㈠ 大數據和傳統數據有哪些區別
曾經有一段時間,超市是經過要求收銀員鍵入用戶特徵來採集用戶數據的。超市經過這樣的方法來收集用戶的數據,對收集的大數據進行分析,來對用戶畫像與人群定位。
傳統記載數據的方法必定只能是小范圍的,少數的和准確度欠佳的。而現在的數據獲取方法大多是經過URL傳輸和API介面,大體上數據獲取的方法有這樣幾類:爬蟲抓取、用戶留存、用戶上傳、數據買賣和數據同享。自有數據與外部數據是數據獲取的兩個首要渠道。在自有數據中,咱們能夠經過一些爬蟲軟體有目的的定向爬取。
用戶上傳數據比如持證自拍照、通訊錄、前史通話詳單等需要用戶自動授權提供的數據,這類數據往往是事務運作中的要害數據。相較於自有數據獲取,外部數據的獲取方法簡單許多,絕大多數都是根據API介面的傳輸,也有少數的數據選用線下買賣以表格或文件的方法線下傳輸。
此類數據要麼選用明碼標價一條數據多少錢,或是進行數據同享,買賣兩邊承諾數據同享,追求共同發展。至此,咱們看到新時代的數據獲取方法相較於傳統數據獲取的方法愈加多元、愈加高效。相同的大數據與傳統數據的傳輸方法也截然不同。傳統數據要麼以線下傳統文件的方法,要麼以郵件或是第三方軟體進行傳輸,而隨著API介面的成熟和普及就好像曾經的手機充電介面,從千奇百怪、形形色色到今日的兩大首要類別:iPhone體系與Android體系。
關於大數據和傳統數據有哪些區別,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
㈡ 如何理解傳統數據與大數據之間的區別
針對大數據帶給教育的機遇與挑戰,與讀者深入探討和分享大數據與傳統數據的區別,及其行業落地的進展情況。
二、大數據時代潛藏的教育危機
「不得不承認,對於學生,我們知道得太少」——這是卡耐基·梅隆大學(Carnegie Mellon University)教育學院研究介紹中的一句自白,也同樣是美國十大教育類年會中出鏡率最高的核心議題。這種對於學生認識的匱乏,在21世紀之前長達數百甚至上千年的教育史中並沒有產生什麼消極的效應,但卻在信息技術革命後的近十年來成為教育發展的致命痼疾。
「過去,對於學生來說,到學校上學學習知識具有無可辯駁的重要性,而那是因為當時人們能夠接觸知識的渠道太少,離開學校就無法獲取成體系的知識」斯坦福大學教授Arnetha Ball在AERA(美國教育研究會)大會主旨發言中說道,「但是,互聯網的普及將學校的地位從神壇上拉了下來。」Ball的擔心不無道理。根據Kids Count Census Data Online發布的數據,2012年全美在家上學(Home-Schooling)的5-17歲學生已達到197萬人,相對逐年價下降的出生人口,這一人口比重十分可觀。
與此同時,應運而生的則是內容越來越精緻的網上課堂,而創立於2009年並迅速風靡全球的可汗學院(Khan Academy)正是其中的傑出代表。從知名學府的公開課到可汗學院,這種網路學習模式受到熱捧恰恰證明了:人們對於學習的熱情並沒有過去,但是人們已經極端希望與傳統的學院式授課模式告別。一成不變,甚至「目中無人」的傳統集體教學模式在適應越來越多元化、也越來越追求個性化的學生群體時顯得捉襟見肘。
可汗學院模式不但支持學生自主選擇感興趣的內容,還可以快速跳轉到自己適合的難度,從而提高了學習的效率。學習者沒有學習的壓力,時長、時機、場合、回顧遍數都可以由自己控制。
可以想像,如果可汗學院的模式進一步發展,與計算機自適應(CAT)的評估系統相聯系,讓使用者可以通過自我評估實現對學習進度的掌握以及學習資料的精準獲取,那麼它將形成互聯網產品的「閉環」,其優勢與力量將是顛覆性的。
而如果傳統教育的課程模式不革新,課堂形態不脫胎換骨,教師角色與意識不蛻變,那麼學校的存在就只有對現代化學習資源匱乏的學生才有意義;而對於能夠自主獲得更適宜學習資源的學生來說,去學校可能只是為了完成一項社會角色賦予的義務,甚至談不上必要性,也就更談不上愉快的體驗或興趣的驅使了。
大數據的研究可以幫助教育研究者重新審視學生的需求,通過高新的技術以及細致的分析找到怎樣的課程、課堂、教師是能夠吸引學生的。但問題在於,社會發展給予教育研究者的時間窗口並不寬裕,因為有太多人同樣在試圖通過大數據挖掘設法瓜分學生們有限的精力與注意力。而且從某種程度上,他們做得遠比教育研究者更有動力與誠意。
