導航:首頁 > 網路數據 > 國內幾大數據區別

國內幾大數據區別

發布時間:2023-03-14 21:15:58

Ⅰ 國內目前有幾家做大數據BI的公司都有什麼不同

國外BI:SAS BI、的cognos、Oracle BIEE、SAP BO、Power-BI、Informatica、Arcplan、QlikView、Tableau等等;

國內BI:海致BDP、smartbi、用友華表、帆軟、潤乾報表,永洪科技等。



國內BI比較熟悉的有這3款


1、BDP商業數據平台

1)這兩年很熱,行業都比較贊賞。BDP旨在幫助企業快速完成多數據整合,建立統一數據口徑,支持自助式數據准備(ETL),並提供靈活、易用、高效可視化探索式分析能力,幫助企業構建貼合自身業務的企業洞察。BDP可以靈活接入與同步多種數據源,包括各類資料庫連接、OpenAPI以及各種SaaS平台API,滿足企業多種多樣的業務場景、億行數據秒反應,快速實現數據清洗、整合、載入,通過拖拽即可可視化分析,支持近數據地圖、漏斗圖、旭日圖、餅圖、柱狀圖、折線圖、詞雲、雷達等30種圖表類型,讓數據更加直觀、美觀。

2)BDP商業數據平台為企業提供的核心價值在於用直觀、多維、實時的方式展示和分析數據,並可在APP實時查看和分享,全面激活企業內部數據,用數據驅動業績,適應快速變化的市場。目前他們服務的客戶也很多,涵蓋互聯網、零售快消、物流、O2O、教育SEM等多個行業。

3)跟他們公司的人接觸過,服務態度很好,也很專業,價格不貴。


3、永洪

1)永洪利用sql處理數據,不支持程序介面,實施交由第三方外包。永洪的技術主要分為大數據和可視化兩點。在大數據方面,通過列存儲、分布式計算、內存計算、分布式通訊等技術,永洪自主研發了高性能的大數據計算引擎,作為分析用的數據集市,可實現百億級數據在秒級時間內完成計算。

2)在可視化方面,永洪將復雜的多維分析功能隱藏在背後,在前端通過點擊和拖拽的簡單可視化操作實現各種復雜的分析過程。

3)需要一定的技術門檻,交互比較復雜點

Ⅱ 傳統數據和大數據的區別

傳統數據和大數據的區別
無疑,數據信息的大爆炸不斷提醒著我們,未來將會因大數據技術而改變。大數據(Big data)通常用來形容數字化時代下創造出的大量非結構化和半結構化數據。大數據無疑是未來影響各行各業發展的最受矚目的技術之一。2009年時,全世界關於大數據的研究項目還非常有限,從2011年開始,越來越多的管理者開始意識到,大數據將是未來發展不可規避的問題,而到2012年年底,世界財富500 強企業中90%的企業都開展了大數據的項目。IDC的研究顯示,到2015年,大數據市場前景將達到169億美元的規模。當前所有企業的商業數據每隔1.2年就將遞增一倍。
那麼,大數據為什麼成為所有人關注的焦點?大數據帶來了什麼樣的本質性改變?為此,我們與中國計算機學會大數據學術帶頭人、中國人民大學信息學院院長杜小勇教授進行了訪談。
杜小勇教授認為,大數據帶來了三大根本改變:第一、大數據讓人們脫離了對演算法和模型的依賴,數據本身即可幫助人們貼近事情的真相;第二、大數據弱化了因果關系。大數據分析可以挖掘出不同要素之間的相關關系。人們不需要知道這些要素為什麼相關就可以利用其結果,在信息復雜錯綜的現代社會,這樣的應用將大大提高效率;第三、與之前的資料庫相關技術相比,大數據可以處理半結構化或非結構化的數據。這將使計算機能夠分析的數據范圍迅速擴大。
傳統數據和大數據的區別
第一、計算機科學在大數據出現之前,非常依賴模型以及演算法。人們如果想要得到精準的結論,需要建立模型來描述問題,同時,需要理順邏輯,理解因果,設計精妙的演算法來得出接近現實的結論。因此,一個問題,能否得到最好的解決,取決於建模是否合理,各種演算法的比拼成為決定成敗的關鍵。然而,大數據的出現徹底改變了人們對於建模和演算法的依賴。舉例來說,假設解決某一問題有演算法A和演算法B。在小量數據中運行時,演算法A的結果明顯優於演算法B。也就是說,就演算法本身而言,演算法A能夠帶來更好的結果;然而,人們發現,當數據量不斷增大時,演算法B在大量數據中運行的結果優於演算法A在小量數據中運行的結果。這一發現給計算機學科及計算機衍生學科都帶來了里程碑式的啟示:當數據越來越大時,數據本身(而不是研究數據所使用的演算法和模型)保證了數據分析結果的有效性。即便缺乏精準的演算法,只要擁有足夠多的數據,也能得到接近事實的結論。數據因此而被譽為新的生產力。
第二、當數據足夠多的時候,不需要了解具體的因果關系就能夠得出結論。
例如,Google 在幫助用戶翻譯時,並不是設定各種語法和翻譯規則。而是利用Google資料庫中收集的所有用戶的用詞習慣進行比較推薦。Google檢查所有用戶的寫作習慣,將最常用、出現頻率最高的翻譯方式推薦給用戶。在這一過程中,計算機可以並不了解問題的邏輯,但是當用戶行為的記錄數據越來越多時,計算機就可以在不了解問題邏輯的情況之下,提供最為可靠的結果。可見,海量數據和處理這些數據的分析工具,為理解世界提供了一條完整的新途徑。
第三、由於能夠處理多種數據結構,大數據能夠在最大程度上利用互聯網上記錄的人類行為數據進行分析。大數據出現之前,計算機所能夠處理的數據都需要前期進行結構化處理,並記錄在相應的資料庫中。但大數據技術對於數據的結構的要求大大降低,互聯網上人們留下的社交信息、地理位置信息、行為習慣信息、偏好信息等各種維度的信息都可以實時處理,立體完整地勾勒出每一個個體的各種特徵。

