A. 新媒體遇上大數據 隱私保護仍是「痛點」
新媒體遇上大數據隱私保護仍是「痛點」_數據分析師考試
大數據並不是簡單地買幾台伺服器把數據存下來,而是要將大數據與實際接軌,突出工具化、服務化和實用化,讓大數據能解決具體問題。
新媒體在運用大數據過程中,一個非常關鍵的問題是隱私保護。在使用大數據過程中保護個人隱私,需要司法機關發布有效的法律判例,對侵犯隱私行為形成輿論壓力;同時要加強大數據隱私保護研究
7月9日,金磚國家領導人第七次會晤在俄羅斯烏法舉行。
當天,人民日報全媒體平台「烹」出一張圖解:《金磚國家大數據》。
這並非新媒體與大數據的第一次結合。
前不久由中國社會科學院發布的《中國新媒體發展報告(2015)》稱,中國新媒體已超越「跨行業」,初步呈現「全產業」發展新趨勢。移動化、大數據化和智能化的新媒體已成為具備高強滲透度的產業基因,可深度融合於經濟產業各領域之中。
專注研究新媒體與數據新聞的清華大學新聞與傳播學院教授沈陽認為,當前,大數據在新媒體中應用廣泛,貫穿於新媒體發展的各個方面。
大數據運用廣泛
人民日報全媒體平台發布的《金磚國家大數據》,只是近期新媒體運用大數據的一個例子。
早在大數據這一概念進入公眾視野不久,便有媒體將大數據運用於新聞報道之中。
2014年春運期間,互聯網上就出現了一張可以呈現國內春節人口遷徙實況的地圖,這張盡顯中國春運遷徙實景的圖片更是登上央視《新聞聯播》進行權威盤點。自從春運開始,這張地圖多次被電視、報紙等媒體引用,成為用數據解讀春運狀況的一個樣本。據稱,這是國內首個運用大數據播報國內春節人口遷徙實況的地圖。
相較於電視、報紙等傳統媒體,新媒體對大數據的運用更加頻繁,作為新媒體代表之一的「澎湃新聞」便是如此:今年2月,「澎湃新聞」出品了《大數據告訴你,梅西的右腳現在有多恐怖》;3月,《落馬老虎大數據:除「軍虎」外,69人共花兩千多年入省部級》「走」下生產線。
在沈陽看來,將大數據應用於報道內容,只是新媒體運用大數據的一個方面。
在與《法制日報》記者交談過程中,沈陽列出了新媒體「遇上」大數據的多個「場景」:在做新媒體功能研發時,哪些要素需要增強、哪些需要減弱,可以運用大數據分析進行修正;在策劃選題時,可以通過大數據分析篩選出哪些話題關注度高、最熱門;在內容推送過程中,可以利用大數據對用戶興趣進行分析並梳理出來;新聞發出後,受眾有哪些評論、轉發多少、分享情況,這些都可以通過大數據獲得結果;即便是在廣告投放環節,也可以通過大數據分析、預判廣告與用戶是否匹配、廣告對新媒體品牌價值是否會有影響。
「大數據貫穿於新媒體的各個方面。」沈陽說。
「完美」並非絕對
盡管大數據很重要、很管用,但沈陽很早就發現,「大數據,沒有看起來那麼美」。
「數據真實性是一個不可迴避的問題。目前,水軍、僵屍粉、刷閱讀量等情況都有存在,這在一定程度上給數據提供了虛假成分。」沈陽說,不過,從宏觀上講,可以控制這些虛假成分。
如何控制「水分」?沈陽舉例說,在統計微博粉絲時,可以將范圍縮小至帶V的粉絲,因為帶V粉絲造假成本高;如果要更精準的數據,可以進一步縮小范圍,如近期活躍的帶V粉絲。「當然,這樣篩選數據會面臨高成本的問題」。
沈陽在早期的研究中還關注到大數據的另外兩個問題:樣本代表性和相關性誤差。
沈陽認為,我們不可能搜集到全數據,而與大數據相關的形容詞往往是大規模、精準、細化,在調用如此「完美」的數據時,如何注意情景和樣本的適用性是一個問題。正如網路民意與現實民意的討論,微博不代表網路,網路不代表社會,朋友圈也是小圈子,跳出圈子看世界不容易,切勿陷入相同的悖論。在選樣、測量、誤差校正不盡如人意時,好數據將劣化,大數據將虛化。
相關性誤差,則更偏向於技術。沈陽認為,在要素構成簡單的情景中,可以利用大數據,基於一定演算法和模型對變數元素進行相關性分析。然而,在復雜系統中,僅有相關性解釋還不夠,易走偏。比如一個明顯不對的結論:一個城市的網頁數越高,其網路形象就越好。雖然數據統計證實了網頁數和網路形象存在一般的正相關,但忽略了負面事件帶來的網頁量爆發等,因此結論也是不科學的。相關性要真正體現在數據之間、數據與真實事件影射的現象之間、真實事件的客觀聯繫上。
「大數據並不是簡單地買幾台伺服器把數據存下來,而是要將大數據與實際接軌,突出工具化、服務化和實用化,讓大數據能解決具體問題。」沈陽說。
隱私保護日益突出
