大數據的日益增長,給企業管理大量的數據帶來了挑戰的同時也帶來了一些機遇。下面是用於信息化管理的大數據工具列表:
1.ApacheHive
Hive是一個建立在hadoop上的開源數據倉庫基礎設施,通過Hive可以很容易的進行數據的ETL,對數據進行結構化處理,並對Hadoop上大數據文件進行查詢和處理等。Hive提供了一種簡單的類似SQL的查詢語言—HiveQL,這為熟悉SQL語言的用戶查詢數據提供了方便。
2JaspersoftBI套件
Jaspersoft包是一個通過資料庫列生成報表的開源軟體。行業領導者發現Jaspersoft軟體是一流的,許多企業已經使用它來將SQL表轉化為pdf,,這使每個人都可以在會議上對其進行審議。另外,JasperReports提供了一個連接配置單元來替代HBase。
3.1010data
1010data創立於2000年,是一個總部設在紐約的分析型雲服務,旨在為華爾街的客戶提供服務,甚至包括NYSEEuronext、 游戲 和電信的客戶。它在設計上支持可伸縮性的大規模並行處理。它也有它自己的查詢語言,支持SQL函數和廣泛的查詢類型,包括圖和時間序列分析。這個私有雲的方法減少了客戶在基礎設施管理和擴展方面的壓力。
4.Actian
Actian之前的名字叫做IngresCorp,它擁有超過一萬客戶而且正在擴增。它通過Vectorwise以及對ParAccel實現了擴展。這些發展分別導致了ActianVector和ActianMatrix的創建。它有Apache,Cloudera,Hortonworks以及其他發行版本可供選擇。
5.PentahoBusinessAnalytics
從某種意義上說,Pentaho與Jaspersoft相比起來,盡管Pentaho開始於報告生成引擎,但它目前通過簡化新來源中獲取信息的過程來支持大數據處理。Pentaho的工具可以連接到NoSQL資料庫,例如MongoDB和Cassandra。PeterWayner指出,PentahoData(一個更有趣的圖形編程界面工具)有很多內置模塊,你可以把它們拖放到一個圖片上,然後將它們連接起來。
6.KarmasphereStudioandAnalyst
KarsmasphereStudio是一組構建在Eclipse上的插件,它是一個更易於創建和運行Hadoop任務的專用IDE。在配置一個Hadoop工作時,Karmasphere工具將引導您完成每個步驟並顯示部分結果。當出現所有數據處於同一個Hadoop集群的情況時,KarmaspehereAnalyst旨在簡化篩選的過程,。
7.Cloudera
Cloudera正在努力為開源Hadoop,提供支持,同時將數據處理框架延伸到一個全面的「企業數據中心」范疇,這個數據中心可以作為首選目標和管理企業所有數據的中心點。Hadoop可以作為目標數據倉庫,高效的數據平台,或現有數據倉庫的ETL來源。企業規模可以用作集成Hadoop與傳統數據倉庫的基礎。Cloudera致力於成為數據管理的「重心」。
8.
HP提供了用於載入Hadoop軟體發行版所需的參考硬體配置,因為它本身並沒有自己的Hadoop版本。計算機行業領袖將其大數據平台架構命名為HAVEn(意為Hadoop,Autonomy,Vertica,EnterpriseSecurityand「n」applications)。惠普在Vertica7版本中增加了一個「FlexZone」,允許用戶在定義資料庫方案以及相關分析、報告之前 探索 大型數據集中的數據。這個版本通過使用HCatalog作為元數據存儲,與Hadoop集成後為用戶提供了一種 探索 HDFS數據表格視圖的方法。
9.TalendOpenStudio
Talend』s工具用於協助進行數據質量、數據集成和數據管理等方面工作。Talend是一個統一的平台,它通過提供一個統一的,跨企業邊界生命周期管理的環境,使數據管理和應用更簡單便捷。這種設計可以幫助企業構建靈活、高性能的企業架構,在次架構下,集成並啟用百分之百開源服務的分布式應用程序變為可能。
10.ApacheSpark
ApacheSpark是Hadoop開源生態系統的新成員。它提供了一個比Hive更快的查詢引擎,因為它依賴於自己的數據處理框架而不是依靠Hadoop的HDFS服務。同時,它還用於事件流處理、實時查詢和機器學習等方面。
B. 大數據專業都需要學習哪些軟體啊
一、Phoenix
簡介:這是一個java中間層,可以讓開發者在Apache HBase上執行SQL查詢。Phoenix完全使用Java編寫,代碼位於GitHub上,並且提供了一個客戶端可嵌入的JDBC驅動。