Ⅲ 大數據開發和數據分析有什麼區別

1、技術區別

大數據開發類的崗位對於code能力、工程能力有一定要求,這意味著需要有一定的編程能力,有一定的語言能力,然後就是解決問題的能力。

因為大數據開發會涉及到大量的開源的東西,而開源的東西坑比較多,所以需要能夠快速的定位問題解決問題,如果是零基礎,適合有一定的開發基礎,然後對於新東西能夠快速掌握。

如果是大數據分析類的職位,在業務上,需要你對業務能夠快速的了解、理解、掌握,通過數據感知業務的變化,通過對數據的分析來做業務的決策。

在技術上需要有一定的數據處理能力,比如一些腳本的使用、sql資料庫的查詢,execl、sas、r等工具的使用等等。在工具層面上,變動的范圍比較少,主要還是業務的理解能力。

2、薪資區別

作為IT類職業中的「大熊貓」,大數據工程師的收入待遇可以說達到了同類的頂級。國內IT、通訊、行業招聘中,有10%都是和大數據相關的,且比例還在上升。

在美國,大數據工程師平均每年薪酬高達17.5萬美元。大數據開發工程師在一線城市和大數據發展城市的薪資是比較高的。

大數據分析:大數據分析同樣作為高收入技術崗位,薪資也不遑多讓,並且,我們可以看到,擁有3-5年技術經驗的人才薪資可達到30K以上。

3、數據存儲不同

傳統的數據分析數據量較小,相對更加容易處理。不需要過多考慮數據的存儲問題。而大數據所涉及到的數據具有海量、多樣性、高速性以及易變性等特點。因此需要專門的存儲工具。

4、數據挖掘的方式不同

傳統的數據分析數據一般採用人工挖掘或者收集。而面對大數據人工已經無法實現最終的目標,因此需要跟多的大數據技術實現最終的數據挖掘,例如爬蟲。

Ⅳ 大數據到底是什麼行業啊,具體是干什麼的啊

這不是某個行業,它是一個大數據分析,也就是說不斷的收集數據,然後進行分析,然後對行業的發展有幫助。

Ⅳ 如何理解傳統數據與大數據之間的區別

針對大數據帶給教育的機遇與挑戰,與讀者深入探討和分享大數據與傳統數據的區別,及其行業落地的進展情況。

二、大數據時代潛藏的教育危機

「不得不承認,對於學生,我們知道得太少」——這是卡耐基·梅隆大學(Carnegie Mellon University)教育學院研究介紹中的一句自白,也同樣是美國十大教育類年會中出鏡率最高的核心議題。這種對於學生認識的匱乏,在21世紀之前長達數百甚至上千年的教育史中並沒有產生什麼消極的效應,但卻在信息技術革命後的近十年來成為教育發展的致命痼疾。

「過去,對於學生來說,到學校上學學習知識具有無可辯駁的重要性,而那是因為當時人們能夠接觸知識的渠道太少,離開學校就無法獲取成體系的知識」斯坦福大學教授Arnetha Ball在AERA(美國教育研究會)大會主旨發言中說道,「但是,互聯網的普及將學校的地位從神壇上拉了下來。」Ball的擔心不無道理。根據Kids Count Census Data Online發布的數據,2012年全美在家上學(Home-Schooling)的5-17歲學生已達到197萬人,相對逐年價下降的出生人口,這一人口比重十分可觀。

與此同時,應運而生的則是內容越來越精緻的網上課堂,而創立於2009年並迅速風靡全球的可汗學院(Khan Academy)正是其中的傑出代表。從知名學府的公開課到可汗學院,這種網路學習模式受到熱捧恰恰證明了:人們對於學習的熱情並沒有過去,但是人們已經極端希望與傳統的學院式授課模式告別。一成不變,甚至「目中無人」的傳統集體教學模式在適應越來越多元化、也越來越追求個性化的學生群體時顯得捉襟見肘。

可汗學院模式不但支持學生自主選擇感興趣的內容,還可以快速跳轉到自己適合的難度,從而提高了學習的效率。學習者沒有學習的壓力,時長、時機、場合、回顧遍數都可以由自己控制。

可以想像,如果可汗學院的模式進一步發展,與計算機自適應(CAT)的評估系統相聯系,讓使用者可以通過自我評估實現對學習進度的掌握以及學習資料的精準獲取,那麼它將形成互聯網產品的「閉環」,其優勢與力量將是顛覆性的。

而如果傳統教育的課程模式不革新,課堂形態不脫胎換骨,教師角色與意識不蛻變,那麼學校的存在就只有對現代化學習資源匱乏的學生才有意義;而對於能夠自主獲得更適宜學習資源的學生來說,去學校可能只是為了完成一項社會角色賦予的義務,甚至談不上必要性,也就更談不上愉快的體驗或興趣的驅使了。

大數據的研究可以幫助教育研究者重新審視學生的需求,通過高新的技術以及細致的分析找到怎樣的課程、課堂、教師是能夠吸引學生的。但問題在於,社會發展給予教育研究者的時間窗口並不寬裕,因為有太多人同樣在試圖通過大數據挖掘設法瓜分學生們有限的精力與注意力。而且從某種程度上,他們做得遠比教育研究者更有動力與誠意。