基於多年研究大數據的心得,沈陽認為,新媒體在運用大數據過程中,一個非常關鍵的問題是,隱私保護。「目前,隱私保護問題越來越突出」。
此前,《法制日報》記者在參加一次論壇時,工信部相關部門一名負責人曾表達這樣的觀點:大數據時代到來後,隨著互聯網技術及其應用的發展,大數據、雲計算技術方式的使用,個人信息的價值不斷被挖掘、被使用,但是安全保護是一個很大的問題。
工信部相關部門這名負責人認為,大數據時代的個人信息安全面臨三大問題。
「一個問題是數據未經授權被搜集,這種情況發生得比較多。」工信部相關部門這名負責人說,第二個問題是超出范圍使用。所謂超范圍使用,是指企業通過一定的所謂合法的形式拿到個人信息,但是拿到以後使用信息的目的、用途以及范圍,並非信息權利主體所熟知。這種情況包括,當互聯網對一些數據信息進行更進一步或者深層挖掘時,這種挖掘在一定程度上有可能侵犯了權利主體的權益。因為互聯網企業之前可能告訴權利主體,獲取信息是基於特定的目的或者在特定范圍內使用,但是進一步挖掘就有可能觸犯了約定。第三個問題是數據保存。曾有網路社區存儲的幾千萬用戶信息被黑客拿到後轉賣給第三家,最後造成信息濫用。
在新媒體廣泛使用、深度挖掘大數據的時代,如何保護公民隱私?
工信部相關部門這名負責人提出了一個觀點:信息保護人人有責。
「在信息安全保護方面,很重要的一點在於,權利人自身要加強保護意識。」工信部相關部門這名負責人說,現在,不管是要求政府部門監管,還是要求司法機關動起來,一個重要前提是人人保護信息,這樣才可能使信息保護問題得到根本解決,否則只靠公權力機關單方面去做是沒有用的。當然,在提倡人人保護信息的同時,執法保護也是一個很重要的方面。
在沈陽看來,在使用大數據過程中保護個人隱私,一方面需要司法機關發布有效的法律判例,對侵犯隱私行為形成輿論壓力;另一方面要加強大數據隱私保護研究。
以上是小編為大家分享的關於新媒體遇上大數據隱私保護仍是「痛點」的相關內容,更多信息可以關注環球青藤分享更多干貨
B. 天津大學新傳怎麼樣
很不錯
天津大學新媒體與傳播學院,是乎巧以「新媒體」為核心定位,圍繞數字新聞學、網路國際傳播、智能傳播與演算法治理等方向開展交叉學科研究,堅持走學科交叉之路。
學院依託智能與計算學院、管理與經濟學部和外國語言與文學學院開展研究生招生工作。與智能與計算學部聯合培養軟體工程(新媒體方向)研究生,與管理與經濟學部聯合培養管理科學與工程(新媒體方向)研究生,與外國語言與文學學院聯合培養中文語言文學(新媒體方向)研究生。
天津大學新媒體與傳播學院(簡稱:新傳學院)成立於2019年,學院依託天津大學的學術資源,聯合優質社會力量,探索新文科與新工科交叉的建敗叢設模式,以貫通「理工文管」為理念,堅持技術驅動和學科交叉,找准大數據及人工智慧等技術與新聞傳播學科的結合點,高起點建設「中國特色、世界一流、天大品格」的新媒體交叉學科平台。
截至目前,學院共聘任專兼職教師60餘人,在自然語言處理、文本挖掘、社會化媒體與政治傳播等領域開展交叉學科研究。
新媒體研究院成立於2017年,作為新傳學院的內設機構,2018、2019級碩士研究生已入校。學院在學校北洋園校區和衛津路校區均具有獨立辦學空間,並建有融媒體大數據分析平台。
未來,新傳學院將繼續引進新聞傳播與計算領域高端學者,培養本、碩、博復合型新聞傳播人才,貢獻高水平的新媒體研究成果和智庫服務,努力建成智能時代下的察頃櫻新媒體與傳播學院。
C. 什麼是大數據大數據對新聞傳播業有何影響
通過整合不同來源的數據,比如:網站分析、社交數據、用戶、本地數據,大版數據可以幫助你了權解的全面的情況。大數據分析正在變的越來越容易,成本越來越低,而且相比以前能更容易的加速對業務的理解。(摘自:中國客戶關系網)
大數據通常與企業商業智能(BI)和數據倉庫有共同的特點:高成本、高難度、高風險。
D. 大數據技術將對新聞傳播帶來什麼影響
1、新聞生產由先前的新聞專業人員延伸到大數據技術人員,采訪寫作可以通過數據的採集和分析來完成。
2、技術對新聞的影響越來越大。
3、新聞報道的准確性和科學性將大為提高。
4、新聞的呈現將發生大的變化。數據的可視化是其主要表現。
5、大數據下的受眾分析的深度、廣度、精確度,將更有助於提升媒介新聞質量。
個人觀點,僅供參考。
E. 什麼是大數據,它對新聞業有什麼影響
什麼是大數據,它對新聞業有什麼影響?