Phoenix查詢引擎會將SQL查詢轉換為一個或多個HBase scan,並編排執行以生成標準的JDBC結果集。直接使用HBase API、協同處理器與自定義過濾器,對於簡單查詢來說,其性能量級是毫秒,對於百萬級別的行數來說,其性能量級是秒。
Phoenix最值得關注的一些特性有:
❶嵌入式的JDBC驅動,實現了大部分的java.sql介面,包括元數據API❷可以通過多部行鍵或是鍵/值單元對列進行建模❸完善的查詢支持,可以使用多個謂詞以及優化的掃描鍵❹DDL支持:通過CREATE TABLE、DROP TABLE及ALTER TABLE來添加/刪除列❺版本化的模式倉庫:當寫入數據時,快照查詢會使用恰當的模式❻DML支持:用於逐行插入的UPSERT VALUES、用於相同或不同表之間大量數據傳輸的UPSERT ❼SELECT、用於刪除行的DELETE❽通過客戶端的批處理實現的有限的事務支持❾單表——還沒有連接,同時二級索引也在開發當中➓緊跟ANSI SQL標准
二、Stinger
簡介:原叫Tez,下一代Hive,Hortonworks主導開發,運行在YARN上的DAG計算框架。
某些測試下,Stinger能提升10倍左右的性能,同時會讓Hive支持更多的SQL,其主要優點包括:
❶讓用戶在Hadoop獲得更多的查詢匹配。其中包括類似OVER的字句分析功能,支持WHERE查詢,讓Hive的樣式系統更符合SQL模型。
❷優化了Hive請求執行計劃,優化後請求時間減少90%。改動了Hive執行引擎,增加單Hive任務的被秒處理記錄數。
❸在Hive社區中引入了新的列式文件格式(如ORC文件),提供一種更現代、高效和高性能的方式來儲存Hive數據。
❹引入了新的運行時框架——Tez,旨在消除Hive的延時和吞吐量限制。Tez通過消除不必要的task、障礙同步和對HDFS的讀寫作業來優化Hive job。這將優化Hadoop內部的執行鏈,徹底加速Hive負載處理。
三、Presto
簡介:Facebook開源的數據查詢引擎Presto ,可對250PB以上的數據進行快速地互動式分析。該項目始於 2012 年秋季開始開發,目前該項目已經在超過 1000 名 Facebook 雇員中使用,運行超過 30000 個查詢,每日數據在 1PB 級別。Facebook 稱 Presto 的性能比諸如 Hive 和 Map*Rece 要好上 10 倍有多。
Presto 當前支持 ANSI SQL 的大多數特效,包括聯合查詢、左右聯接、子查詢以及一些聚合和計算函數;支持近似截然不同的計數(DISTINCT COUNT)等。
C. 常用的大數據分析軟體有哪些
目前市場上的數據分析工具還是比較多的,國內跟國外都有,我就介紹幾款主流的給樓主。版
國外:
Tableau:自身定位是權一款可視化工具,與Qlikview的定位差不多,可視化功能很強大,對計算機的硬體要求較高,部署較復雜。目前移動端只支持IOS系統。
Qlikview:最大的競爭者是Tableau,同Tableau和國內眾多BI一樣,是屬於新一代的輕量化BI產品,體現在建模、部署和使用上。只能運行在windows系統,C/S的產品架構。採用內存動態計算,數據量小時,速度很快;數據量大時,吃內存很厲害性能偏慢。
Cognos:傳統BI工具中最被廣泛使用的,已被IBM收購。擁有強大的資料庫平台、在數據管理、數據整合以及中間件領域專業功底深厚。偏操作型,手工建模,一旦需求變化需要 重新建模,學習要求較高。
國內:
FineBI:帆軟旗下的自助性BI產品,輕量化的BI工具,部署方便,走多維分析方向。後期採用jar包升級換代,維護方便,最具性價比。
永洪BI:敏捷BI軟體,產品穩定性較高。利用sql處理數據,不支持程序介面,實施交由第三方外包。
D. 大數據專業都需要學習哪些軟體啊
大數據需要學習的軟體有:SQL資料庫、PythonorR軟體、Excel軟體、SPSS軟體。等這樣的一些必要的軟體。
E. 國內比較好的大數據分析軟體有哪些
數據分析軟體有Excel、R、Python、BI工具,行業內普遍用的多的是Excel和BI,掌握這兩個就可以滿足大部分業務需求
1、Excel
大家耳熟能詳的軟體了,數據分析領域入門級的工具,也是日常工作時最常用的工具,常用的功能就是數據透視表,再復雜一點就用VBA。
2、R和Python
上手比較簡單,數據導入和導出操作便捷,數據分析場景如下表:
3、BI(商業智能)工具
先科普一下什麼是BI,它主要用來解決什麼?