首當其沖的是游戲的設計者——青少年是其主要消費群體。撇開馳名世界的暴雪公司(Blizzard Entertainment),美國藝電公司(Electronic Arts Inc.),日本任天堂公司(Nintendo)等國際巨鱷不談;即使是國內的盛大網路,第九城市,巨人科技,淘米網路等游戲公司,亦都早已組建了專業實力強勁的「用戶體驗」研究團隊。他們會通過眼動跟蹤,心律跟蹤,血壓跟蹤,鍵盤與滑鼠微操作速率等各種微觀行為來研究如何讓玩家在游戲中投入更多的時間,更加願意花真實世界的錢來購買虛擬世界的物品。什麼時候應該安排敵人出現,敵人應當是什麼級別,主人公需要耗費多少精力才能夠將其擊敗,這些變數都得到了嚴格的設計與控制,原因只有一個——大數據告訴游戲創作者,這樣的設計是最能夠吸引玩家持續游戲的。

其次是電影視頻、青春小說等鏈式文化產業。為什麼在網站上看視頻會一個接一個,無法停止,因為它會根據該賬號的歷史瀏覽記錄推算出其喜歡看什麼樣的視頻,喜歡聽什麼類型風格的歌,並投其所好;而暢銷網路小說看似並沒有「營養」,但裡面的遣詞造句、語段字數,故事起伏設定,甚至主人公性格的類型都是有相關研究進行支持——讀者往往並不喜歡結構嚴密、精心設計的劇情——這就是為什麼情節千篇一律的韓劇受人追捧的原因,他們通過收視率的反復研究,挖掘到了觀眾最需要的那些元素,並且屢試不爽。

此外還有許多更強大的研究者,比如電子商務,總能通過數據找到你可能願意購買的商品——他們甚至知道買尿片的父親更願意買啤酒。

這些領域看似與我們教育者並無特別關聯,但是他們與我們最關心的對象——學生卻有著千絲萬縷的聯系。數百年甚至數十年前,學生並不會面對如此多的誘惑,學校在其生活中占據極大比重,對其影響也最為顯著,因此教育者對於學生的控制總是有著充分的自信。但是,當不同的社會機構與產品開始爭奪學生的注意力時,教育者的自信就只能被認為是一種無法認清形勢的傲慢了——因為在這場「學生爭奪戰」中,傳統學校看上去實在缺乏競爭力。

即使教育研究者願意放下身段,通過大數據的幫助來悉心研究學生的需求與個性。但是人才的匱乏也是非常不利的一點因素——相比於商業環境下對研究實效的追逐,教育研究的緩慢與空洞顯得相形見絀。在互聯網企業紛紛拋出「首席數據官」的頭銜,向各種數據科學狂人拋出橄欖枝,並且在風險投資的鼓舞下,動輒以百萬年薪進行延聘時,大數據研究的前沿陣地必然仍是在互聯網行業中最轟轟烈烈地開戰。

分析形勢後的姿態,以及投入的力度與強度,或許是教育領域在進入大數據研究時最先需要充分考慮的兩個先決條件。

三、誰在為大數據歡呼:一場關於「人性」研究的啟蒙

孜孜不倦地觀測、記錄、挖掘海量的數據,有朝一日終會推導出或簡約或繁復的方程,以此得以在自然科學的歷史豐碑上留名——數百年來,這種對數據的崇拜早已成為了物理學家、化學家、生物學家、天文地理學家們的信念。而牛頓,貝葉斯,薛定諤等一代代巨匠的偉業也揭示了數據對於科學發現的無限重要價值。

相形之下,社會科學領域的研究就要慘淡地多——他們同樣看重數據,同樣追求統計與分析的「程序正義」,同樣勤勤懇懇地設計實驗與調研,去尋找成千上萬的被試,同樣像模像樣地去嵌套方程……但是幾乎很少有研究結果能夠得到普遍的承認,不管是社會學、心理學、經濟學、管理學還是教育學。

當然,社會科學領域的研究者們遇到的困難是顯而易見的:「人性」與「物性」是不同的,物質世界比較穩定,容易尋找規律;而由人組成的社會極其善變,難以總結。從數據的角度來說,人的數據不如物的數據那麼可靠:

首先是人不會像物那樣忠實地進行回應:誰知道一個人填寫的問卷有多少是注意力不集中填錯的、語文水平不高理解錯的、還是壓根沒打算講真話?此外,人與人本身的差距也大於物與物的差距:兩個化學組成相同的物質表現出各種性質幾乎是完全一樣的,但即使是兩個基因完全相同的雙胞胎也會因為不同的人生經驗,而表現出大相徑庭的行為特徵。

但這些都還並不關鍵,最最重要的是:人無法被反復研究。人不是牛頓的木塊,不是伽利略的鉛球,不是巴普洛夫的狼狗,人不會配合一次次從斜坡上被滑下來,一次次從比薩塔頂被扔下來,一次次流著口水乾等著送肉來的鈴聲。而我們知道,在「科學」的三個標准中,首當其沖的就是「可重復驗證」。

換句話說,我們可以獲得的關於「人性」的數據不夠大,不夠多,不夠隨時隨地,因此我們無法從數據中窺見人性。2002年諾貝爾經濟學獎授予心理學家丹尼爾?卡尼曼(Daniel Kahneman)時,似乎標示著社會科學領域已經接受了這樣一種事實:人類的行為是無法尋找規律、無法預測、難以進行科學度量的。社會科學開始懷疑用純粹理性的方法是否可以解答關於「人性」的種種現象。與此相映成趣的是2012年的美國大選,奧巴馬的團隊依靠對網路數據的精準篩選捕捉到了大量的「草根」選民,而對於其喜好與需求的分析與把握更是贏得其信任,從而在不被傳統民調與歷史數據規律看好的情況下一舉勝出。這跨越十年的兩個標志性事件讓人們對於「數據揭示人性」可能性的認識經歷了戲劇性的轉變。