答:(1)大數據及其特點
「大數據」(Big Data,Massive Datasets)是指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。
大數據具有4V特徵,即海量的數據規模(volume)、快速的數據流轉(velocity)、多樣的數據類型(variety)和價值密度低(value)四大特徵。
在互聯網行業中,大數據是指互聯網公司在日常運營中生成、累積的用戶網路行為數據。大數據技術的戰略意義不在於掌握龐大的數據信息,而在於對這些含有意義的數據進行專業化處理。目前,大數據技術已廣泛應用於電子商務、O2O、物流配送等領域,對新聞生產也產生了一定的影響。
(2)大數據對新聞報道的幫助
①提升新聞報道的質量。由於大數據能夠精準地檢測出確切的數據信息,不僅檢測范圍廣大,而且能夠呈現整體的事實並預測事件的發展趨勢。因此利用大數據技術,可以有效地檢測出媒體的報道方式和報道成果是否有缺陷。另外,新聞工作者可以藉助計算機網路技術,利用新聞媒體以及合作機構資料庫來挖掘大量的數據信息,進行深層次的數據挖掘,有了這樣的技術,媒體的新聞報道水準將得到有效的提升。
②准確預測新聞報道走向。未來新聞業務層面的一個發展方向是趨勢預測性新聞,以往新聞報道的選題更多來源於正在發生或已經發生的事實,如果媒體能夠廣泛藉助大數據技術來進行重大趨勢的預測與分析,那麼,它對 社會 的影響力就能得到提升。
③減輕新聞報道工作人員的工作量。大數據技術的靈活運用,催生了數據新聞和機器人寫作。數據新聞是將數據轉化為信息的一種新聞生產形式,表現形式以數據和圖表為主,這不僅大大增強了新聞報道的真實性、准確性和可說服性,還緩解了新聞報道人員的工作壓力。機器人寫作則是通過計算機對數據進行分析,按照新聞結構來對數據進行整理和自動撰寫,平均每分鍾就能夠生產出兩條新聞報道,這也為新聞報道撰稿人員分擔了不少的工作量。
④使新聞報道更能滿足受眾需求。一方面,新聞生產者和發布者通過對受眾的新聞閱讀行為進行大數據分析,可以找出影響受眾的各方面因素,使新聞報道的受眾定位更加准確;另一方面,大數據技術不僅對受眾的行為進行普遍化分析,而且還強調受眾的個性化特徵,從而促使媒體機構為受眾提供更加個性化的新聞報道和服務。
F. 新聞媒體與大數據專業就業前景
教師。
1、首先新聞傳媒專業就業方向高校教師:因為新聞傳播學既具有理論的成分,又很實務,
2、其次因此就業的前景也非常廣闊,其屬新興學科正處於迅速發展之中,極缺高校教師,
3、最後因此研究生畢業後即可進入高校教書,或者科研咨訊機構進行理論研究。
G. 數據新聞傳播六種途徑
數據新聞傳播是指以數據、圖表、圖片、圖像等形式的新聞傳播方式。一般來說,數據新聞傳播可以通過以下六種途徑實現:
紙質報刊:數據新聞可以通過紙質報刊的形式進行傳播,例如通過報紙、雜志等方式。
網路新聞媒體:數據新聞可以通過網路新聞媒體的形式進行傳播,例如通過新聞網站、論壇、博客等方式。
電視新聞:數據新聞可以通過電視新聞的形式進行傳播,例如通過新聞台、衛視等方式。
廣播電台:數據新聞可以通過廣播電台的形式進行傳播,例如通過廣播節目、電台節目等方式。
社交媒體:數據新聞可以通過社交媒體的形式進行傳播,例如通過微信、微博、Facebook 等方式。
其他媒體:數據新聞還可以通過其他媒體的形式進行傳播,例如通過手機簡訊、微信公眾號、電子郵件等方式。
總的晌讓來說,跡亮數據新聞傳播的途徑非常多,可以根據新聞內容、受眾群體、宴州局傳播
H. 大數據專業跨考新媒體傳播學好嗎
