『壹』 教你如何看懂旅遊大數據
教你如何看懂旅遊大數據_數據分析師考試
有時候,一句話、一張圖片都會蘊含巨大的數字商機,但這是一門需要高度精準性的技術活兒,並非人人都看得懂大數據。
看懂遊客行為
大家都在說大數據,攜程近期投資專攻大數據研究的眾薈信息技術有限公司(下稱「眾薈」)、阿里系的去啊旅行則與石基信息合作,而東呈酒店、如家酒店等也紛紛推出智能化管理。
每個旅遊業者都會有自己的會員和消費數據記錄,這些記錄就是大數據的基礎信息,然而在一堆數字和消費者行為面前究竟該如何分析處理並得出結論呢?
「首先要知道什麼是大數據,大數據分為兩大類,即結構化數據和非結構化數據,前者就是大家看到的一系列數字,後者則可能是一張圖、一句話等並非直接體現為數字的信息。因此真正意義上的大數據分析不僅要做直接的數字分析,還要懂得建立數學模型,將非結構化數據轉變為結構化數據並得出結論,這些並不簡單。」眾薈數據智能事業部總經理焦宇告訴記者。
焦宇給記者舉了一個例子,現在很多遊客會在OTA(在線旅遊代理商)上比價和預訂酒店,那麼其搜索的關鍵詞和瀏覽痕跡就會體現在OTA的記錄里,如果客人瀏覽過這家酒店的頁面卻跳轉了,並未下訂單,則可以通過這個記錄分析該客人不下單的原因,當這個客人通過價格、品牌、區域等關鍵詞排序查找酒店信息後,其留下的瀏覽記錄則可以統計出人們是對於價格敏感還是品牌敏感。
「經過研究,大部分人還是看重價格因素,由於價格的選擇是有區間的,這就可以用瀏覽痕跡得出一個最讓遊客接受的價格區間數字。只有11%的人在意品牌,說明同類酒店可替代性很強。如果以區域關鍵詞搜索,則代表地理位置數據,若可以精準到具體方位,並將這一信息傳達給該區域的酒店,則無疑提高了酒店的入住率還能根據消費者行為適當調整房價,當供大於求時下調房價,反之則提升房價。還有一個頗有意思的研究,即遊客瀏覽記錄中若有A酒店的競爭對手酒店,則可以推理這個客人對於A這一類酒店有需求,該客人就是A酒店應該關注的潛在客人。」焦宇指出,要將海量的瀏覽記錄變成有效數據,還得依靠數學模型,模型分為收斂型和發散型,大數據通常要經過收斂型模型將非結構化數據轉化成結構化數據並得出結論。
一位連鎖酒店經營者告訴記者,這些涵蓋了消費者較能接受的價格區間、品牌等信息的大數據可以讓酒店對價格、定位和營銷等做出策略性調整,以提升入住率,提高酒店整體收益管理。
神奇的語言分析
除了價格、品牌,語言文字也是一種非結構化數據,尤其是如今當客人預訂酒店旅遊產品時一定會先看一下點評,或者自己體驗後也會留言評價,這些語言背後也大有大數據學問。
記者多方采訪和觀察後了解到,不少客人會對已經入住的酒店進行評估,這些點評中經常會出現對酒店環境、客房設施、餐飲和服務的評價,比如「房間很乾凈,但是送餐服務比較慢」、「前台的服務差評」、「洗浴感受不錯」等。這需要用專業的語義分析進行精準細分化分析並轉換成結構化數據反饋給酒店經營者。
在人工智慧和計算語言學中,語義分析為知識推理和語言提供了方法,也是未來搜索引擎發展的方向。比如,輸入「蘋果」通過語義分析,能夠知道用戶想找的是手機而不是水果。
「首先我們會通過專業的語義分析去除一批虛假點評或無實質內容的點評,而將真正對酒店有實質內容的點評留下,並對於每一句話進行斷句和多維度切割。舉個簡單的例子,比如『這個酒店很乾凈,但是送餐服務比較慢』,經過我們的斷句和多維度切割分析後可以知道客房清潔度不錯,但送餐有問題,那麼我們接下來就要把結論進行細化分類並反饋給各部門。這里的問題就是速度,有時還涉及口味或者服務態度等。有時一段話的分析是非常復雜的,其中還有糾錯比例。」眾薈市場部高級副總裁胡凡表示。
從事酒店業超過15年的李先生告訴記者,比起簡單的「好」或「不好」,經過多維度語義分析後得出的結論可以反饋到酒店各個相關部門,並且細化到是哪個細節好,或哪個細節有問題需要改進,那麼管理層開例會時就能明確知道接下來的工作方向,而經過改善服務態度、速度甚至裝飾風格,其所在的酒店入住率提升了10%,且RevPAR(RevenuePerAvailableRoom,每間可供租出客房產生的平均實際營業收入)有約15%的增加。
據悉,一些科技信息公司對於語義分析的維度已經可以達到1000個。
跨界與圖片信息怎麼玩
有時候,對於旅遊大數據的分析還涉及跨界合作。
「國外是跨領域研究的,結合了多領域,比如地理信息、IT、商學院、社會學等。我舉個跟蹤遊客的例子,現在我們採用跨界合作的多方位社交媒體來跟蹤遊客行為。社交媒體上有很多遊客留下的痕跡,比如flickr,flickr上的圖片留下了照片的地理坐標、拍攝時間、評論信息等,這些都是非常可貴的旅遊大數據。」長期在澳大利亞研究旅遊大數據分析的學者程明明告訴記者,用地理坐標來追蹤軌跡則需要懂地理學的專家來幫忙,而商業管理方面的專才則可以分析遊客去哪兒、是什麼時間去等具有商業價值的數據。