如今,迅速普及的互聯網與移動互聯網悄然為記錄人的行為數據提供了最為便利、持久的載體。手機,iPad等貼近人的終端無時不刻不在記錄關於人的點點滴滴思考、決策與行為。最最重要的是,在這些強大的數據收集終端面前,人們沒有掩飾的意圖,人們完整地呈現著自己的各種經歷,人們不厭其煩一遍又一遍重復著他們不願在實驗情境下表現出來的行為,從而創造著海量的數據——傳統數據研究無法做到的事,傳統研究範式苦苦糾結的許多難點,都在大數據到來的那一剎那遁於無形。

大數據的到來,讓所有社會科學領域能夠藉由前沿技術的發展從宏觀群體走向微觀個體,讓跟蹤每一個人的數據成為了可能,從而讓研究「人性」成為了可能。而對於教育研究者來說,我們比任何時候都更接近發現真正的學生。

Ⅵ 國內大數據分析服務平台這么多,哪家比較好

以下為大家介紹幾個代表性數據分析平台:
1、 Cloudera
Cloudera提供一個可擴展、靈活、集成的平台,可用來方便的管理您的企業中快速增長的多種多樣的數據,從而部署和管理Hadoop和相關項目、操作和分析您的數據以及保護數據的安全。Cloudera Manager是一個復雜的應用程序,用於部署、管理、監控CDH部署並診斷問題,Cloudera Manager提供Admin Console,這是一種基於Web的用戶界面,是您的企業數據管理簡單而直接,它還包括Cloudera Manager API,可用來獲取集群運行狀況信息和度量以及配置Cloudera Manager。
2、 星環Transwarp
基於hadoop生態系統的大數據平台公司,國內唯一入選過Gartner魔力象限的大數據平台公司,對hadoop不穩定的部分進行了優化,功能上進行了細化,為企業提供hadoop大數據引擎及資料庫工具。
3、 阿里數加
阿里雲發布的一站式大數據平台,覆蓋了企業數倉、商業智能、機器學習、數據可視化等領域,可以提供數據採集、數據深度融合、計算和挖掘服務,將計算的幾個通過可視化工具進行個性化的數據分析和展現,圖形展示和客戶感知良好,但是需要捆綁阿里雲才能使用,部分體驗功能一般,需要有一定的知識基礎。maxcompute(原名ODPS)是數加底層的計算引擎,有兩個維度可以看這個計算引擎的性能,一個是6小時處理100PB的數據,相當於1億部高清電影,另外一個是單集群規模過萬台,並支持多集群聯合計算。
4、 華為FusionInsight
基於Apache進行功能增強的企業級大數據存儲、查詢和分析的統一平台。完全開放的大數據平台,可運行在開放的x86架構伺服器上,它以海量數據處理引擎和實時數據處理引擎為核心,針對金融、運營商等數據密集型行業的運行維護、應用開發等需求,打造了敏捷、智慧、可信的平台軟體。
5、網易猛獁
網易猛獁大數據平台使一站式的大數據應用開發和數據管理平台,包括大數據開發套件和hadoop發行版兩部分。大數據開發套件主要包含數據開發、任務運維、自助分析、數據管理、項目管理及多租戶管理等。大數據開發套件將數據開發、數據分析、數據ETL等數據科學工作通過工作流的方式有效地串聯起來,提高了數據開發工程師和數據分析工程師的工作效率。Hadoop發行版涵蓋了網易大數據所有底層平台組件,包括自研組件、基於開源改造的組件。豐富而全面的組件,提供完善的平台能力,使其能輕易地構建不同領域的解決方案,滿足不同類型的業務需求。
6.知於大數據分析平台
知於平台的定位與當今流行的平台定位不一樣,它針對的主要是中小型企業,為中小型企業提供大數據解決方案。現階段,平台主打的產品是輿情系統、文章傳播分析與網站排名監測,每個服務的價格單次在50元左右,性價比極高。

Ⅶ 國內目前有幾家做大數據BI的公司都有什麼不同

極其流行,同樣也是競爭力極其大的一種商業模式。雖然國內軟體開發公司都發展壯大起來了,但是各地軟體開發公司的實力及資質仍然參差不齊。下面為大家介紹下近期國內軟體開發公司的排名匯總。

1:華盛恆輝科技有限公司

上榜理由:華盛恆輝是一家專注於高端軟體定製開發服務和高端建設的服務機構,致力於為企業提供全面、系統的開發製作方案。在開發、建設到運營推廣領域擁有豐富經驗,我們通過建立對目標客戶和用戶行為的分析,整合高質量設計和極其新技術,為您打造創意十足、有價值的企業品牌。

在軍工領域,合作客戶包括:中央軍委聯合參謀(原總參)、中央軍委後勤保障部(原總後)、中央軍委裝備發展部(原總裝)、裝備研究所、戰略支援、軍事科學院、研究所、航天科工集團、中國航天科技集團、中國船舶工業集團、中國船舶重工集團、第一研究所、訓練器材所、裝備技術研究所等單位。

在民用領域,公司大力拓展民用市場,目前合作的客戶包括中國中鐵電氣化局集團、中國鐵道科學研究院、濟南機務段、東莞軌道交通公司、京港地鐵、中國國電集團、電力科學研究院、水利部、國家發改委、中信銀行、華為公司等大型客戶。