首當其沖的是游戲的設計者——青少年是其主要消費群體。撇開馳名世界的暴雪公司(Blizzard Entertainment),美國藝電公司(Electronic Arts Inc.),日本任天堂公司(Nintendo)等國際巨鱷不談;即使是國內的盛大網路,第九城市,巨人科技,淘米網路等游戲公司,亦都早已組建了專業實力強勁的「用戶體驗」研究團隊。他們會通過眼動跟蹤,心律跟蹤,血壓跟蹤,鍵盤與滑鼠微操作速率等各種微觀行為來研究如何讓玩家在游戲中投入更多的時間,更加願意花真實世界的錢來購買虛擬世界的物品。什麼時候應該安排敵人出現,敵人應當是什麼級別,主人公需要耗費多少精力才能夠將其擊敗,這些變數都得到了嚴格的設計與控制,原因只有一個——大數據告訴游戲創作者,這樣的設計是最能夠吸引玩家持續游戲的。
其次是電影視頻、青春小說等鏈式文化產業。為什麼在網站上看視頻會一個接一個,無法停止,因為它會根據該賬號的歷史瀏覽記錄推算出其喜歡看什麼樣的視頻,喜歡聽什麼類型風格的歌,並投其所好;而暢銷網路小說看似並沒有「營養」,但裡面的遣詞造句、語段字數,故事起伏設定,甚至主人公性格的類型都是有相關研究進行支持——讀者往往並不喜歡結構嚴密、精心設計的劇情——這就是為什麼情節千篇一律的韓劇受人追捧的原因,他們通過收視率的反復研究,挖掘到了觀眾最需要的那些元素,並且屢試不爽。
此外還有許多更強大的研究者,比如電子商務,總能通過數據找到你可能願意購買的商品——他們甚至知道買尿片的父親更願意買啤酒。
這些領域看似與我們教育者並無特別關聯,但是他們與我們最關心的對象——學生卻有著千絲萬縷的聯系。數百年甚至數十年前,學生並不會面對如此多的誘惑,學校在其生活中占據極大比重,對其影響也最為顯著,因此教育者對於學生的控制總是有著充分的自信。但是,當不同的社會機構與產品開始爭奪學生的注意力時,教育者的自信就只能被認為是一種無法認清形勢的傲慢了——因為在這場「學生爭奪戰」中,傳統學校看上去實在缺乏競爭力。
即使教育研究者願意放下身段,通過大數據的幫助來悉心研究學生的需求與個性。但是人才的匱乏也是非常不利的一點因素——相比於商業環境下對研究實效的追逐,教育研究的緩慢與空洞顯得相形見絀。在互聯網企業紛紛拋出「首席數據官」的頭銜,向各種數據科學狂人拋出橄欖枝,並且在風險投資的鼓舞下,動輒以百萬年薪進行延聘時,大數據研究的前沿陣地必然仍是在互聯網行業中最轟轟烈烈地開戰。
分析形勢後的姿態,以及投入的力度與強度,或許是教育領域在進入大數據研究時最先需要充分考慮的兩個先決條件。
三、誰在為大數據歡呼:一場關於「人性」研究的啟蒙
孜孜不倦地觀測、記錄、挖掘海量的數據,有朝一日終會推導出或簡約或繁復的方程,以此得以在自然科學的歷史豐碑上留名——數百年來,這種對數據的崇拜早已成為了物理學家、化學家、生物學家、天文地理學家們的信念。而牛頓,貝葉斯,薛定諤等一代代巨匠的偉業也揭示了數據對於科學發現的無限重要價值。
相形之下,社會科學領域的研究就要慘淡地多——他們同樣看重數據,同樣追求統計與分析的「程序正義」,同樣勤勤懇懇地設計實驗與調研,去尋找成千上萬的被試,同樣像模像樣地去嵌套方程……但是幾乎很少有研究結果能夠得到普遍的承認,不管是社會學、心理學、經濟學、管理學還是教育學。
當然,社會科學領域的研究者們遇到的困難是顯而易見的:「人性」與「物性」是不同的,物質世界比較穩定,容易尋找規律;而由人組成的社會極其善變,難以總結。從數據的角度來說,人的數據不如物的數據那麼可靠:
首先是人不會像物那樣忠實地進行回應:誰知道一個人填寫的問卷有多少是注意力不集中填錯的、語文水平不高理解錯的、還是壓根沒打算講真話?此外,人與人本身的差距也大於物與物的差距:兩個化學組成相同的物質表現出各種性質幾乎是完全一樣的,但即使是兩個基因完全相同的雙胞胎也會因為不同的人生經驗,而表現出大相徑庭的行為特徵。
但這些都還並不關鍵,最最重要的是:人無法被反復研究。人不是牛頓的木塊,不是伽利略的鉛球,不是巴普洛夫的狼狗,人不會配合一次次從斜坡上被滑下來,一次次從比薩塔頂被扔下來,一次次流著口水乾等著送肉來的鈴聲。而我們知道,在「科學」的三個標准中,首當其沖的就是「可重復驗證」。
