導航:首頁 > 網路數據 > 大數據平台規劃方案

大數據平台規劃方案

發布時間:2023-03-13 04:15:49

⑴ 如何做好銀行金融大數據治理平台建設

大數據、雲計算、互聯網等技術,將人類帶入了一個以PB為單位的大規模生產、分享和應用數據的新時代。當治理的對象發生變化時,治理體系也應進行改進以適應大數據的發展變化。
(1)完善數據管控相關標准,提升相關系統控制能力
大數據時代,銀行數據除了從傳統的客戶、協議、賬戶等結構化數據外,已經逐步擴展到非結構化數據的存儲管理及應用,因此需從數據標准、數據模型、元數據、數據質量、數據生命周期等方面依據非結構化數據的特點,補充相關治理管控標准,並通過相應的管控系統實現控制,確保非結構化數據得到有效的管控和應用。
(2)利用大數據技術提升數據集成及共享能力
海量數據給銀行數據治理帶來挑戰,但也是一種機遇,利用大數據技術,可使數據治理的方法和手段更加豐富,數據價值可以獲得更大的發揮。
一方面,採用分布式計算等大數據技術,構建開放、高效、異構、彈性的大數據平台,實現「全渠道、全客戶、全產品」信息的綜合分析與快速共享,提升客戶拓展、風險管控和創新營銷能力。
另一方面,利用大數據技術,重點完善補充銀行業務以外的其它基礎信息(如行外政府部門、第三方合作機構等各類有價值的數據),並按照統一的客戶標准進行客戶信息整合,形成更加完善的客戶視圖;通過大數據技術實現「數據地圖」等可視化服務,提升數據資產易用性;通過元數據的統一管理和分析,提供信息檢索、指標靈活定製等數據服務,提升數據資產的一致性和可用性。

億信華辰在數據治理領域也持續深耕,從數據質量管理平台、元數據管理平台,到發布智能數據治理平台-睿治,實現了數據治理全場景覆蓋,包含九大核心模塊:元數據、數據標准、數據質量、主數據、數據資產、數據安全、數據交換、數據處理、數據生命周期等,所有模塊可自由組合,並支持本地或雲上使用,全面滿足客戶各類治理需求。

⑵ 怎樣搭建企業大數據平台

步驟一:開展大數據咨詢


規劃合理的統籌規劃與科學的頂層設計是大數據建設和應用的基礎。通過大數據咨詢規劃服務,可以幫助企業明晰大數據建設的發展目標、重點任務和藍圖架構,並將藍圖架構的實現分解為可操作、可落地的實施路徑和行動計劃,有效指導企業大數據戰略的落地實施。


步驟二:強化組織制度保障


企業信息化領導小組是企業大數據建設的強有力保障。企業需要從項目啟動前就開始籌備組建以高層領導為核心的企業信息化領導小組。除了高層領導,還充分調動業務部門積極性,組織的執行層面由業務部門和IT部門共同組建,並確立決策層、管理層和執行層三級的項目組織機構,每個小組各司其職,完成項目的具體執行工作。


步驟三:建設企業大數據平台


基於大數據平台咨詢規劃的成果,進行大數據的建設和實施。由於大數據技術的復雜性,因此企業級大數據平台的建設不是一蹴而就,需循序漸進,分步實施,是一個持續迭代的工程,需本著開放、平等、協作、分享的互聯網精神,構建大數據平台生態圈,形成相互協同、相互促進的良好的態勢。


步驟四:進行大數據挖掘與分析


在企業級大數據平台的基礎上,進行大數據的挖掘與分析。隨著時代的發展,大數據挖掘與分析也會逐漸成為大數據技術的核心。大數據的價值體現在對大規模數據集合的智能處理方面,進而在大規模的數據中獲取有用的信息,要想逐步實現這個功能,就必須對數據進行分析和挖掘,通過進行數據分析得到的結果,應用於企業經營管理的各個領域。