2:五木恆潤科技有限公司

上榜理由:五木恆潤擁有員工300多人,技術人員佔90%以上,是一家專業的軍工信息化建設服務單位,為軍工單位提供完整的信息化解決方案。公司設有股東會、董事會、監事會、工會等上層機構,同時設置總經理職位,由總經理管理公司的具體事務。公司下設有研發部、質量部、市場部、財務部、人事部等機構。公司下轄成都研發中心、西安研發中心、沈陽辦事處、天津辦事處等分支機構。

3、浪潮

浪潮集團有限公司是國家首批認定的規劃布局內的重點軟體企業,中國著名的企業管理軟體、分行業ERP及服務供應商,在咨詢服務、IT規劃、軟體及解決方案等方面具有強大的優勢,形成了以浪潮ERP系列產品PS、GS、GSP三大主要產品。是目前中國高端企業管理軟體領跑者、中國企業管理軟體技術領先者、中國最大的行業ERP與集團管理軟體供應商、國內服務滿意度最高的管理軟體企業。

4、德格Dagle

德格智能SaaS軟體管理系統自德國工業4.0,並且結合國內工廠行業現狀而打造的一款工廠智能化信息平台管理軟體,具備工廠ERP管理、SCRM客戶關系管理、BPM業務流程管理、
OMS訂單管理等四大企業業務信息系統,不僅滿足企業對生產進行簡易管理的需求,並突破區域網應用的局限性,同時使數據管理延伸到互聯網與移動商務,不論是內部的管理應用還是外部的移動應用,都可以在智能SaaS軟體管理系統中進行業務流程的管控。

5、Manage

高亞的產品 (8Manage) 是美國經驗中國研發的企業管理軟體,整個系統架構基於移動互聯網和一體化管理設計而成,其源代碼編寫採用的是最為廣泛應用的
Java / J2EE 開發語言,這樣的技術優勢使 8Manage
可靈活地按需進行客制化,並且非常適用於移動互聯網的業務直通式處理,讓用戶可以隨時隨地通過手機apps進行實時溝通與交易。

Ⅷ 國內有那些比較好的大數據平台呢

國內目前比較主流的大數據平台主要有:growingio ,talkingdata,諸葛io ,神策等,這些平台功能類似,基本上都能覆蓋事件分析,用戶分析,漏斗和路徑分析,精準營銷等

Ⅸ 大數據資料庫有哪些

問題一:大數據技術有哪些 非常多的,問答不能發link,不然我給你link了。有譬如Hadoop等開源大數據項目的,編程語言的,以下就大數據底層技術說下。
簡單以永洪科技的技術說下,有四方面,其實也代表了部分通用大數據底層技術:
Z-Suite具有高性能的大數據分析能力,她完全摒棄了向上升級(Scale-Up),全面支持橫向擴展(Scale-Out)。Z-Suite主要通過以下核心技術來支撐PB級的大數據:
跨粒度計算(In-Databaseputing)
Z-Suite支持各種常見的匯總,還支持幾乎全部的專業統計函數。得益於跨粒度計算技術,Z-Suite數據分析引擎將找尋出最優化的計算方案,繼而把所有開銷較大的、昂貴的計算都移動到數據存儲的地方直接計算,我們稱之為庫內計算(In-Database)。這一技術大大減少了數據移動,降低了通訊負擔,保證了高性能數據分析。
並行計算(MPP puting)
Z-Suite是基於MPP架構的商業智能平台,她能夠把計算分布到多個計算節點,再在指定節點將計算結果匯總輸出。Z-Suite能夠充分利用各種計算和存儲資源,不管是伺服器還是普通的PC,她對網路條件也沒有嚴苛的要求。作為橫向擴展的大數據平台,Z-Suite能夠充分發揮各個節點的計算能力,輕松實現針對TB/PB級數據分析的秒級響應。
列存儲 (Column-Based)
Z-Suite是列存儲的。基於列存儲的數據集市,不讀取無關數據,能降低讀寫開銷,同時提高I/O 的效率,從而大大提高查詢性能。另外,列存儲能夠更好地壓縮數據,一般壓縮比在5 -10倍之間,這樣一來,數據佔有空間降低到傳統存儲的1/5到1/10 。良好的數據壓縮技術,節省了存儲設備和內存的開銷,卻大大了提升計算性能。
內存計算
得益於列存儲技術和並行計算技術,Z-Suite能夠大大壓縮數據,並同時利用多個節點的計算能力和內存容量。一般地,內存訪問速度比磁碟訪問速度要快幾百倍甚至上千倍。通過內存計算,CPU直接從內存而非磁碟上讀取數據並對數據進行計算。內存計算是對傳統數據處理方式的一種加速,是實現大數據分析的關鍵應用技術。

問題二:大數據使用的資料庫是什麼資料庫 ORACLE、DB2、SQL SERVER都可以,關鍵不是選什麼資料庫,而是資料庫如何優化! 需要看你日常如何操作,以查詢為主或是以存儲為主或2者,還要看你的數據結構,都要因地制宜的去優化!所以不是一句話說的清的!

