過大數據創建真正能自主決策、自主行動的無人系統。這一點已在無人機領域實現。美軍希 望無人機可以完全擺脫人的控制而實現自主行動。美軍2013年試飛的X-47B就是這一系統的代表,它已經可以在完全無人干預的情況下自動在航母上完成起 降並執行作戰任務。
4.提升情報分析能力
19世紀初,軍事戰略家克勞塞維茨以人的認知局限為由,提出了「戰爭迷霧」概念。顯然,「戰爭迷霧」即「數據迷霧」。信息戰首先得消除「戰爭迷霧」。信息 戰是體系對體系的戰爭,而這一體系是一個超級復雜的巨大系統,僅諸軍兵種龐雜的武器裝備和作戰環境數據,就足以大到使普通的信息處理能力捉襟見肘;而敵我 對抗的復雜化,更是讓數據量呈爆炸式增長,從而帶來比傳統戰爭更多的「數據迷霧」。可以說,信息化戰爭的機制深藏在「數據迷霧」中。
消除「戰爭迷霧」會提高指揮員的情報分析與軍情預測能力。過去,由於可以掌握的數據不足,戰爭的不確定性很高,指揮員很容易陷在「戰爭迷霧」之中。而大數據最重要的價值之一是預測,即把數據演算法運用到海量的數據上來預測事情發生的可能性。
具體而言,未來完全可能依託大數據分析處理技術和建構模型,通過數據挖掘模式,從海量數據中挖掘出有價值的信息,及時准確掌握敵方的戰略企圖、作戰規律和 兵力配置,真正做到「知己知彼」,使戰場變得清晰透明,從而撥開「戰爭迷霧」,達成運籌於帷幄之中、決勝於千里之外的作戰目的。
對此趨勢,很多國家及其軍隊都極為看重。例如,美軍明確提出,要通過大數據將其情報分析能力提高100倍以上。如果這一目標實現,那麼在這一領域其他國家 與美軍的差距,將難以用簡單的「代差」來描述。美軍通過多年的發展,已擁有全球最先進的情報偵察系統,因為對海量情報數據的分析,曾是美軍情報偵察能力的 瓶頸,而大數據正好能夠幫助美軍突破這一瓶頸。
大數據時代,往往不要求准確知道每一個精確的細節,只需了解事物的概略全貌即可。通過相關數據信息的大量積累,而不是對某個具體數據的精確分析,大數據技 術可以為我們提煉出事物運行的規律,並判斷其發展趨勢。例如,2011年美軍擊斃本·拉登的「海神之矛」行動,就有賴上千名數據分析員長達10年數據積累 的支撐。換言之,是大數據抓住了本·拉登。
5.引領指揮決策方式變革
管理的核心是決策。大數據帶來的重要變革之一,是決策的思維、模式和方法的變革。建立在小數據時代基於經驗的決策,將讓位於大數據時代基於全樣本數據的決策。
決策是進行數據分析、行動方案設計並最終選擇行動方案的過程。軍事決策建立在對敵情的正確分析預測之上,其目的是通過合理分配兵力兵器,優選打擊目標,設計完成任務的最佳行動方法與步驟。
以往的戰爭,做出作戰決策時缺少足夠數據支持,甚至數據本身的真實性、准確性也難以保證。目前信息化條件下的戰爭,各種條件都變成了數據,這就要求指揮人 員必須掌握分析海量數據的工具和能力。以往,指揮人員更多的是依靠經驗進行相對概略或粗放式決策。大數據的出現必將要求指揮人員以全新的數據思維來進行指 揮決策。這種決策將有幾個特點:
一是准確。只要提供的數據量足夠龐大真實,通過數據挖掘模式,就可以較為准確地把握敵方指揮員的思維規律,預測對手的作戰行動,掌控戰場態勢的發展變化等。