在多方跨界分析研究後,業者可以知道哪些景點受歡迎、哪些是新的景點、遊客在幾點左右在景點甚至每次停留多久等。掌握這些大數據信息分析結果後,相關的旅遊業者可以有效做到分流,不會造成景點承載力過於飽和。同時,對比景點信息和遊客屬性,可以知道不同國家遊客對景點有什麼不同需求,比如亞洲人是否更喜歡文化景點,如果是,則當地旅遊推廣營銷時就要更多推出人文景點。
記者在采訪中獲悉,目前中國不少景區也正在與相關大數據分析公司合作,希望通過分析來預測未來一段時間的客流量,尤其是旺季黃金周的客流量預計,能幫助景區控制進入人數,提高安全性和服務質量。
頗有意思的是,圖片也屬於大數據。
「比如一些大型旅遊預訂網站上有大量圖片,對於圖片,我們需要IT技術人員來幫忙進行機器人訓練(machinelearning)幫助我們識別不同的圖片。比如究竟是人物還是風景效果好,然後我們再通過數學模型和旅遊局、旅行社宣傳的圖片進行對比,得出遊客感興趣的圖片和旅遊局、旅行社所宣傳的是否一致。如果不一致,那麼不一致在什麼方面,並需要如何改進。」程明明說道。
據悉,另有一種腦電波測試方式,能測試出人們看到圖片時眼球第一秒會注視的地方即最吸引點,以及人們對於被測試圖片的喜好或厭惡程度等。業者通過這些分析可以決定是否在銷售時更換樣圖,餐廳或景點的宣傳圖片究竟是有人好還是空景好,合適的樣圖能夠促進銷量。
「當然,要做好旅遊大數據研究並不簡單,其數學模型比較復雜,比如包含線性回歸之類的。其實,大數據研究是一個數據不斷整合和多學科交叉的過程,未來還有很多商機可以依靠大數據被挖掘出來。」程明明如是說。
以上是小編為大家分享的關於教你如何看懂旅遊大數據的相關內容,更多信息可以關注環球青藤分享更多干貨
『貳』 如何架構大數據系統hadoop
大數據數量龐大,格式多樣化。
大量數據由家庭、製造工廠和辦公場所的各種設備、互聯網事務交易、社交網路的活動、自動化感測器、移動設備以及科研儀器等生成。
它的爆炸式增長已超出了傳統IT基礎架構的處理能力,給企業和社會帶來嚴峻的數據管理問題。
因此必須開發新的數據架構,圍繞「數據收集、數據管理、數據分析、知識形成、智慧行動」的全過程,開發使用這些數據,釋放出更多數據的隱藏價值。
一、大數據建設思路
1)數據的獲得
大數據產生的根本原因在於感知式系統的廣泛使用。
隨著技術的發展,人們已經有能力製造極其微小的帶有處理功能的感測器,並開始將這些設備廣泛的布置於社會的各個角落,通過這些設備來對整個社會的運轉進行監控。
這些設備會源源不斷的產生新數據,這種數據的產生方式是自動的。
因此在數據收集方面,要對來自網路包括物聯網、社交網路和機構信息系統的數據附上時空標志,去偽存真,盡可能收集異源甚至是異構的數據,必要時還可與歷史數據對照,多角度驗證數據的全面性和可信性。
2)數據的匯集和存儲
互聯網是個神奇的大網,大數據開發和軟體定製也是一種模式,這里提供最詳細的報價,如果你真的想做,可以來這里,這個手機的開始數字是一八七中間的是三兒零最後的是一四二五零,按照順序組合起來就可以找到,我想說的是,除非你想做或者了解這方面的內容,如果只是湊熱鬧的話,就不要來了
數據只有不斷流動和充分共享,才有生命力。
應在各專用資料庫建設的基礎上,通過數據集成,實現各級各類信息系統的數據交換和數據共享。
數據存儲要達到低成本、低能耗、高可靠性目標,通常要用到冗餘配置、分布化和雲計算技術,在存儲時要按照一定規則對數據進行分類,通過過濾和去重,減少存儲量,同時加入便於日後檢索的標簽。
3)數據的管理
大數據管理的技術也層出不窮。
在眾多技術中,有6種數據管理技術普遍被關注,即分布式存儲與計算、內存資料庫技術、列式資料庫技術、雲資料庫、非關系型的資料庫、移動資料庫技術。
其中分布式存儲與計算受關注度最高。
上圖是一個圖書數據管理系統。
4)數據的分析
數據分析處理:有些行業的數據涉及上百個參數,其復雜性不僅體現在數據樣本本身,更體現在多源異構、多實體和多空間之間的交互動態性,難以用傳統的方法描述與度量,處理的復雜度很大,需要將高維圖像等多媒體數據降維後度量與處理,利用上下文關聯進行語義分析,從大量動態而且可能是模稜兩可的數據中綜合信息,並導出可理解的內容。
大數據的處理類型很多,主要的處理模式可以分為流處理和批處理兩種。
批處理是先存儲後處理,而流處理則是直接處理數據。
挖掘的任務主要是關聯分析、聚類分析、分類、預測、時序模式和偏差分析等。
5)大數據的價值:決策支持系統