問題三:什麼是大數據和大數據平台 大數據技術是指從各種各樣類型的數據中,快速獲得有價值信息的能力。適用於大數據的技術,包括大規模並行處理(MPP)資料庫,數據挖掘電網,分布式文件系統,分布式資料庫,雲計算平台,互聯網,和可擴展的存儲系統。
大數據平台是為了計算,現今社會所產生的越來越大的數據量。以存儲、運算、展現作為目的的平台。

問題四:常用大型資料庫有哪些 FOXBASE
MYSQL
這倆可算不上大型資料庫管理系統
PB 是資料庫應用程序開發用的ide,根本就不是資料庫管理系統
Foxbase是dos時代的產品了,進入windows時代改叫foxpro,屬於桌面單機級別的小型資料庫系統,mysql是個中輕量級的,但是開源,大量使用於小型網站,真正重量級的是Oracle和DB2,銀行之類的關鍵行業用的多是這兩個,微軟的MS SQLServer相對DB2和Oracle規模小一些,多見於中小型企業單位使用,Sybase可以說是日薄西山,不行了

問題五:幾大資料庫的區別 最商業的是ORACLE,做的最專業,然後是微軟的SQL server,做的也很好,當然還有DB2等做得也不錯,這些都是大型的資料庫,,,如果掌握的全面的話,可以保證數據的安全. 然後就是些小的資料庫access,mysql等,適合於中小企業的資料庫100萬數據一下的數據.如有幫助請採納,謝!

問題六:全球最大的資料庫是什麼 應該是Oracle,第一,Oracle為商業界所廣泛採用。因為它規范、嚴謹而且服務到位,且安全性非常高。第二,如果你學習使用Oracle不是商用,也可以免費使用。這就為它的廣泛傳播奠定了在技術人員中的基礎。第三,Linux/Unix系統常常作為伺服器,伺服器對Oracle的使用簡直可以說極其多啊。建議樓梗多學習下這個強大的資料庫

問題七:什麼是大數據? 大數據(big data),或稱巨量資料,指的是所涉及的資料量規模巨大到無法通過目前主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。(在維克托・邁爾-舍恩伯格及肯尼斯・庫克耶編寫的《大數據時代》中大數據指不用隨機分析法(抽樣調查)這樣的捷徑,而採用所有數據的方法[2])大數據的4V特點:Volume(大量)、Velocity(高速)、Variety(多樣)、Value(價值)。
說起大數據,就要說到商業智能:
商業智能(Business Intelligence,簡稱:BI),又稱商業智慧或商務智能,指用現代數據倉庫技術、線上分析處理技術、數據挖掘和數據展現技術進行數據分析以實現商業價值。

商業智能作為一個工具,是用來處理企業中現有數據,並將其轉換成知識、分析和結論,輔助業務或者決策者做出正確且明智的決定。是幫助企業更好地利用數據提高決策質量的技術,包含了從數據倉庫到分析型系統等。

商務智能的產生發展
商業智能的概念經由Howard Dresner(1989年)的通俗化而被人們廣泛了解。當時將商業智能定義為一類由數據倉庫(或數據集市)、查詢報表、數據分析、數據挖掘、數據備份和恢復等部分組成的、以幫助企業決策為目的技術及其應用。

商務智能是20世紀90年代末首先在國外企業界出現的一個術語,其代表為提高企業運營性能而採用的一系列方法、技術和軟體。它把先進的信息技術應用到整個企業,不僅為企業提供信息獲取能力,而且通過對信息的開發,將其轉變為企業的競爭優勢,也有人稱之為混沌世界中的智能。因此,越來越多的企業提出他們對BI的需求,把BI作為一種幫助企業達到經營目標的一種有效手段。

目前,商業智能通常被理解為將企業中現有的數據轉化為知識,幫助企業做出明智的業務經營決策的工具。這里所談的數據包括來自企業業務系統的訂單、庫存、交易賬目、客戶和供應商資料及來自企業所處行業和競爭對手的數據,以及來自企業所處的其他外部環境中的各種數據。而商業智能能夠輔助的業務經營決策既可以是作業層的,也可以是管理層和策略層的決策。

為了將數據轉化為知識,需要利用數據倉庫、線上分析處理(OLAP)工具和數據挖掘等技術。因此,從技術層面上講,商業智能不是什麼新技術,它只是ETL、數據倉庫、OLAP、數據挖掘、數據展現等技術的綜合運用。

把商業智能看成是一種解決方案應該比較恰當。商業智能的關鍵是從許多來自不同的企業運作系統的數據中提取出有用的數據並進行清理,以保證數據的正確性,然後經過抽取(Extraction)、轉換(Transformation)和裝載(Load),即ETL過程,合並到一個企業級的數據倉庫里,從而得到企業數據的一個全局視圖,在此基礎上利用合適的查詢和分析工具、數據挖掘工具、OLAP工具等對其進行分析和處理(這時信息變為輔助決策的知識),最後將知識呈現給管理者,為管理者的決策過程提供支持。
企業導入BI的優點
1.隨機查詢動態報表

2.掌握指標管理

3.隨時線上分析處理

4.視覺化之企業儀表版

5.協助預測規劃

導入BI的目的
1.促進企業決策流程(Facilitate the Business Decision-Making Process):BIS增進企業的資訊整合與資訊分析的能力,匯總公司內、外部的資料,整合成有效的決策資訊,讓企業經理人大幅增進決策效率與改善決策品質。

......>>

問題八:資料庫有哪幾種? 常用的資料庫:oracle、sqlserver、mysql、access、sybase 2、特點。 -oracle: 1.資料庫安全性很高,很適合做大型資料庫。支持多種系統平台(HPUX、SUNOS、OSF/1、VMS、 WINDOWS、WINDOWS/NT、OS/2)。 2.支持客戶機/伺服器體系結構及混合的體系結構(集中式、分布式、 客戶機/伺服器)。 -sqlserver: 1.真正的客戶機/伺服器體系結構。 2.圖形化用戶界面,使系統管理和資料庫管理更加直觀、簡單。 3.具有很好的伸縮性,可跨越從運行Windows 95/98的膝上型電腦到運行Windows 2000的大型多處理器等多種平台使用。 -mysql: MySQL是一個開放源碼的小型關系型資料庫管理系統,開發者為瑞典MySQL AB公司,92HeZu網免費贈送MySQL。目前MySQL被廣泛地應用在Internet上的中小型網站中。提供由於其體積小、速度快、總體擁有成本低,尤其是開放源碼這一特點,許多中小型網站為了降低網站總體擁有成本而選擇了MySQL作為網站資料庫。 -access Access是一種桌面資料庫,只適合數據量少的應用,在處理少量數據和單機訪問的資料庫時是很好的,效率也很高。 但是它的同時訪問客戶端不能多於4個。 -