二是迅速。大數據相關技術所提供的高速計算能力有助於指揮員更加迅速地設計行動方案。
三是自動化。針對特定的作戰對手和作戰環境,大數據系統可以自動對己方成千上萬、功能互補的作戰單 元或平台進行模塊化編組,從而實現整體作戰能力的最優化;面對眾多性質不同、防護力不同且威脅度各異的打擊目標,大數據系統可以自動對有限數量、有限強度 和有限精度的火力進行分配,以收獲最大作戰效益。
在大數據時代的戰爭中,軍事專家、技術專家的光芒會因為統計學家、數據分析家的參與而變暗,因為後者不受舊觀念的影響,能夠聆聽數據發出的「聲音」。
總之,基於數據的定量決策將和基於經驗的定性決策同樣重要,基於經驗的決策將很大程度上讓位給全樣本決策,基於大數據的決策手段將從輔助決策的次要地位上升到支撐決策的重要地位。
對此,美軍的認識是最到位的。美軍發布的《2013-2017年國防部科學技術投資優先項目》就將「從數據到決策」項目排在了第一位,凸顯了大數據對其指揮決策方式的巨大影響。
6.優化作戰指揮流程
網路日益普及的情況下,信息的流通與共享已不是難題,人們開始關注對信息的認識,及將信息轉化為知識的能力。
與之相適應,軍事信息技術也從關注「T」(Technology)的階段,向關注「I」(Information)的階段轉變;從建設指揮自動化系統 (C4ISR),即指揮、控制、通信、計算機、情報及監視與偵察等信息系統,整體管理「戰場信息的獲取、傳遞、處理和分發」的全信息流程;發展至重視大數 據處理應用,綜合集成數據採集、處理平台和分析系統,統一優化管理「戰場數據採集、傳遞、分析和應用」的全數據流程。即通過對海量數據進行開發處理,大幅 度提高從中提取高價值情報的能力,從而實現對戰場綜合態勢的實時感知、同步認知,進一步壓縮「包以德循環」(OODA Loop),即觀察-調整-決策-行動的指揮周期,縮短「知謀定行」時間,提高快速反應能力。
隨著數據挖掘技術、大規模並行演算法及人工智慧技術的不斷完善並廣泛應用在軍事上,情報、決策與作戰一體化將取得快速進展。在武器裝備上,將特別注重各作戰 平台的系統融合和無縫鏈接,以保證戰場信息的實時快速流轉,縮短從「感測器到射手」的時間差,實現「發現即摧毀」的作戰目標。
比如近幾年迅速發展的無人機作戰平台,其本質就是一個智能系統。其可以成建制地對實時捕獲的重要目標進行「發現即摧毀」式的精確打擊,還能通過融合情報的 前端和後端,使數據流程與作戰流程無縫鏈接並相互驅動,構建全方位遂行聯合作戰的「偵打一體」體系,從而實現了體系化的「從感測器到射手」的重大突破。
7.推動戰爭形態的演變
大數據可以改變未來的戰爭形態。美軍一直追求從感測器到平台的實時打擊能力,追求零傷亡。
由大數據支撐的擁有自主能力的無人作戰平台,將使得這些追求成為可能。例如,目前全世界最先進的無人偵察機「全球鷹」,能連續監視運動目標,准確識別地面 的各種飛機、導彈和車輛的類型,甚至能清晰分辨出汽車輪胎的類型。現今,美空軍的無人機數量已經超過了有人駕駛的飛機,或許不久的將來,美軍將向以自主無 人系統為主的,對網路依賴度逐漸降低的「數據中心戰」邁進。
無人機能否做到實時地對圖像進行傳輸非常關鍵。