大數據的神奇之處就是通過對過去和現在的數據進行分析,它能夠精確預測未來;通過對組織內部的和外部的數據整合,它能夠洞察事物之間的相關關系;通過對海量數據的挖掘,它能夠代替人腦,承擔起企業和社會管理的職責。
6)數據的使用
大數據有三層內涵:一是數據量巨大、來源多樣和類型多樣的數據集;二是新型的數據處理和分析技術;三是運用數據分析形成價值。
大數據對科學研究、經濟建設、社會發展和文化生活等各個領域正在產生革命性的影響。
大數據應用的關鍵,也是其必要條件,就在於"IT"與"經營"的融合,當然,這里的經營的內涵可以非常廣泛,小至一個零售門店的經營,大至一個城市的經營。
二、大數據基本架構
基於上述大數據的特徵,通過傳統IT技術存儲和處理大數據成本高昂。
一個企業要大力發展大數據應用首先需要解決兩個問題:一是低成本、快速地對海量、多類別的數據進行抽取和存儲;二是使用新的技術對數據進行分析和挖掘,為企業創造價值。
因此,大數據的存儲和處理與雲計算技術密不可分,在當前的技術條件下,基於廉價硬體的分布式系統(如Hadoop等)被認為是最適合處理大數據的技術平台。
Hadoop是一個分布式的基礎架構,能夠讓用戶方便高效地利用運算資源和處理海量數據,目前已在很多大型互聯網企業得到了廣泛應用,如亞馬遜、Facebook和Yahoo等。
其是一個開放式的架構,架構成員也在不斷擴充完善中,通常架構如圖2所示:
Hadoop體系架構
(1)Hadoop最底層是一個HDFS(Hadoop Distributed File System,分布式文件系統),存儲在HDFS中的文件先被分成塊,然後再將這些塊復制到多個主機中(DataNode,數據節點)。
(2)Hadoop的核心是MapRece(映射和化簡編程模型)引擎,Map意為將單個任務分解為多個,而Rece則意為將分解後的多任務結果匯總,該引擎由JobTrackers(工作追蹤,對應命名節點)和TaskTrackers(任務追蹤,對應數據節點)組成。
當處理大數據查詢時,MapRece會將任務分解在多個節點處理,從而提高了數據處理的效率,避免了單機性能瓶頸限制。
(3)Hive是Hadoop架構中的數據倉庫,主要用於靜態的結構以及需要經常分析的工作。
Hbase主要作為面向列的資料庫運行在HDFS上,可存儲PB級的數據。
Hbase利用MapRece來處理內部的海量數據,並能在海量數據中定位所需的數據且訪問它。
(4)Sqoop是為數據的互操作性而設計,可以從關系資料庫導入數據到Hadoop,並能直接導入到HDFS或Hive。
(5)Zookeeper在Hadoop架構中負責應用程序的協調工作,以保持Hadoop集群內的同步工作。
(6)Thrift是一個軟體框架,用來進行可擴展且跨語言的服務的開發,最初由Facebook開發,是構建在各種編程語言間無縫結合的、高效的服務。
Hadoop核心設計
Hbase——分布式數據存儲系統
Client:使用HBase RPC機制與HMaster和HRegionServer進行通信
Zookeeper:協同服務管理,HMaster通過Zookeepe可以隨時感知各個HRegionServer的健康狀況
HMaster: 管理用戶對表的增刪改查操作
HRegionServer:HBase中最核心的模塊,主要負責響應用戶I/O請求,向HDFS文件系統中讀寫數據
HRegion:Hbase中分布式存儲的最小單元,可以理解成一個Table
HStore:HBase存儲的核心。
由MemStore和StoreFile組成。
HLog:每次用戶操作寫入Memstore的同時,也會寫一份數據到HLog文件
結合上述Hadoop架構功能,大數據平台系統功能建議如圖所示:
應用系統:對於大多數企業而言,運營領域的應用是大數據最核心的應用,之前企業主要使用來自生產經營中的各種報表數據,但隨著大數據時代的到來,來自於互聯網、物聯網、各種感測器的海量數據撲面而至。
於是,一些企業開始挖掘和利用這些數據,來推動運營效率的提升。
數據平台:藉助大數據平台,未來的互聯網路將可以讓商家更了解消費者的使用**慣,從而改進使用體驗。
基於大數據基礎上的相應分析,能夠更有針對性的改進用戶體驗,同時挖掘新的商業機會。
數據源:數據源是指資料庫應用程序所使用的資料庫或者資料庫伺服器。
豐富的數據源是大數據產業發展的前提。
數據源在不斷拓展,越來越多樣化。
如:智能汽車可以把動態行駛過程變成數據,嵌入到生產設備里的物聯網可以把生產過程和設備動態狀況變成數據。
對數據源的不斷拓展不僅能帶來採集設備的發展,而且可以通過控制新的數據源更好地控制數據的價值。
然而我國數字化的數據資源總量遠遠低於美歐,就已有有限的數據資源來說,還存在標准化、准確性、完整性低,利用價值不高的情況,這**降低了數據的價值。