問題九:什麼是大數據 大數據是一個體量特別大,數據類別特別大的數據集,並且這樣的數據集無法用傳統資料庫工具對其內容進行抓取、管理和處理。 大數據首先是指數據體量(volumes)?大,指代大型數據集,一般在10TB?規模左右,但在實際應用中,很多企業用戶把多個數據集放在一起,已經形成了PB級的數據量;其次是指數據類別(variety)大,數據來自多種數據源,數據種類和格式日漸豐富,已沖破了以前所限定的結構化數據范疇,囊括了半結構化和非結構化數據。接著是數據處理速度(Velocity)快,在數據量非常龐大的情況下,也能夠做到數據的實時處理。最後一個特點是指數據真實性(Veracity)高,隨著社交數據、企業內容、交易與應用數據等新數據源的興趣,傳統數據源的局限被打破,企業愈發需要有效的信息之力以確保其真實性及安全性。
數據採集:ETL工具負責將分布的、異構數據源中的數據如關系數據、平面數據文件等抽取到臨時中間層後進行清洗、轉換、集成,最後載入到數據倉庫或數據集市中,成為聯機分析處理、數據挖掘的基礎。
數據存取:關系資料庫、NOSQL、SQL等。
基礎架構:雲存儲、分布式文件存儲等。
數據處理:自然語言處理(NLP,NaturalLanguageProcessing)是研究人與計算機交互的語言問題的一門學科。處理自然語言的關鍵是要讓計算機理解自然語言,所以自然語言處理又叫做自然語言理解(NLU,NaturalLanguage Understanding),也稱為計算語言學(putational Linguistics。一方面它是語言信息處理的一個分支,另一方面它是人工智慧(AI, Artificial Intelligence)的核心課題之一。
統計分析:假設檢驗、顯著性檢驗、差異分析、相關分析、T檢驗、方差分析、卡方分析、偏相關分析、距離分析、回歸分析、簡單回歸分析、多元回歸分析、逐步回歸、回歸預測與殘差分析、嶺回歸、logistic回歸分析、曲線估計、因子分析、聚類分析、主成分分析、因子分析、快速聚類法與聚類法、判別分析、對應分析、多元對應分析(最優尺度分析)、bootstrap技術等等。
數據挖掘:分類 (Classification)、估計(Estimation)、預測(Prediction)、相關性分組或關聯規則(Affinity grouping or association rules)、聚類(Clustering)、描述和可視化、Description and Visualization)、復雜數據類型挖掘(Text, Web ,圖形圖像,視頻,音頻等)
模型預測:預測模型、機器學習、建模模擬。
結果呈現:雲計算、標簽雲、關系圖等。
要理解大數據這一概念,首先要從大入手,大是指數據規模,大數據一般指在10TB(1TB=1024GB)規模以上的數據量。大數據同過去的海量數據有所區別,其基本特徵可以用4個V來總結(Vol-ume、Variety、Value和Veloc-ity),即體量大、多樣性、價值密度低、速度快。
第一,數據體量巨大。從TB級別,躍升到PB級別。
第二,數據類型繁多,如前文提到的網路日誌、視頻、圖片、地理位置信息,等等。
第三,價值密度低。以視頻為例,連續不間斷監控過程中,可能有用的數據僅僅有一兩秒。
第四,處理速度快。1秒定律。最後這一點也是和傳統的......>>