目前,美國正使用新一代極高頻的通訊衛星作為大數據平台的支撐。未來,無人機甚至有可能擺脫人的控制實現完全的自主行動。美軍試驗型無人戰斗機X-47B就是這一趨勢的代表,它已經可以在完全無人干預的情況下,自動在航母上完成起降並執行作戰任務。
總之,基於大數據的實時、無人化作戰,將徹底改變人類幾千年來以有生力量為主的戰爭形態。
8.引導軍事組織形式變革
大數據即大融合,它有望打破軍種之間的壁壘,解決軍隊跨軍種、跨部門協作的問題,真正實現一體化作戰。
就組織形態而言,扁平結構、層次簡捷、高度集成、體系融合應該更符合大數據時代的要求。軍事方面的相關趨勢有:
(1)網狀化。軍隊的指揮體系逐步發展為「指揮網」,原先的「樹狀結構」變為 「網狀結構」。一個師的指揮系統一旦被打垮,師以下各級可通過「網」與上級或其他作戰單元聯系。這就改變了傳統軍事指揮體系由「樹干、樹枝、樹葉」編成的 組織形態,避免了機械化戰爭時期「打斷一枝、癱瘓一片」的指揮弊端,有效提高了局部戰爭中的指揮效能。
(2)小型化。發達國家的陸軍多由軍、師、團、營體制向軍、旅、營制轉變,使作戰集團更加輕便靈活,機動性更強。 根據部隊的不同功能優化組合,基本作戰單位不需要加強補充就能實施多種作戰,從而全面提高應對多種安全威脅,完成多樣化軍事任務的能力。將營作為基本戰術 「模塊」,將旅作為基本合成單位,以搭積木方式進行編組,戰時根據需要臨時編組,看迅速生成擔負不同作戰任務的部隊。
世界各主要國家都非常重視軍隊組織形態變革,並致力於發展新興軍兵種,及時設計和建設新型部隊。
2009年,美國國防部宣布組建網路戰司令部。2013年3月,美國網路戰司令部司令亞力山大宣布,美國將增加40支網路戰部隊。美國、俄羅斯等國都在積極籌劃或正在建設能在太空進行作戰的「天軍」部隊、「機器人」部隊。
隨著新興軍兵種的建立,軍隊的組織形態將出現新面貌,未來戰爭的觸角不斷延伸,網路、電磁頻譜領域的爭奪方興未艾,太空不再是寂寞世界,天戰也不再遙遠。
(3)一體化。軍隊信息化必然要求一體化,信息化程度越高,一體化特徵越明顯。適應新形勢下強軍目標的要求,我軍必須對戰鬥力要素進行一體化整合,推進武裝力量一體化、軍隊編成一體化、指揮控制一體化、作戰要素一體化,提高整體效益。
9.大數據將使體系作戰能力大幅提升
從作戰手段角度看,大數據及其支撐的新型武器裝備的應用,將豐富軍隊的作戰體系;從作戰效能角度看,大數據下的作戰行動循環(包以德循環)所耗時間將大為縮短,更符合「未來戰爭不是大吃小,而是快吃慢」的制勝規律。相關變革的結果,將是軍隊體系作戰能力大幅提升。
10.提升軍隊的信息化建設水平
大數據給了各國軍隊(尤其是像我軍這樣的信息化發展水平參差不齊的軍隊)一個契機,可以牽引、拉動自身的信息化建設向更高層次發展,同時拉齊整體水平,因為大數據意味著「整體」。
具體來說,應以提高決策速度、反應速度和聯合作戰能力為目標,以數據為中心,以搜索分析處理數據為中樞架構,自上而下建設軍事「數據網路」;加快組建雲計 算中心,把對大數據分析處理作為軍事信息化建設的重中之重,努力建構精確分析處理大數據的硬體系統、軟體模型,實現大數據「從數據轉化為決策」的智能化和 瞬時化。
同時,也要抓好末端的單兵及單件武器裝備的數據採集、存儲設備設計,從而為海量數據的挖掘和整合奠定基