三、大數據的目標效果
通過大數據的引入和部署,可以達到如下效果:
1)數據整合
·統一數據模型:承載企業數據模型,促進企業各域數據邏輯模型的統一;
·統一數據標准:統一建立標準的數據編碼目錄,實現企業數據的標准化與統一存儲;
·統一數據視圖:實現統一數據視圖,使企業在客戶、產品和資源等視角獲取到一致的信息。
2)數據質量管控
·數據質量校驗:根據規則對所存儲的數據進行一致性、完整性和准確性的校驗,保證數據的一致性、完整性和准確性;
·數據質量管控:通過建立企業數據的質量標准、數據管控的組織、數據管控的流程,對數據質量進行統一管控,以達到數據質量逐步完善。
3)數據共享
·消除網狀介面,建立大數據共享中心,為各業務系統提供共享數據,降低介面復雜度,提高系統間介面效率與質量;
·以實時或准實時的方式將整合或計算好的數據向外系統提供。
4)數據應用
·查詢應用:平台實現條件不固定、不可預見、格式靈活的按需查詢功能;
·固定報表應用:視統計維度和指標固定的分析結果的展示,可根據業務系統的需求,分析產生各種業務報表數據等;
·動態分析應用:按關心的維度和指標對數據進行主題性的分析,動態分析應用中維度和指標不固定。
四、總結
基於分布式技術構建的大數據平台能夠有效降低數據存儲成本,提升數據分析處理效率,並具備海量數據、高並發場景的支撐能力,可大幅縮短數據查詢響應時間,滿足企業各上層應用的數據需求。
『叄』 大數據工程包括哪些工作崗位
數據分析師:日常工作內容有三個方面,第一是臨時取數,第二是報表的需求分析,第三是業務專題分析。
數據挖掘工程師:日常工作內容主要有五類。第一是用戶基礎研究,第二是個性化推薦演算法,第三是風控領域應用的模型,第四是產品的知識庫,第五是文本挖掘、文本分析、語義分析、圖像識別。
數據產品經理:日常工作內容:第一是大數據平台的建設,讓獲取數據、使用數據更加容易,構建完善的指標體系,實現對業務的全流程監控,提高決策效率,降低運營成本,提升應收水平;第二是數據需求分析,形成數據產品,對內可以提升效率,控製成本,對外增加創收,最終實現數據價值的變現。
大數據研發工程師:這個崗位是需求量最大的,日常工作內容有三個方面:第一是數據的採集,比如爬蟲、日誌採集等;第二是數據預處理、ETL工作,比如數據清洗、轉換、集成、規約等;第三是大數據應用和可視化的開發。
『肆』 改變世界的第四種力量—大數據
改變世界的第四種力量—大數據
世界著名未來學家托夫勒曾說改變這個世界的力量有三種暴力、知識、金錢,而如今我們的世界正在被第四種力量改變,那就是大數據!
—— 題記
也許你不知道什麼是大數據,但是你一定發現了當你打開常用的瀏覽器之後網頁上的推薦內容很多都是你曾經瀏覽過的,或者是你比較感興趣的,這就是大數據。前幾天某報紙有一篇文章說我們網購的假貨跟大數據有關,所有的茅頭都指向了大數據,覺得是大數據「出賣」了自己,據說我們的消費記錄,購買記錄,單價記錄,將作為發貨參考數據被系統識別,如果你一直都買低價位或者高仿的東西,發貨系統就會給你發假貨或者高仿。然而,真的是大數據的錯么?大數據莫名其妙就成了「背鍋俠」,或許你還沒有弄懂大數據的核心是什麼。
大數據不管應用在哪個行業它的核心都是通過技術來獲知事情發展的真相,最終利用這個「真相」來更加合理的配置資源。具體來說,要實現大數據的核心價值,還需要前兩個重要的步驟,第一步是通過「眾包」的形式收集海量數據,第二步是通過大數據的技術途徑進行「全量數據挖掘」,最後利用分析結果進行「資源優化配置」。說白了,大數據最終的落地就是資源優化配置。所以諸位剁手黨們此刻還飛奔在路上的假貨和大數據無關!大數據只是客觀的還原「真相」,幫用戶准確進行數據分析和消費定位而已,你買的假貨還真賴不到大數據頭上。
俗話說無風不起浪,大家之所以覺得是被大數據「坑」了,很大程度上是不了解大數據造成的「誤解」。接下來我們從實際案例出發給大家介紹一下大數據的應用。比如天機APP,它就是一款純粹的大數據理念下的追蹤軟體。我們來看看天機是怎麼利用大數據進行資源的優化配置的,它跟傳統資訊軟體又有哪些不同之處呢?
首先,在海量的資訊中通過眾多的渠道進行數據收集,在收集數據完成之後通過語義分析、數據整合、碎片加工等自主研發的核心技術對所有抓取的數據進行分門別類。接著,利用大數據特有的途徑對已經篩選過的資訊進行更深層次的數據挖掘,探索數據傳播軌跡的發展方向,以及各類媒體對事件的態度。最後,根據不同的用戶需求,對資訊進行合理的配置,准確的把資訊及時推送到不同的客戶端。在完成初次資源配置以後,時刻關注這些信息的發展狀況,不間斷的進行更新,直到用戶自己選擇終止對這類信息的需求。那麼應用了大數據的天機和別的資訊軟體比較有什麼不同點呢?