步驟五:利用大數據進行輔助決策


通過大數據的分析,為企業領導提供輔助決策。利用大數據決策將成為企業決策的必然,系統通過提供一個開放的、動態的、以全方位數據深度融合為基礎的輔助決策環境,在適當的時機、以適當的方式提供指標、演算法、模型、數據、知識等各種決策資源,供決策者選擇,最大程度幫助企業決策者實現數據驅動的科學決策。


關於怎樣搭建企業大數據平台,青藤小編就和您分享到這里了。如果你對大數據工程有濃厚的興趣,希望這篇文章能夠對你有所幫助。如果您還想了解更多數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。

⑶ 使用比較多的大數據分析解決方案有哪些

大數據分析解決方案分為數據採集、數據存儲、數據計算或處理、數據挖掘、數版據展現五個方面。權

數據採集:需要對於海量數據、實時數據的採集能力,這是數據利用的第一步。
數據存儲:對應大數據特點,需要大容量、高容錯、高效率的存儲能力,這是數據利用的基礎。
數據計算:需要強大、廉價、快速的數據處理貨計算能力,強大對應大數據的量大、類型多,廉價對應大數據的價值密度低,快速對應大數據的速度快,這是大數據能夠發展的關鍵。
數據挖掘:要能夠全形度、多方位的立體分析挖掘數據價值,應用好數據挖掘才能將數據轉化為價值,這是數據利用的核心。
數據展現:多途徑、直觀、豐富的數據展現形式是數據的外在形象,這是數據應用的亮點,是能夠得到用戶認可的窗口。
以上是對於大數據平台需要解決的問題,必須具備的能力,數據提出的要求。

⑷ 高校實驗室大數據開發平台建設方案

大數據人才應用能力成長平台——Tempo Talents,從產業人才需求的視角,通過模式創新、技術創新,為高校大數據人才培養提供從平台、課程內容到教學管理的系統解決方案。平台核心圍繞「人才應用能力培養」,以實踐為基礎,將大數據人才培養所需的知識、技能和方法論三個層面互相融合,核心是通過學生動手實踐,培養數據思維及解決問題的能力。



5、激發學生學習熱情,打造「自驅型」能力成長平台

闖關、競賽、自主探索的數據游樂場,打破傳統的學習模式,打造專業與趣味性融合的學習體驗,充分激發學生自主學習熱情,打造「自驅型」能力成長平台。

⑸ 大數據分析系統平台方案有哪些

目前常用的大數據解決方案包括以下幾類
一、Hadoop。Hadoop 是一個能夠對大量數據進行分布式處理的軟體框架。但是 Hadoop 是以一種可靠、高效、可伸縮的方式進行處理的。此外,Hadoop 依賴於社區伺服器,因此它的成本比較低,任何人都可以使用。
二、HPCC。HPCC,High Performance Computing and Communications(高性能計算與通信)的縮寫。HPCC主要目標要達到:開發可擴展的計算系統及相關軟體,以支持太位級網路傳輸性能,開發千兆 比特網路技術,擴展研究和教育機構及網路連接能力。

三、Storm。Storm是自由的開源軟體,一個分布式的、容錯的實時計算系統。Storm可以非常可靠的處理龐大的數據流,用於處理Hadoop的批量數據。 Storm支持許多種編程語言,使用起來非常有趣。Storm由Twitter開源而來
四、Apache Drill。為了幫助企業用戶尋找更為有效、加快Hadoop數據查詢的方法,Apache軟體基金會近日發起了一項名為「Drill」的開源項目。該項目幫助谷歌實現海量數據集的分析處理,包括分析抓取Web文檔、跟蹤安裝在Android Market上的應用程序數據、分析垃圾郵件、分析谷歌分布式構建系統上的測試結果等等。