㈡ 數據科學與大數據技術專業的培養目標 學什麼

在高考填報志願選擇專業時,很多考生對數據科學與大數據技術專業學什麼的問題很感興趣。下面是由我為大家整理的「數據科學與大數據技術專業的培養目標 學什麼」,僅供參考旅春,歡迎大家閱讀本文。

數據科學與大數據技術專業的培養目標

數據科學與大數據技術課程教學體系涵蓋了大數據的發現、處理、運算、應用等核心理論與技術。

本專業旨在培養社會急需的具備大數據處理及分析能力的高級復合型人才。

具體包括:掌握計算機科學、大數據科學與信息技術的基本理論、方法和技能,受到系統的科學研究訓練,具備一定的大數據科學研究能力與數據工程實施的基本能力,掌握大數據工程項目的規劃、應用、管理及決策方法,具有大數據工程項目設計、研發和實施能力的復合型、應用型卓越人才。

數據科學與大數據技術專業學什麼

課程教學體系涵蓋了大數據的發現、處理、運算、應用等核心理論與技術,具體課程包括:大數據概論、大數據存儲與管理、大數據挖掘、機器學習、人工智慧基礎、Python程序設計、統計學習、神經網路與深度學習方法、多媒體信息處理、數據可視化技術、智能計算技術、分布式與並行計算、雲計算與數據安全、資料庫原理及應用、演算法設計與分析、高級語言程序設計、優化理兄鎮吵論與方法等。

主要課程:C程序設計、數據結構、羨侍資料庫原理與應用、計算機操作系統、計算機網路、Java語言程序設計、Python語言程序設計,大數據演算法、人工智慧、應用統計(統計學)、大數據機器學習、數據建模、大數據平台核心技術、大數據分析與處理,大數據管理、大數據實踐等課程。

㈢ 大數據分析處理的最終目標是有效用信息

大數據分析處理的最終目標是有效用信息
大數據在業內並沒有統一的定義。不同廠商、不同用戶,站的角度不同,對大數據的理解也不一樣。麥肯錫報告中對大數據的基本定義是:大數據是指其大小超出了典型資料庫軟體的採集、儲存、管理和分析等能力的數據集合。賽迪智庫指出,大數據是一個相對的概念,並沒有一個嚴格的標准限定多大規模的數據集合才稱得上是大數據。事實上,隨著時間推移和數據管理與處理技術的進步,符合大數據標準的數據集合的規模也在並將繼續增長。同時,對於不同行業領域和不同應用而言,「大數據」的規模也不統一。
雖然「大數據」直接代表的是數據集合這一靜態對象,但賽迪智庫經過深入研究認為,目前所提到的「大數據」,並不僅僅是大規模數據集合本身,而應當是數據對象、技術與應用三者的統一:
1.從對象角度看,大數據是大小超出典型資料庫軟體採集、儲存、管理和分析等能力的數據集合。需要注意的是,大數據並非大量數據簡單、無意義的堆積,數據量大並不意味著一定具有可觀的利用前景。由於最終目標是從大數據中獲取更多有價值的「新」信息,所以必然要求這些大量的數據之間存在著或遠或近、或直接或間接的關聯性,才具有相當的分析挖掘價值。數據間是否具有結構性和關聯性,是「大數據」與「大規模數據」的重要差別。
2.從技術角度看,大數據技術是從各種各樣類型的大數據中,快速獲得有價值信息的技術及其集成。「大數據」與「大規模數據」、「海量數據」等類似概念間的最大區別,就在於「大數據」這一概念中包含著對數據對象的處理行為。為了能夠完成這一行為,從大數據對象中快速挖掘更多有價值的信息,使大數據「活起來」,就需要綜合運用靈活的、多學科的方法,包括數據聚類、數據挖掘、分布式處理等,而這就需要擁有對各類技術、各類軟硬體的集成應用能力。可見,大數據技術是使大數據中所蘊含的價值得以發掘和展現的重要工具。
3.從應用角度看,大數據是對特定的大數據集合、集成應用大數據技術、獲得有價值信息的行為。正由於與具體應用緊密聯系,甚至是一對一的聯系,才使得「應用」成為大數據不可或缺的內涵之一。
需要明確的是,大數據分析處理的最終目標,是從復雜的數據集合中發現新的關聯規則,繼而進行深度挖掘,得到有效用的新信息。如果數據量不小,但數據結構簡單,重復性高,分析處理需求也僅僅是根據已有規則進行數據分組歸類,未與具體業務緊密結合,依靠已有基本數據分析處理技術已足夠,則不能算作是完全的「大數據」,只是「大數據」的初級發展階段。