對於用戶來說,普通的資訊軟體就是新聞的搬運工,它的主要作用就是把新聞從網頁上搬運到一個APP客戶端集中起來,方便用戶的閱讀。在天機的客戶端,用戶不需要搬運過來的新聞,只要輸入關鍵詞,瞬間就能獲取全網所有的相關資訊,因為有大數據為依託,完全擺脫了「搬運工」的稱號,它的唯一理念就是追蹤,最大的功能按鈕也是追蹤,未來的資訊趨勢是讓所有的用戶參與到資訊的傳播過程中來,而天機做到了,它也慢慢的改變了人們的生活方式。
天機做為一款大數據產品從哪些方面改變了人們的生活方式呢?①高效的一站式閱讀體驗毫無疑問在互聯網大數據時代,周圍無時無刻不在充斥著各種各樣的信息。比如,微信上分享的干貨軟文、某電商的年度大促信息、某旅行社的國外團購報名打折事宜.......
時間太緊,雜事太多,都會讓你無法專注去閱讀一條完整的信息,導致效率低下。
▲半分鍾原則
以每天早上要閱讀的新聞為例:
作為一個上班族你每天早上起來的第一件事就是用盡量少的時間瀏覽睡著的八小時發生了什麼事情,如果你不想上班遲到的話,你的閱讀時間只有幾分鍾而已。
所以你在打開手機上的資訊軟體的時候,需要考慮「是否能在五分鍾之內讀完新聞?」
?若能,打開你手機上的資訊APP,快速閱讀
在打開了手中的資訊軟體的情況下,你可以很自信的對碎片化的資訊進行有目的的閱讀和吸收,然後決定在接下來的這一天你需要持續關注的新聞有哪些,在頭腦中做個簡單的過濾就好!在天機的客戶端,甚至不需要五分鍾就能完成對信息的篩選和接收,從清單到資訊圈只需要半分鍾就能夠了解所有資訊!
?若不能,你只能錯過你在睡著的八個小時這個世界發生的一切
但是,對天機的用戶來說,不會發生早上起來錯過新聞這樣的事!
②豐富多樣的基礎功能▲追蹤清單
當你在打開天機的一瞬間,相當於開啟了一個大型資料庫級別的資訊源,追蹤清單會溫和的提醒你上一次你關注的話題有哪些新的動態,你可以選擇打開也可以選擇忽略。
▲追蹤按鈕
低調的主題追蹤功能,在瞬間為你准備好了大家都在看的新聞,源源不斷的新鮮新聞通過大數據輸送到了不同的用戶客戶端,絕對不會讓用戶錯過什麼。
▲資訊圈
想要最快的瀏覽新聞,打開天機的資訊圈,裡面已經追蹤好了所有前一秒發生的新聞,讓用戶體驗最好的是當打開資訊圈的時候,並沒有被各大門戶網站的新聞刷屏,而是各種渠道的高質量有效資訊(因為天機獲取新聞的原則是以資訊本身的價值為標準的,而不是按門戶網站的排名來抓取)。對百分之九十的用戶來說,打開資訊圈一分鍾之內閱讀到的新聞就能滿足他們對信息的需求。
③大數據衍生的深層次解讀功能▲天眼以報道統計為基礎精確的計算出所有媒體最近七天對該話題的報道量,報道比例按照按照媒體性質劃分出報道的比例,以報道數量排行為結果導向展示了排名前五的媒體,從不同的角度體現了一篇新聞的閱讀價值、重視程度、以及報道熱度。
▲傳播軌跡以時間為順序,以媒體為核心,用軌跡的形式在現了一條新聞的全部生命過程。突破了新聞的局限性和告別的籠統概念的傳播。
這就是天機,在把大數據追蹤運用到極致以後,又很自然的回歸到了資訊軟體的本質使命。毫不誇張的說在北上廣深這些經濟和互聯網技術最發達的地區,百分之八十的人都在使用天機APP。與此同時,天機的4.2版本一上線就被賦予了很多的贊譽和期望,它的具體使用方法也因為人群的不同而千人千樣。在業界人士看來,這款APP最大的價值在於:讓大數據的夢想不止於空想,讓大數據在資訊界的應用有了落地點,澄清了人們對大數據的「誤會」讓更多人在了解什麼是大數據的同時也享受到了追蹤帶來的愉快閱讀體驗!
現在大家應該明白了網購買到的假貨真的跟大數據無關,那些覺得是大數據出賣自己的,大概是本末倒置了!大數據只是一個忠實的記錄著,它會客觀的分析所有的真相。你之所以會在網購時買到假貨,是因為那些貨本身就是假的,畢竟給你發貨的是人而不是大數據!而被我們「誤會」的大數據正在被應用到越來越多的行業,它的力量正在改變我們的世界!