大數據專業跨考稿空新媒體傳播學還行。
新傳本專業學生和跨專業學生在學習難度的體驗上差別並不會太大。換句話說就是,新傳考研的門檻其實並不銷敬敏高。
新聞與傳播學教育在世界范圍內都是看好的。在美國,報刊、廣播電視虧枝、公關公司、廣告公司、新媒體領域,都更願意僱用新聞與傳播學專業畢業的學生。
I. 大數據時代對媒體傳播帶來哪些影響
據前瞻產業研究院《中國大數據產業發展前景與投資戰略規劃分析報告》顯示,大數據對傳媒業產生了革命性的影響,其實,不僅傳媒行業會受到大數據帶來的影響,大數據也對傳媒學術研究產生巨大的沖擊和挑戰。目前已經有學者開始就大數據對傳媒研究的影響進行了初步分析,但總體而言,新聞傳播學界對大數據的研究偏重於現象描述和情況介紹,對大數據給學術研究帶來的挑戰和學術創新問題的研究卻較少。
在大數據環境下,理性假設的前提遇到了挑戰,大數據技術極大地減少了受眾搜索信息的成本,受眾可以輕而易舉地獲取決策所需的各種信息,並利用數據處理技術對信息的收益進行計算,在此基礎上作出決策,這使得有限理性範式失去了解釋力。同時,信息成本和交易成本的大幅下降,使網路空間出現了許多新的組織形態和交易形式,如以分享、合作為主題的維基網路、開放源代碼、網路共享等,這些新的組織形式無法用理性範式進行解釋,如果從理性的角度計算成本收益關系,那麼人們沒有動力進行網路分享與合作。
J. 數據新聞的功能與優勢
目前,在大數據新聞製作上已經積累了經驗的國際媒體有《衛報》《紐約時報》《華盛頓郵報》等,但它們也處於探索階段。通過對國內外代表性媒體的大數據新聞實踐進行研究,可以總結出大數據新聞的四個功能,即描述、判斷、預測、信息定製。
《衛報》網頁2012年1月5日發布了一個有關「阿拉伯之春」的大數據新聞報道。報道利用動態圖表,以時間軸為主線描述了自2010年12月一突尼西亞男子自焚至2011年12月的一年間,17個阿拉伯國家發生的一場政治運動。網民可以通過這個四維動態的報道,清楚地從宏觀到微觀,全面了解阿拉伯之春在不同國家的不同表現形式。圖表上方設置了時間的推拉按鈕,網民推拉到自己想觀看的時間點,可以清楚地看到相同時間點上不同國家發生的相關事件。畫面的下方是各個國家的標簽,網民也可以通過國家標記,來關注某個具體國家在縱向時間軸上的政治演變進程。不同的政治事件用不同顏色來標示:綠色為群眾性抗議活動,淺藍色為國際上的相關反應,黃色為政治事件,紅色為政權更替。如果網民想了解某個事件的具體內容,點擊不同顏色的標示,隨即獲取深度報道的鏈接。這種新聞報道方式,將涉及十幾個國家、時間跨度長達一年的復雜的「阿拉伯之春」,以明晰的動態方式呈現出來,純文字報道難以達到這樣的傳播效果。
大數據新聞還能夠描述那些看不見的短期過程,比如流言如何在社交網路上傳播。《衛報》通過追蹤分析260萬份推特內容,利用可視化動態圖表描述了從流言開始傳播到辟謠結束的整個過程。它也是以時間為軸,利用圓圈大小、顏色變化來描述整個過程,綠色的圈代表散布流言的推文,紅色的圈代表更正這個流言的推文,灰色的是中立的評價推文,黃色的是對流言持懷疑態度的推文。圈的大小代表了推文的影響程度,圈越大影響程度越大。如果想了解具體的內容,點到哪個圈,屏幕旁邊即刻呈現這個圈所代表的推文的發布者、發布日期、轉推人數等等信息。通過這個動態的演進過程,人們可以清楚地看到,社交網路並不像一般想像的那樣,是一味擴散虛假消息的場所。其實在假消息出現不久,社交網路上各種辟謠的消息就已經出現了。