㈣ 大數據為人類未來規劃無限可能

大數據為人類未來規劃無限可能_數據分析師考試

大數據產業現在風生水起,作為製造信息系統、製造物聯、製造大數據、計算智能等方面的專家,從您的角度來看什麼才是大數據?

李少波:目前來說,學術界、科研界、我國IT學術界、企業對大數據都有自己不同的解讀與看法。

但是我更偏向這個觀點:大數據代表著數據從量到質的變化過程;代表著數據作為一種資源在經濟與社會實踐中扮演越來越重要的角色,相關的技術、產業、應用、政策等環境會與之互相影響、互為促進。從技術角度來看,這種數據規模質變後帶來新的問題,即數據從靜態變為動態,從簡單的多維度變成巨量維度,而且其種類日益豐富,超出當前技術與工具控制管理的范疇。這些數據的採集、分析、處理、存儲、展現都涉及復雜的多模態高維計算過程,涉及異構媒體的統一語義描述、數據模型、大容量存儲建設,涉及多維度數據的特徵關聯與模擬展現。然而,大數據發展的最終目標還是挖掘其應用價值,沒有價值或者沒有發現其價值的大數據從某種意義上講是一種冗餘和負擔。

2.大數據改變生活 在五大方面已現端倪

貴州商報:在此前的數博會上商界大佬紛紛來到貴陽,您也在數博會上發表了大數據前沿及發展建議的講話,那麼在您看來,大數據應用發展的熱點在哪些方面呢?

李少波:隨著大數據應用越來越廣泛,大數據已經跟人們息息相關,對於大數據應用來說,其實可以歸納為幾個方面:

首先,大數據讓聯合國人道救援更快捷有效。前不久尼泊爾大地震期間,聯合國與Frog設計咨詢公司合作搭建了一個平台,分享數據及數百萬尼泊爾應急人員信息,搭建了幾個大型資料庫。利用大數據技術,實現了救援資源的優化配置,提高了救援效率。

其次,大數據深度參與政府治理。政府既是大數據發展的推動者,也是大數據應用的受益者。政府應用大數據更好地響應社會和經濟指標變化,解決城市管理、安全管控、行政監管中的實際問題,預測判斷事態走勢等。

再次,大數據變革公共服務方式。大數據在公共服務領域的應用,可有效推動相關工作開展,提高相關部門的決策水平、服務效率和社會管理水平,產生巨大社會價值。如在深圳綜合交通運行指揮中心囊括了全市交通信息化系統和海量的交通基礎數據,路況圖被即時發送到各個路口,讓司機自行選擇最優行車方案,使得交通資源得到充分合理的分配。

然後,大數據推動企業產品創新。基於大數據的產品創新設計具有典型應用,如特斯拉基於Linux深度定製的車載系統,實現了實時遠程車輛診斷和自動軟體更新,實時監測車輛駕駛狀態和周邊環境,路線優化及應急處理。

最後,大數據實現人體健康預測。中醫可以通過望聞問切手段發現一些人體內隱藏的慢性病,甚至看體質便可知曉一個人將來可能會出現什麼症狀。人體體征變化有一定規律,而慢性病發生前人體已經會有一些持續性異常。智能硬體結合大數據技術,使得慢性病的大數據預測變為可能。

3.六條建議 為貴州大數據產業發展出謀劃策

貴州商報:貴州是第一個把大數據作為省級戰略來發展的省,您覺得未來貴州應該如何來更好的發展大數據產業呢?