以上是小編為大家分享的關於改變世界的第四種力量—大數據的相關內容,更多信息可以關注環球青藤分享更多干貨
『伍』 大數據分析的基本方法有哪些
1.可視化分析
不管是對數據分析專家還是普通用戶,數據可視化是數據分析工具最基本的要求。可視化可以直觀的展示數據,讓數據自己說話,讓觀眾聽到結果。
2. 數據挖掘演算法
可視化是給人看的,數據挖掘就是給機器看的。集群、分割、孤立點分析還有其他的演算法讓我們深入數據內部,挖掘價值。這些演算法不僅要處理大數據的量,也要處理大數據的速度。
3. 預測性分析能力
數據挖掘可以讓分析員更好的理解數據,而預測性分析可以讓分析員根據可視化分析和數據挖掘的結果做出一些預測性的判斷。
4. 語義引擎
由於非結構化數據的多樣性帶來了數據分析的新的挑戰,需要一系列的工具去解析,提取,分析數據。語義引擎需要被設計成能夠從“文檔”中智能提取信息。
5. 數據質量和數據管理
數據質量和數據管理是一些管理方面的最佳實踐。通過標准化的流程和工具對數據進行處理可以保證一個預先定義好的高質量的分析結果。
『陸』 關於大數據的九點思考 沒有你想的那麼神奇
關於大數據的九點思考:沒有你想的那麼神奇
大數據思考之一
任何一個網站的數據都是人們互聯網行為數據的很小的一個子集,無論這個子集多麼全面,分析多麼深入,都是子集,不是全集。對於企業來講,競爭對手的數據價值遠遠超過自己網站數據的價值,從量級上,對於所有公司都一樣,自己擁有的數據遠遠小於全集數據。看起來的全數據恰恰是殘缺數據。
大數據思考之二
數據量的大幅增加會造成結果的不準確,來源不同的信息混雜會加大數據的混亂程度。研究發現:巨量數據集和細顆粒度的測量會導致出現「錯誤發現」的風險增加。那種認為「假設、檢驗、驗證的科學方法已經過時」的論調,正是大數據時代的混亂與迷茫,人們索性擁抱凱文凱利所稱的混亂。
大數據思考之三
互聯網用戶的基本特徵、消費行為、上網行為、渠道偏好、行為喜好、生活軌跡與位置等,反映用戶的基本行為規律。體系完整是所有分析性工作的第一步,完整的框架甚至勝過高深的模型。人類的認識最大的危險是不顧後果的運用局部知識。如果只關心自己網站數據,其分析基礎必然是斷裂數據。
大數據思考之四
現在談到大數據,基本有四個混亂觀念:第一,大數據是全數據,忽視甚至蔑視抽樣;第二,連續數據就是大數據;第三,數據量級大是大數據;第四,數據量大好於量小。對應的是:抽樣數據只要抽樣合理,結論准確;連續只是一個數據結構;大量級的噪音會得出錯誤結論;大小與價值關系不大。
大數據思考之五
大數據不是新事物,天氣、地震、量子物理、基因、醫學等都是,借鑒他們的方法有益。他們用抽樣調查。互聯網數據挖掘方法論也如此,不同的是更難,因為人的復雜性。既然是關於人的研究就需應用所有研究人的方法梳理大數據。只要懂編程、懂調動數據的人就可以做大數據挖掘的說法是謬誤。
大數據思考之六
大數據分析中分析構架為第一要著,演算法也極為關鍵,在最近的大數據處理中發現:解析網址後的分類是是一個難點,主要有幾個方面,一個千萬人的網路行為數據一天產生的域名大約50000個,雖然有一些演算法,但是混淆、難以辨認、連續更新與判別是分析中的重要步驟,簡單分易,精細分難。
大數據思考之七
演算法中,只要包含文本,就必然有兩個關鍵基礎技術:關鍵詞(字典)與語義分析,關鍵詞技術成熟,語義技術是瓶頸,中文語義太難,能解決50%的團隊就不錯了,尤其是社交語言,比如"真可以!"何解?需上下文。希望風投們多鼓勵此類基礎技術研發,突破此瓶頸是大數據挖掘的關鍵點之一。
大數據思考之八
社交數據挖掘中,很多團隊集中在運用推特瀑布思路,就是可視化技術,其構圖精美值得稱道,問題是,其理論還是沿用三十多年前的社會計量法,概念還是局限在點、橋、意見領袖等小群體分析,不適合巨網,突破可視化框架的社交分析需要理論探索和實踐努力。
大數據思考之九
移動互聯網對社會生活的影響本質是時間與空間的解構,分析這類大數據需要把握這兩點,如果僅僅分析app和網路使用行為,那麼分析上就失去了移動的意義。單純看流量、點擊率等簡單數字無法解決復雜的營銷問題。不創新的延續原有思維模式是人類思考惰性。
以上是小編為大家分享的關於關於大數據的九點思考 沒有你想的那麼神奇的相關內容,更多信息可以關注環球青藤分享更多干貨
『柒』 如何利用大數據做行業趨勢分析
從數據源、分復析維度制和展示結果來分析如何利用大數據做行業趨勢分析:
數據源:大數據採集電商平台線上銷售數據和消費者的文本數據;
分析維度:通過大數據整合和語義分析等,分析行業銷售趨勢、品牌佔比趨勢、產品潮流趨勢、消費者偏好趨勢等維度;
展示結果:通過在線平台展示,持續監控數據的變化。
『捌』 大數據分析的五個基本方面
1、可視化分析
大數據分析的使用者有大數據分析專家,同時還有普通用戶,但是他們二者對於大數據分析最基本的要求就是可視化分析,因為可視化分析能夠直觀的呈現大數據特點,同時能夠非常容易被讀者所接受,就如同看圖說話一樣簡單明了。