問題十:國內真正的大數據分析產品有哪些 國內的大數據公司還是做前端可視化展現的偏多,BAT算是真正做了大數據的,行業有硬性需求,別的行業跟不上也沒辦法,需求決定市場。
說說更通用的數據分析吧。
大數據分析也屬於數據分析的一塊,在實際應用中可以把數據分析工具分成兩個維度:
第一維度:數據存儲層――數據報表層――數據分析層――數據展現層
第二維度:用戶級――部門級――企業級――BI級
1、數據存儲層
數據存儲設計到資料庫的概念和資料庫語言,這方面不一定要深鑽研,但至少要理解數據的存儲方式,數據的基本結構和數據類型。SQL查詢語言必不可少,精通最好。可從常用的selece查詢,update修改,delete刪除,insert插入的基本結構和讀取入手。
Access2003、Access07等,這是最基本的個人資料庫,經常用於個人或部分基本的數據存儲;MySQL資料庫,這個對於部門級或者互聯網的資料庫應用是必要的,這個時候關鍵掌握資料庫的庫結構和SQL語言的數據查詢能力。
SQL Server2005或更高版本,對中小企業,一些大型企業也可以採用SQL Server資料庫,其實這個時候本身除了數據存儲,也包括了數據報表和數據分析了,甚至數據挖掘工具都在其中了。
DB2,Oracle資料庫都是大型資料庫了,主要是企業級,特別是大型企業或者對數據海量存儲需求的就是必須的了,一般大型資料庫公司都提供非常好的數據整合應用平台。
BI級別,實際上這個不是資料庫,而是建立在前面資料庫基礎上的,企業級應用的數據倉庫。Data Warehouse,建立在DW機上的數據存儲基本上都是商業智能平台,整合了各種數據分析,報表、分析和展現!BI級別的數據倉庫結合BI產品也是近幾年的大趨勢。
2、報表層
企業存儲了數據需要讀取,需要展現,報表工具是最普遍應用的工具,尤其是在國內。傳統報表解決的是展現問題,目前國內的帆軟報表FineReport已經算在業內做到頂尖,是帶著數據分析思想的報表,因其優異的介面開放功能、填報、表單功能,能夠做到打通數據的進出,涵蓋了早期商業智能的功能。
Tableau、FineBI之類,可分在報表層也可分為數據展現層。FineBI和Tableau同屬於近年來非常棒的軟體,可作為可視化數據分析軟體,我常用FineBI從資料庫中取數進行報表和可視化分析。相對而言,可視化Tableau更優,但FineBI又有另一種身份――商業智能,所以在大數據處理方面的能力更勝一籌。
3、數據分析層
這個層其實有很多分析工具,當然我們最常用的就是Excel,我經常用的就是統計分析和數據挖掘工具;
Excel軟體,首先版本越高越好用這是肯定的;當然對excel來講很多人只是掌握了5%Excel功能,Excel功能非常強大,甚至可以完成所有的統計分析工作!但是我也常說,有能力把Excel玩成統計工具不如專門學會統計軟體;
SPSS軟體:當前版本是18,名字也改成了PASW Statistics;我從3.0開始Dos環境下編程分析,到現在版本的變遷也可以看出SPSS社會科學統計軟體包的變化,從重視醫學、化學等開始越來越重視商業分析,現在已經成為了預測分析軟體;
SAS軟體:SAS相對SPSS其實功能更強大,SAS是平台化的,EM挖掘模塊平台整合,相對來講,SAS比較難學些,但如果掌握了SAS會更有價值,比如離散選擇模型,抽樣問題,正交實驗設計等還是SAS比較好用,另外,SAS的學習材料比較多,也公開,會有收獲的!
JMP分析:SAS的一個分析分支
XLstat:Excel的插件,可以完......>>

Ⅹ 國內外在利用大數據上的不同做法

近期外賣企業 大數據 殺熟受到知名媒體的批評,同時也證明了這一事實,由此可以看出中國互聯網行業的短視,相比之下外國企業卻是利用大數據進行創新,這或許就是中外互聯網行業最大的不同吧。

大數據殺熟的疑問其實早已存在,例如此前的網約車企業殺熟就曾引發巨大的爭論,不過當時並未有權威機構對此證實,而相關的網約車企業也迅速對此否認。

這次外賣企業以大數據殺熟則得到了知名媒體的證明,說明了中國互聯網企業確實有利用它們掌握的大數據謀求更豐厚的利潤,宰割國內消費者。

其實如果再放開來說,中國互聯網行業存在著許多弊病,除了大數據殺熟之外,它們還利用自己的大數據優勢廣泛向消費者推送相關的廣告,這是屬於侵犯隱私的行為,實在過於肆意妄為。

或許也正是它們在國內可以如此做,導致它們只能蝸居國內市場,至今在海外市場都難以取得突破,因為在海外市場它們需要遵守當地的法規,重視消費者的隱私,無法如國內這樣如此輕松的賺取豐厚的利潤。

相比起中國的互聯網行業,國外互聯網企業卻是利用大數據進行創新,不斷增強自己的競爭力,同時獲得消費者的支持。

以全球知名的互聯網企業谷歌為例,它擁有大數據的優勢,​卻​​是​利用大數據研發健康產品等幫助人類預防疾病,對比起中國的互聯網企業可以看出它們正利用大數據進行創新,實現更加高大上的目標,映襯出中國互聯網行業的短視。

或許也正是這種差異,導致中國互聯網企業出海往往難以與它們進行競爭,無奈之下中國的互聯網企業在國內市場發展壯大之後考慮的是如何在國內市場如何掘金,甚至瞄準消費者手裡那幾塊菜錢,卻沒有找到高大上的目標。

對比起在國內牛逼哄哄的互聯網企業,中國製造卻已在國際市場取得了可喜的成就,中國製造的產品如電視、手機等產品都已在國際市場站穩腳跟,證明了中國製造的實力,這更是映襯得中國互聯網行業目光短淺。​

如今新華網批評外賣平台大數據殺熟,或許能讓這些互聯網企業反思自己,不再以竭力壓榨國內消費者為目的,將目標放在創新方面,增強自己的競爭力,以與國際企業競爭為目標。

閱讀全文

與國內幾大數據區別相關的資料

熱點內容
買鞋應該去哪個網站 瀏覽:972
看門狗2游戲文件名 瀏覽:105
js中判斷是否包含字元串中 瀏覽:363
查看網路並設置連接 瀏覽:624
win10玩奇跡掉線 瀏覽:305
愛思助手電筒腦版在哪個網站下 瀏覽:814
文件夾排序怎麼按順序 瀏覽:54
飛豬app有什麼功能 瀏覽:593
求生之路2開服破解文件 瀏覽:42
javaforeach輸出數組 瀏覽:851
編程bug怎麼修改 瀏覽:630
蘋果5s屏修一下多錢 瀏覽:523
java獲取上傳文件名 瀏覽:156
網站添加微博 瀏覽:593
flash播放mp4代碼 瀏覽:766
word頁腳奇偶頁不同 瀏覽:728
backboxlinux安裝 瀏覽:67
會聲會影卸載文件損壞 瀏覽:283
word文件怎麼修改自然段 瀏覽:94
華興數控系統車孔g81循環怎麼編程 瀏覽:244

友情鏈接