李少波:大數據無疑是巨大金礦,但說到貴州發展大數據產業,我在這里談一點我個人的建議:

一是抓緊制定大數據相關政策法規。制定大數據發展戰略、政府數據開放政策及數據安全及網路用戶隱私保護標准和制度。政府應該採取相關措施,推動數據開放,實現數據資源共享。

二是組建產業聯盟,構建以企業為主體、產學研聯合發展機制。借鑒北京、上海等地區的經驗,整合上下游企業、研發機構等產業鏈資源,聯合省內大數據技術應用領域的製造者、使用者與研究機構,成立大數據產業聯盟。

三是加快大數據基地建設及大數據企業培育。加快建成中國電信、中國移動、中國聯通貴安數據中心項目,支持金融機構和企業在貴州省建設數據中心,引進一批國內外知名雲計算、大數據龍頭企業,匯聚一批大數據採集、存儲、分析、加工、應用等中小企業,形成一批創新型研發平台,培育一批基於大數據的信息消費、文化創意、先進製造等領域新興業態。通過引進行業領先企業與培育本地企業相結合的模式,著力拓展大數據產業鏈。

四是快速推進大數據基礎研究及科技創新。引導高等院校、科研機構和大數據產業聯盟、行業協會等相關組織及成員企業參與貴州省大數據產業發展,進一步健全創新體系,提升創新能力,加快大數據產業共性、關鍵或前瞻性技術的研發,促進大數據領域產學研用結合。

五是建立大數據產業投融資體系。建立貴州省大數據產業發展基金、投資基金,與風險投資基金、私募股權投資基金、產業投資基金等共同構建多層次投資體系,滿足大數據產業不同類別企業及其在不同階段的發展需求。加強土地政策支持、出台財政稅收優惠政策、鼓勵企業科技創新、積極引導民間資本流入大數據產業鏈。

六是加強人才隊伍建設。鼓勵貴州省高等院校開設大數據相關的本科生、研究生課程,設立博士生、碩士生大數據研究方向,培養新一代數據研究人員和工程師等高端人才。積極引進高端人才,重點引進一批活躍在大數據技術發展前沿、國際領先水平的高端專業人才和團隊。圍繞大數據產業所需的專業人才,建設大數據專業人才培養基地。

以上是小編為大家分享的關於大數據為人類未來規劃無限可能的相關內容,更多信息可以關注環球青藤分享更多干貨

㈤ 大數據分析是什麼優缺點是什麼大數據的優缺點

數據分析是指抄用適當的襲統計分析方法對收集來的大量數據進行分析,將它們加以匯總和理解並消化,以求最大化地開發數據的功能,發揮數據的作用。數據分析是為了提取有用信息和形成結論而對數據加以詳細研究和概括總結的過程。
大數據分析的優點:能夠准備得出可靠信息,有助於企業發展,已經找到自己的方向;
缺點:信息透明化,大數據比你更了解你自己。
大數據優點:
(1)及時解析故障、問題和缺陷的根源,每年可能為企業節省數十億美元。
(2)為成千上萬的快遞車輛規劃實時交通路線,躲避擁堵。

(3)分析所有SKU,以利潤最大化為目標來定價和清理庫存。

(4)根據客戶的購買習慣,為其推送他可能感興趣的優惠信息。
(5)從大量客戶中快速識別出金牌客戶。
(6)使用點擊流分析和數據挖掘來規避欺詐行為。
大數據的缺陷:
當前,大部分中國企業在數據基礎系統架構和數據分析方面都面臨著諸多挑戰。根據產業信息網調查,目前國內大部分企業的系統架構在應對大量數據時均有擴展性差、資源利用率低、應用部署復雜、運營成本高和高能耗等缺陷。