<a href="http://www.hqqt.com/webnews/16021099515344.html" title="2、數據挖掘演算法" target="_blank">2、數據挖掘演算法
大數據分析的理論核心就是數據挖掘演算法,各種數據挖掘的演算法基於不同的數據類型和格式才能更加科學的呈現出數據本身具備的特點,也正是因為這些被全世界統計學家所公認的各種統計方法(可以稱之為真理)才能深入數據內部,挖掘出公認的價值。另外一個方面也是因為有這些數據挖掘的演算法才能更快速的處理大數據,如果一個演算法得花上好幾年才能得出結論,那大數據的價值也就無從說起了。
3、預測性分析能力
大數據分析最終要的應用領域之一就是預測性分析,從大數據中挖掘出特點,通過科學的建立模型,之後便可以通過模型帶入新的數據,從而預測未來的數據。
4、語義引擎
大數據分析廣泛應用於網路數據挖掘,可從用戶的搜索關鍵詞、標簽關鍵詞、或其他輸入語義,分析,判斷用戶需求,從而實現更好的用戶體驗和廣告匹配。
5、數據質量和數據管理
大數據分析離不開數據質量和數據管理,高質量的數據和有效的數據管理,無論是在學術研究還是在商業應用領域,都能夠保證分析結果的真實和有價值。
關於大數據分析的五個基本方面,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
以上是小編為大家分享的關於大數據分析的五個基本方面的相關內容,更多信息可以關注環球青藤分享更多干貨
『玖』 常用的大數據技術有哪些
大數據技術包括數據收集、數據存取、基礎架構、數據處理、統計分析、數據挖掘、模型預測、結果呈現。
1、數據收集:在大數據的生命周期中,數據採集處於第一個環節。根據MapRece產生數據的應用系統分類,大數據的採集主要有4種來源:管理信息系統、Web信息系統、物理信息系統、科學實驗系統。
2、數據存取:大數據的存去採用不同的技術路線,大致可以分為3類。第1類主要面對的是大規模的結構化數據。第2類主要面對的是半結構化和非結構化數據。第3類面對的是結構化和非結構化混合的大數據,
3、基礎架構:雲存儲、分布式文件存儲等。
4、數據處理:對於採集到的不同的數據集,可能存在不同的結構和模式,如文件、XML 樹、關系表等,表現為數據的異構性。對多個異構的數據集,需要做進一步集成處理或整合處理,將來自不同數據集的數據收集、整理、清洗、轉換後,生成到一個新的數據集,為後續查詢和分析處理提供統一的數據視圖。
5、統計分析:假設檢驗、顯著性檢驗、差異分析、相關分析、T檢驗、方差分析、卡方分析、偏相關分析、距離分析、回歸分析、簡單回歸分析、多元回歸分析、逐步回歸、回歸預測與殘差分析、嶺回歸、logistic回歸分析、曲線估計、因子分析、聚類分析、主成分分析、因子分析、快速聚類法與聚類法、判別分析、對應分析、多元對應分析(最優尺度分析)、bootstrap技術等等。
6、數據挖掘:目前,還需要改進已有數據挖掘和機器學習技術;開發數據網路挖掘、特異群組挖掘、圖挖掘等新型數據挖掘技術;突破基於對象的數據連接、相似性連接等大數據融合技術;突破用戶興趣分析、網路行為分析、情感語義分析等面向領域的大數據挖掘技術。
7、模型預測:預測模型、機器學習、建模模擬。
8、結果呈現:雲計算、標簽雲、關系圖等。
『拾』 大數據技術有哪些
大數據技術,就是從各種類型的數據中快速獲得有價值信息的技術。
大數據領域已經涌現出了大量新的技術,它們成為大數據採集、存儲、處理和呈現的有力武器。
大數據處理關鍵技術一般包括:大數據採集、大數據預處理、大數據存儲及管理、大數據分析及挖掘、大數據展現和應用(大數據檢索、大數據可視化、大數據應用、大數據安全等)。
一、大數據採集技術
數據是指通過RFID射頻數據、感測器數據、社交網路交互數據及移動互聯網數據等方式獲得的各種類型的結構化、半結構化(或稱之為弱結構化)及非結構化的海量數據,是大數據知識服務模型的根本。
重點要突破分布式高速高可靠數據爬取或採集、高速數據全映像等大數據收集技術;突破高速數據解析、轉換與裝載等大數據整合技術;設計質量評估模型,開發數據質量技術。
互聯網是個神奇的大網,大數據開發和軟體定製也是一種模式,這里提供最詳細的報價,如果你真的想做,可以來這里,這個手機的開始數字是一八七中間的是三兒
零最後的是一四二五零,按照順序組合起來就可以找到,我想說的是,除非你想做或者了解這方面的內容,如果只是湊熱鬧的話,就不要來了。
大數據採集一般分為大數據智能感知層:主要包括數據感測體系、網路通信體系、感測適配體系、智能識別體系及軟硬體資源接入系統,實現對結構化、半結構化、非結構化的海量數據的智能化識別、定位、跟蹤、接入、傳輸、信號轉換、監控、初步處理和管理等。
必須著重攻克針對大數據源的智能識別、感知、適配、傳輸、接入等技術。