⑹ 大數據系統體系建設規劃包括哪些內容

(1)內部控制組織抄
組織是體系運行的基本保障。其中,是否設置專職的內控部門是企業界關注的焦點,通常的設置方式包括三種:
方式一:單獨設置內控部門。
方式二:由內部審計部門牽頭負責內控工作。
方式三:在內部控制建設集中期設立內部控制建設辦公室,該辦公室從各主要部門抽調人員專職從事內控體系建設工作,待體系正式運行時,辦公室解散,人員歸位到各經營管理部門,且牽頭職能也歸位至內審部門。
(2)內部環境的診斷與完善
(3)動態的風險評估
(4)控制活動的設計
內控手冊分模塊設計,每一模塊一般包括五個方面的內容:
第一,管理目標。
第二,管理機構及職責。
第三,授權審批矩陣。
第四,控制活動要求。
第五,比照上述幾部分,各經營管理部門應當重新梳理與完善業務流程,針對關鍵風險點強化控制措施,確保組織職責、授權審批、內控要求落實到經營流程中,保證管理目標的實現。
(5)信息與溝通貫穿始終
(6)內部監督手段。

⑺ 大數據系統體系建設規劃包括哪些內容

技術模型控制、適應傳統管理工作需求 新一代電子政務系統在得出了業務資源及關系模型和業務資源許可權控制模型後,再結合機關單位辦公實際,梳理傳統管理工作需求,把機關單位的傳統管理工作、規章制度通過技術模型的形式固定了。還有像傳統的規章制度中對文件傳閱控制、處理規定等,新一代電子政務系統就通過查詢授權功能在技術上實現。提煉標准模型在創新的業務核心模型基礎上,新一代電子政務系統建設為了保障業務核心模型的有效實現和規劃,再提煉了業務標准模型。統一資料庫結構設計 新一代電子政務系統通過數據標准規范,統一了各子系統的數據結構標准,從數據底層實現了標准統一,為各子系統之間的數據共享和數據整合提供了統一結構基礎。統一系統和基礎信息資源分類 新一代電子政務系統通過統一各業務及應用子系統之間的系統和基礎信息資源分類,實現了信息資源支撐的統一,從而為各子系統之間的數據關聯相互交換提供了統一數據基礎。業務數據標准化保障了業務模型在數據層次的統一,確保了業務模型數據標准。統一主界面布局與統一應用層次 在業務數據標准統一基礎上,為了確保業務核心模型在電子技術實現後的規范和方便應用,新一代電子政務系統又創新實現了系統布局和展示層的標准,還可以為應用層次劃分標准,從而方便用戶對系統的規范使用。制定設計模型創新了業務核心模型,提煉了業務標准後,新一代電子政務系統針對各種辦公業務資源,從業務工作的實際出發,結合實踐經驗,又創新制定了基於業務核心模型基礎上的業務設計模型,業務設計模型的創新又在於歸納可復用各業務功能模塊上面。新一代電子政務系統中,業務設計模型的創新在於提煉可復用各業務功能模塊。以往的電子政務建設,模塊不清晰,系統建設雜亂無章,很多建設工作重復,這不僅僅耗費了大量資金,而且不利於系統的長遠發展和推廣應用。新一代電子政務系統從建設的實踐中,從功能模塊層提煉出了可復用的各業務功能模塊,以方便系統的繼續發展和建設,局部見圖2