在這里引用個場景來形象解釋:現在大多數企業都上了OA、ERP、CRM等系統,而這些系統運行一段時間以後,必然幫助企業收集了大量的歷史數據。但是,在資料庫中分散、獨立存在的大量數據對於業務人員來說,只是一些無法看懂的天書。
而業務人員所需要的是信息,是他們能夠看懂、理解並從中受益的具體信息。此時,如何把數據轉化為易懂的信息,使得業務人員(包括管理者)能夠充分掌握、利用這些信息,並且輔助決策,就是商業智能即BI主要解決的問題。
F. 大數據分析需要什麼軟體
大數據分析需要Hadoop。Hadoop是一個能夠對大量數據進行分布式處理的軟體框架。但是Hadoop是以一種可靠、高效、可伸縮的方式進行處理的。Hadoop是可靠的,因為它假設計算元素和存儲會失敗,因此它維護多個工作數據副本,確保能夠針對失敗的節點重新分布處理。Hadoop是高效的,因為它以並行的方式工作,通過並行處理加快處理速度。Hadoop還是可伸縮的,能夠處理PB級數據。此外,Hadoop依賴於社區伺服器,因此它的成本比較低,任何人都可以使用。
G. 大數據專業需要用到什麼軟體啊
1,分步閱讀
數據分析報告類:Microsoft Office軟體等,如果連excel表格基本的處理操作都不會,連PPT報告都不會做,那我只好說離數據分析的崗位還差的很遠。現在的數據呈現不再單單只是表格的形式,而是更多需要以可視化圖表去展示你的數據結果,因此數據可視化軟體就不能少,BDP個人版、ECharts等這些必備的,就看你自己怎麼選了。
2,專業數據分析軟體:Office並不是全部,要從在數據分析方面做的比較好,你必須會用(至少要了解)一些比較常用的專業數據分析軟體工具,比如SPSS、SAS、Matlab等等,這些軟體可以很好地幫助我們完成專業性的演算法或模型分析,還有高級的python、R等。
3,資料庫:hive、hadoop、impala等資料庫相關的知識可以學習;
4,輔助工具:比如思維導圖軟體(如MindManager、MindNode Pro等)也可以很好地幫助我們整理分析思路。
H. 大數據專業學什麼軟體
大數據需要用到的軟體有很多的,學習大數據的基礎是java和linux,主流的大數據處理平台如hadoop,爬取數據如python,ETL常用sql,等等。. 另外,面向就業的大數據學習是有一定要求的,最低大專學歷
I. 大數據分析工具有哪些
大數據分析工具有:
1、Hadoop:它是最流行的數據倉庫,可以輕松存儲大量數據。
2、MongoDB:它是領先的資料庫軟體,可以快速有效地分析數據。
3、Spark: 最可靠的實時數據處理軟體,可以有效地實時處理大量數據。
4、Cassandra:最強大的資料庫,可以完美地處理數據塊
5、Python:一流的編程語言,可輕松執行幾乎所有大數據分析操作。
不同類型的大數據分析是:
1、描述性分析:它將過去的數據匯總成人們易於閱讀和理解的形式。使用此分析創建與公司收入、銷售額、利潤等相關的報告非常容易。除此之外,它在社交媒體指標方面也非常有益。
2、診斷分析:它首先處理確定發生問題的原因。它使用了各種技術,例如數據挖掘、機器學習等。診斷分析提供對特定問題的深入洞察。
3、預測分析:這種分析用於對未來進行預測。它通過使用數據挖掘、機器學習、數據分析等各種大數據技術來使用歷史數據和當前數據。這些分析產生的數據用於不同行業的不同目的。
4、規范分析:當想要針對特定問題制定規定的解決方案時,會使用這些分析。它適用於描述性和預測性分析,以獲得最准確的結果。除此之外,它還使用人工智慧和機器學習來獲得最佳結果。
J. 常用的大數據分析軟體有哪些
數據分析軟體有Excel、SAS、R、SPSS、Tableau Software。
1、Excel
為Excel微軟辦公套裝軟體的一個重要的組成部分,它可以進行各種回數據的處理、答統計分析和輔助決策操作,廣泛地應用於管理、統計財經、金融等眾多領域。
5、Tableau Software
Tableau Software用來快速分析、可視化並分享信息。Tableau Desktop 是基於斯坦福大學突破性技術的軟體應用程序。它可以以在幾分鍾內生成美觀的圖表、坐標圖、儀表盤與報告。