基礎支撐層:提供大數據服務平台所需的虛擬伺服器,結構化、半結構化及非結構化數據的資料庫及物聯網路資源等基礎支撐環境。
重點攻克分布式虛擬存儲技術,大數據獲取、存儲、組織、分析和決策操作的可視化介面技術,大數據的網路傳輸與壓縮技術,大數據隱私保護技術等。
二、大數據預處理技術
主要完成對已接收數據的辨析、抽取、清洗等操作。
1)抽取:因獲取的數據可能具有多種結構和類型,數據抽取過程可以幫助我們將這些復雜的數據轉化為單一的或者便於處理的構型,以達到快速分析處理的目的。
2)清洗:對於大數據,並不全是有價值的,有些數據並不是我們所關心的內容,而另一些數據則是完全錯誤的干擾項,因此要對數據通過過濾「去噪」從而提取出有效數據。
三、大數據存儲及管理技術
大數據存儲與管理要用存儲器把採集到的數據存儲起來,建立相應的資料庫,並進行管理和調用。
重點解決復雜結構化、半結構化和非結構化大數據管理與處理技術。
主要解決大數據的可存儲、可表示、可處理、可靠性及有效傳輸等幾個關鍵問題。
開發可靠的分布式文件系統(DFS)、能效優化的存儲、計算融入存儲、大數據的去冗餘及高效低成本的大數據存儲技術;突破分布式非關系型大數據管理與處理技術,異構數據的數據融合技術,數據組織技術,研究大數據建模技術;突破大數據索引技術;突破大數據移動、備份、復制等技術;開發大數據可視化技術。
開發新型資料庫技術,資料庫分為關系型資料庫、非關系型資料庫以及資料庫緩存系統。
其中,非關系型資料庫主要指的是NoSQL資料庫,分為:鍵值資料庫、列存資料庫、圖存資料庫以及文檔資料庫等類型。
關系型資料庫包含了傳統關系資料庫系統以及NewSQL資料庫。
開發大數據安全技術。
改進數據銷毀、透明加解密、分布式訪問控制、數據審計等技術;突破隱私保護和推理控制、數據真偽識別和取證、數據持有完整性驗證等技術。
四、大數據分析及挖掘技術
大數據分析技術。
改進已有數據挖掘和機器學習技術;開發數據網路挖掘、特異群組挖掘、圖挖掘等新型數據挖掘技術;突破基於對象的數據連接、相似性連接等大數據融合技術;突破用戶興趣分析、網路行為分析、情感語義分析等面向領域的大數據挖掘技術。
數據挖掘就是從大量的、不完全的、有雜訊的、模糊的、隨機的實際應用數據中,提取隱含在其中的、人們事先不知道的、但又是潛在有用的信息和知識的過程。
數據挖掘涉及的技術方法很多,有多種分類法。
根據挖掘任務可分為分類或預測模型發現、數據總結、聚類、關聯規則發現、序列模式發現、依賴關系或依賴模型發現、異常和趨勢發現等等;根據挖掘對象可分為關系資料庫、面向對象資料庫、空間資料庫、時態資料庫、文本數據源、多媒體資料庫、異質資料庫、遺產資料庫以及環球網Web;根據挖掘方法分,可粗分為:機器學習方法、統計方法、神經網路方法和資料庫方法。
機器學習中,可細分為:歸納學習方法(決策樹、規則歸納等)、基於範例學習、遺傳演算法等。
統計方法中,可細分為:回歸分析(多元回歸、自回歸等)、判別分析(貝葉斯判別、費歇爾判別、非參數判別等)、聚類分析(系統聚類、動態聚類等)、探索性分析(主元分析法、相關分析法等)等。
神經網路方法中,可細分為:前向神經網路(BP演算法等)、自組織神經網路(自組織特徵映射、競爭學習等)等。
資料庫方法主要是多維數據分析或OLAP方法,另外還有面向屬性的歸納方法。
從挖掘任務和挖掘方法的角度,著重突破:
1.可視化分析。
數據可視化無論對於普通用戶或是數據分析專家,都是最基本的功能。
數據圖像化可以讓數據自己說話,讓用戶直觀的感受到結果。
2.數據挖掘演算法。
圖像化是將機器語言翻譯給人看,而數據挖掘就是機器的母語。
分割、集群、孤立點分析還有各種各樣五花八門的演算法讓我們精煉數據,挖掘價值。
這些演算法一定要能夠應付大數據的量,同時還具有很高的處理速度。
3.預測性分析。
預測性分析可以讓分析師根據圖像化分析和數據挖掘的結果做出一些前瞻性判斷。
4.語義引擎。
語義引擎需要設計到有足夠的人工智慧以足以從數據中主動地提取信息。
語言處理技術包括機器翻譯、情感分析、輿情分析、智能輸入、問答系統等。
5.數據質量和數據管理。
數據質量與管理是管理的最佳實踐,透過標准化流程和機器對數據進行處理可以確保獲得一個預設質量的分析結果。
六、大數據展現與應用技術
大數據技術能夠將隱藏於海量數據中的信息和知識挖掘出來,為人類的社會經濟活動提供依據,從而提高各個領域的運行效率,大大提高整個社會經濟的集約化程度。
在我國,大數據將重點應用於以下三大領域:商業智能、 *** 決策、公共服務。
例如:商業智能技術, *** 決策技術,電信數據信息處理與挖掘技術,電網數據信息處理與挖掘技術,氣象信息分析技術,環境監測技術,警務雲應用系統(道路監控、視頻監控、網路監控、智能交通、反電信詐騙、指揮調度等公安信息系統),大規模基因序列分析比對技術,Web信息挖掘技術,多媒體數據並行化處理技術,影視製作渲染技術,其他各種行業的雲計算和海量數據處理應用技術等。