⑻ 大數據規劃的五個步驟

大數據規劃的五個步驟
數據分析的未來將朝著更為普及化、更為實時的數據分析去邁進,也就是說「針對正確的人,在正確的時間,獲得正確的信息」,從這個意義來說,它已經超越了技術本身,是更為接近業務層面的實時分析。
對於一個成功企業來說,數據整合能力、分析能力和行動能力不可或缺。如果不具備完善的數據整合、分析和行動能力的企業遲早面臨被淘汰的風險。在經營環境發生巨變的情況下,任何企業都必須在大數據規劃上做好准備,這樣才能搶先競爭對手發現市場新的趨勢。
三種能力
我們建議企業和政府機構進行數據整合能力、分析能力和行動能力的建設。對於任何公司的管理層來說,要充分認識到數據的重要性,在管理層充分認識到數據的重要性之後,內部要有足夠的人員和能力去整合、搭建和完善數據管理基礎架構。有了海量數據之後,數據分析師能夠對其進行分析和挖掘,使其產生理想的價值。
數據分析能力通過一定的方法論可以獲得。這個方法論從宏觀的角度來看,是通過數據整合探索出有效的業務價值,進而精確地協助制定商業策略或服務提升的策略,有效地採取正確的行動,來協助業務和服務質量的增長,或是解決業務已知、不確定或發現未知的問題。
另外,數據要實現普及化,不僅掌握在管理層手中,在數據安全和許可權管理的機制下,企業或單位的每一個人都要了解自己的業務具體發生了什麼,為何發生,預測將要發生什麼情況,從而更快、更好地做出決策,最終達到智慧型的管理,通過一些主動式的事件,產生正確的行動,如業務增長的價值措施和辦法,來精確有效地提升業務的增長。
五個步驟
如今大數據已經遠遠超出了IT的范疇,也就是說所有部門都在大數據運用的范疇中。
大數據規劃有五個步驟,首先從業務驅動的角度,相關部門選擇要解決和產生的業務場景。針對需求處理和採取整合這些場景需要的大數據。當然選擇的重點是怎麼使信息快速產生價值。場景因需求不同而包羅萬象:例如企業在精確營銷方面提升業務增長,對於其客戶在購買哪些產品前的黃金路徑統計分析等等。
其次,直接產生的價值需要與已有的客戶關系管理、客戶交易等數據進行結合和關聯,從而為企業產生總體的關鍵價值效益。例如,哪些用戶在購買前確實通過上述統計總結的黃金路徑,而這些用戶和該企業的歷史關系為何,以提供企業下一步精確行動的優先順序等等。
第三,整個企業要建立大數據分析的支持體系、分析的文化、分析數據的人才,徹底形成企業對大數據的綜合管理、探索、共識。大數據能力的建設是企業或政府單位內上下及跨部門就如何提供更加智慧型服務和產品給用戶的議題。
第四,隨著大數據探索范圍的擴大,企業要建立大數據的標准,統一數據格式、採集方法、使用方式,設定一個共享的願景和目的,然後按照階段化的目標去實現願景。例如,有關數據的存儲和處理長期圍繞在關系型的結構數據中,提供更加智慧型服務和產品是需要結合過去難以處理分析的數據,如文本、圖像等等。數據內容快速演變,因此對數據的標准、格式、採集、工具、方法等的治理能力必須與時俱進。
第五,最終建成企業或政府單位內的「統一數據架構」,從各類所需的多元的結構化數據源建立整合能力(採集、存儲、粗加工)。在此基礎上,建設數據探索和分析能力(從整合出來的海量數據里快速探索出價值),之後如何有效、實時、精確地與已有的業務數據結合,產生精確的業務行動能力(進行更深度的利用和提供更智慧型的服務),從而達到「針對正確的人,在正確的時間,正確的方式,提供正確的信息」的目標。

閱讀全文

與大數據平台規劃方案相關的資料

熱點內容
js中判斷是否包含字元串中 瀏覽:363
查看網路並設置連接 瀏覽:624
win10玩奇跡掉線 瀏覽:305
愛思助手電筒腦版在哪個網站下 瀏覽:814
文件夾排序怎麼按順序 瀏覽:54
飛豬app有什麼功能 瀏覽:593
求生之路2開服破解文件 瀏覽:42
javaforeach輸出數組 瀏覽:851
編程bug怎麼修改 瀏覽:630
蘋果5s屏修一下多錢 瀏覽:523
java獲取上傳文件名 瀏覽:156
網站添加微博 瀏覽:593
flash播放mp4代碼 瀏覽:766
word頁腳奇偶頁不同 瀏覽:728
backboxlinux安裝 瀏覽:67
會聲會影卸載文件損壞 瀏覽:283
word文件怎麼修改自然段 瀏覽:94
華興數控系統車孔g81循環怎麼編程 瀏覽:244
word怎麼查看刪減之前的文件 瀏覽:58
word標題1標題2規范 瀏覽:691

友情鏈接