㈥ 大數據的內容和基本含義

「大數據」是近年來IT行業的熱詞,大數據在各個行業的應用逐漸變得廣泛起來,如2014年的兩會,我們聽得最多的也是大數據分析,那麼,什麼是大數據呢,什麼是大數據概念呢,大數據概念怎麼理解呢,一起來看看吧。
1、大數據的定義。大數據,又稱巨量資料,指的是所涉及的數據資料量規模巨大到無法通過人腦甚至主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。
2、大數據的採集。科學技術及互聯網的發展,推動著大數據時代的來臨,各行各業每天都在產生數量巨大的數據碎片,數據計量單位已從從Byte、KB、MB、GB、TB發展到PB、EB、ZB、YB甚至BB、NB、DB來衡量。大數據時代數據的採集也不再是技術問題,只是面對如此眾多的數據,我們怎樣才能找到其內在規律。
3、大數據的特點。數據量大、數據種類多、 要求實時性強、數據所蘊藏的價值大。在各行各業均存在大數據,但是眾多的信息和咨詢是紛繁復雜的,我們需要搜索、處理、分析、歸納、總結其深層次的規律。
4、大數據的挖掘和處理。大數據必然無法用人腦來推算、估測,或者用單台的計算機進行處理,必須採用分布式計算架構,依託雲計算的分布式處理、分布式資料庫、雲存儲和虛擬化技術,因此,大數據的挖掘和處理必須用到雲技術。
5、大數據的應用。大數據可應用於各行各業,將人們收集到的龐大數據進行分析整理,實現資訊的有效利用。舉個本專業的例子,比如在奶牛基因層面尋找與產奶量相關的主效基因,我們可以首先對奶牛全基因組進行掃描,盡管我們獲得了所有表型信息和基因信息,但是由於數據量龐大,這就需要採用大數據技術,進行分析比對,挖掘主效基因。例子還有很多。
6、大數據的意義和前景。總的來說,大數據是對大量、動態、能持續的數據,通過運用新系統、新工具、新模型的挖掘,從而獲得具有洞察力和新價值的東西。以前,面對龐大的數據,我們可能會一葉障目、可見一斑,因此不能了解到事物的真正本質,從而在科學工作中得到錯誤的推斷,而大數據時代的來臨,一切真相將會展現在我么面前。

㈦ 大數據技術與工程研究生學什麼

1.數據科學基礎理論

研究數據相似性理論、數據測度和數據代數和探索數據科學的研究方法。以數據為研究目標,揭示數據的一般規律,為大數據研究和應用奠定基礎。

3.數據挖掘與決策支持

與互聯網營銷行業、智能電網的企業合作,針對真實的商業案例平台,研究統計決策和優化等方法,將演算法和決策模型理論落地。

㈧ 大數據分析是指的什麼

大數據分析是指對規模巨大的數據進行分析。對大數據bigdata進行採集、清洗、挖掘、分析等,大數據主要有數據採集、數據存儲、數據管理和數據分析與挖掘技術等。
大數據分析目標:語義引擎處理大數據的時候,經常會使用很多時間和花費,所以每次生成的報告後,應該支持語音引擎功能。產生可視化報告,便於人工分析通過軟體,對大量的數據進行處理,將結果可視化。通過大數據分析演算法,應該對於數據進行一定的推斷,這樣的數據才更有指導性。
統計分析:假設檢驗、顯著性檢驗、差異分析、相關分析、多元回歸分析、逐步回歸、回歸預測與殘差分析等。
數據挖掘:分類 (Classification)、估計(Estimation)、預測(Prediction)、相關性分組或關聯規則(Affinity grouping or association rules)、聚類(Clustering)、描述和可視化、Description and Visualization)、復雜數據類型挖掘(Text, Web ,圖形圖像,視頻,音頻等)。建立模型,採集數據可以通過網路爬蟲,或者歷年的數據資料,建立對應的數據挖掘模型,然後採集數據,獲取到大量的原始數據。導入並准備數據在通過工具或者腳本,將原始轉換成可以處理的數據,
大數據分析演算法:機器學習通過使用機器學習的方法,處理採集到的數據。根據具體的問題來定。這里的方法就特別多。