從這兩個例子可以看出,大數據新聞的報道方式能夠在宏觀上對某個事件看得更加清楚與全面,事件復雜的演進過程以及這個過程中的各個方面,都能描述得直觀且有趣。 2011年8月,一個黑人穆斯林男子乘計程車在倫敦街頭遭到警方攔截,雙方發生槍戰,該男子當街死亡。兩天後,約300人聚集在倫敦市中心的警察局進行抗議,後來演變成持續多天的騷亂事件,抗議者引燃了汽車、商店和公交車。當天夜裡,倫敦其他地區也發生了類似襲警、搶劫、縱火等事件。一些媒體評論指出,這與貧富差距有關。英國首相卡梅倫接受采訪時,聲稱騷亂事件與貧富差距無關。
英國《衛報》記者利用大數據的分析結果,做了關於這一事件的系列報道,其中的一個報道主題,便是騷亂與貧困有沒有關聯。記者利用谷歌融合圖表,在倫敦地區地圖上標記出騷亂分子的居住地信息(黃色點)、實際發生騷亂的地點(灰色點),以及貧困地區分布(越偏紅色表示越貧窮)。根據這張倫敦市中心的圖,網民可以將圖擴展到整個大倫敦地區來看,也可以聚焦到具體的街區放大來看,觀察每個被標記的騷亂點的人流從哪裡來,到哪兒去,從而清楚地看到貧苦與騷亂之間存在的某種關聯。這種關系的表達,比起單純的文字報道來,表現清晰,說服力強。 2013年「十一」長假期間,九寨溝發生遊客大量滯留現象並引發群體性事件。如果新聞媒體或旅遊當局能夠在此前運用中國的局部大數據進行預測性報道,完全可以避免這樣的群體性事件發生。因為傳媒可以根據這方面的大數據,提前報道在哪個具體時間段內,有多少人從哪些地方前往九寨溝,其中男人、女人、老人、兒童各有多少等等。
這只是一個小例子,大數據能夠預測社會和人們日常生活中的各個方面。通過挖掘大數據,傳媒在技術上可以製作出可視化、互動式的圖表,告知很多事項。微觀的如流行疾病來襲、交通擁堵情況;宏觀的如經濟指數變動、某種社會危機的來臨等等。網路開辟了「網路預測」網頁,以「大數據,知天下」的口號推出,預測的產品有高考、世界盃、電影票房等等。它們後期准備上線的產品擴展到了更廣的領域,比如金融預測、房地產預測等等。 利用大數據的分析結果,滿足網民的信息個性化要求,是國外媒體的最新嘗試。例如Five thirty eight數據博客,在2014年5月23日新辟讀者來信專欄「親愛的莫娜」。其第一期開篇語闡釋的目的是:「我開這個專欄是為了幫助讀者回答一些生活中重要的或者嚴肅的問題,比如我是不是很正常、我處在世界的哪個地位層面等等,目的不是為了給讀者答疑解惑,不是告訴讀者應該做什麼和不應該做什麼。恰恰相反,我提供數據來解釋、描述你的經歷。」
綜觀這個專欄,讀者的提問五花八門,比較嚴肅的如:「美國有多少人從來沒有喝過一滴酒?」「美國有多少男性空乘人員?」也有比較私人的如:「我該多久換一次襪子?」「婚前同居會不會導致離婚」等等。專欄作者利用美國范圍內的大數據,即刻將分析結果告知當事人,但避免給出指導性意見,僅告知各種數據的分析結果,讓網民自己依照分析結果來處理自己面臨的問題。這個專欄與傳統的紙媒讀者來信專欄不同,不是通過星座、血型、生辰八字或偽裝成閱歷豐富的專家,來提供些心靈雞湯式的回答,只用數據來說話。
這種嘗試在媒體中並不少見。2011年,BBC廣播公司曾根據2012年政府的財政預算聯合畢馬威會計師事務所做了一個預算計算器,用戶只需要輸入一些日常信息,例如買多少啤酒,用多少汽油等,就能夠算出新的預算會讓你付多少稅,明年生活會不會更好。
根據用戶需求提供個性化的大數據服務,是未來的發展趨勢。這些報道有一個共性,媒體都致力於以用戶的需求為中心,利用大數據詮釋宏觀社會現象對用戶的影響,或者回答用戶困惑的問題。媒體可以精準定位,經過後台計算,按照用戶的接收習慣、工作習慣和生活習慣將服務推送到用戶眼前。