㈨ 大數據 、雲計算、互聯網等是怎麼樣實現價值

其實我個人覺得大數據雲計算確實能給互聯網公司帶來很多的好處,但是這個大數專據雲計算剛剛推出來的時屬候,其實很多大公司CEO都不是特別的看好,只是被他們的手下忽悠了一下,就去搞了這樣的東西,但是搞完之後他們才發現原來大數據和雲計算真的是非常不錯的。




就像淘寶這個公司我們都是知道的,這個大數據跟雲計算是有什麼用呢?就是通過大家長時間或者是大量的點擊某個商品之後,他會知道,你到底喜歡什麼樣的商品,這就是大數據跟雲計算來幫你計算出來的東西,然後這樣的話你就可以看到你喜歡的東西的概率會多一點,然後也會增加他們的銷量,這就是大數據雲計算給他們帶來的一個好處。

㈩ 山東科技大學泰山科技學院數據科學與大數據技術專業培養目標是什麼

數據科學與大數據技術
所屬院系: 大數據學院
學制:4年
授予學位:工學學士
專業特色
數據科學與大數據技術專業以大數據分析為核心思想,以計算機科學、數學和統計學為三大基礎支撐性學科,屬於典型的多學科交叉的新興工科專業,特別突出大數據採集、存儲、分析與應用等核心專業知識和技能。
培養目標
數據科學與大數據技術面向當前和未來新技術、新產業的發展,推動與商科交叉融合,是新商科+新工科概念下的信息產業專業。本專業面向互聯網、金融、教育、零售電商、信息服務等各行業對大數據研究與應用的人才需求,培養具有良好職業道德,具備系統的數學、人文與專業素養,較全面掌握大數據處理和分析的基本理論、基本方法和基本技術,具有數據採集、存儲、處理、分析與展示的基本能力,能夠運用所學知識解決實際問題,具備較高的綜合業務素質、創新與實踐能力,具有大數據思維、運用大數據思維槐宴及分析應用技術的高層次人才。
核心課程
大數據概論、Linux系統與應用、資料庫原理與應用、Java程序設計、Hadoop大數據開發技術、Python程序設計、Java應用開發、數據結構、數據導入與預處理應用、計算機組成原理、計算機網路、操作系統、數據挖掘、Spark大數據分析、數據可視化技術、大數據與領域建模、統計學、數據採集與網路爬蟲、Hive編程技術與應用、大數據處理與編程技術等。
就業前景
在甲骨文、京東、網路、騰訊、小米、華為、阿里巴巴等企業,移動、電信、聯通等通信行業,政府、財政、交通、鐵路等部門從事大數據研究、大數據分析、大數據應用開發、大數據系統開發以及大數據可視化等工作。畢業後,經過5年或8年,在全國信息產業領域的新工科專業群及相關行業中,擔任中層以上管理職位,成長為既懂信息產業技鉛判銀沖滲術知識,又有管理技能、領導素質的復合人才。

閱讀全文

與大數據研究的目標是相關的資料

熱點內容
買鞋應該去哪個網站 瀏覽:972
看門狗2游戲文件名 瀏覽:105
js中判斷是否包含字元串中 瀏覽:363
查看網路並設置連接 瀏覽:624
win10玩奇跡掉線 瀏覽:305
愛思助手電筒腦版在哪個網站下 瀏覽:814
文件夾排序怎麼按順序 瀏覽:54
飛豬app有什麼功能 瀏覽:593
求生之路2開服破解文件 瀏覽:42
javaforeach輸出數組 瀏覽:851
編程bug怎麼修改 瀏覽:630
蘋果5s屏修一下多錢 瀏覽:523
java獲取上傳文件名 瀏覽:156
網站添加微博 瀏覽:593
flash播放mp4代碼 瀏覽:766
word頁腳奇偶頁不同 瀏覽:728
backboxlinux安裝 瀏覽:67
會聲會影卸載文件損壞 瀏覽:283
word文件怎麼修改自然段 瀏覽:94
華興數控系統車孔g81循環怎麼編程 瀏覽:244

友情鏈接