換句話說,我們可以獲得的關於「人性」的數據不夠大,不夠多,不夠隨時隨地,因此我們無法從數據中窺見人性。2002年諾貝爾經濟學獎授予心理學家丹尼爾?卡尼曼(Daniel Kahneman)時,似乎標示著社會科學領域已經接受了這樣一種事實:人類的行為是無法尋找規律、無法預測、難以進行科學度量的。社會科學開始懷疑用純粹理性的方法是否可以解答關於「人性」的種種現象。與此相映成趣的是2012年的美國大選,奧巴馬的團隊依靠對網路數據的精準篩選捕捉到了大量的「草根」選民,而對於其喜好與需求的分析與把握更是贏得其信任,從而在不被傳統民調與歷史數據規律看好的情況下一舉勝出。這跨越十年的兩個標志性事件讓人們對於「數據揭示人性」可能性的認識經歷了戲劇性的轉變。
如今,迅速普及的互聯網與移動互聯網悄然為記錄人的行為數據提供了最為便利、持久的載體。手機,iPad等貼近人的終端無時不刻不在記錄關於人的點點滴滴思考、決策與行為。最最重要的是,在這些強大的數據收集終端面前,人們沒有掩飾的意圖,人們完整地呈現著自己的各種經歷,人們不厭其煩一遍又一遍重復著他們不願在實驗情境下表現出來的行為,從而創造著海量的數據——傳統數據研究無法做到的事,傳統研究範式苦苦糾結的許多難點,都在大數據到來的那一剎那遁於無形。
大數據的到來,讓所有社會科學領域能夠藉由前沿技術的發展從宏觀群體走向微觀個體,讓跟蹤每一個人的數據成為了可能,從而讓研究「人性」成為了可能。而對於教育研究者來說,我們比任何時候都更接近發現真正的學生。
㈢ 大數據分析和傳統統計學方法有什麼樣的關系
大數據處抄理的信息很大,往往一個分析所需的數據分別存儲在數百個伺服器中,因此大數據分析就需要協調所需伺服器,讓他們按照我們分析的需要進行配合運作,這是他和傳統統計分析的主要不同,在具體方法上,大數據還可能用到數據挖掘的方法,傳統分析法往往事先有個分析目標然後用統計的方法驗證,數據挖掘是通過演算法,用計算機分析數據,讓計算機發現數據之間的聯系。兩者大體如此,如果要詳細了解,可以參考相關書籍
㈣ 大數據時代傳統社會調查過時了嗎
進入大數據時代,現代網路信息技術與智能設備的普及與運用,給傳統社會調查方法帶來挑戰。有學者提出,與通過數據挖掘技術獲得海量信息相比,傳統社會調查所獲取的信息不過是「小數據」。由此引發學界爭議:大數據時代是否還需要傳統社會調查?在大數據技術與方法廣泛應用的時代,傳統社會調查方法如何彰顯其獨特價值?近日,中國社會科學報記者就此采訪了相關學者。
大數據技術方便數據採集分析
「移動互聯網使得社會行動者的態度、行為被迅速信息化,並被互聯網設備記錄下來,為科研人員的相關研究提供了以往的信息收集手段無法採集的大量信息。同時也大大提高了人類記錄和採集相關信息的能力,極大降低了獲取某些信息的成本。」中國人民大學社會與人口學院副教授李丁說。
大數據技術改變了數據的獲取、處理和理解方式。據西安交通大學公共政策與管理學院執行院長杜海峰分析,數據獲取方式從收集問卷或訪談變成了網路、多媒體等多技術手段的綜合運用,更重要的是對象的變化,傳統的方法需要科學地從母體中抽樣,大數據的數據獲取對象可能直接就是母體;數據處理方式從傳統的屬性數據分析方法,過渡到基於結構的、以智能信息處理為主的綜合集成分析;數據理解方式,由傳統的統計因果發展到以「相關」特別是不同信息之間關系「凸顯」規律的解析。
在哈爾濱工業大學社會學系教授唐魁玉看來,大數據技術不僅在收集數據、整理數據和分析數據上具備優勢,而且其帶來的巨量交互性數據能夠為社會問題的整體性分析提供有效證據。這些變革正在為社會學重新整體性回歸「社會事實」奠定新方法論基礎,同時也無疑給傳統的問卷和深度訪談調查方法帶來挑戰。
社會調查方法具有特殊優勢
既然大數據技術在信息獲取與分析領域具有如此凸顯的優勢,是否意味著傳統社會調查將被取代呢?受訪學者並不贊同此類觀點。
一方面與傳統信息採集方式相比,大數據技術目前仍有其局限性;另一方面傳統信息採集方式仍具有獨特價值。唐魁玉分析說,以抽樣調查為例,在一些案例中,抽樣調查更加適用於那些有「遺失」的數據和代表性樣本。在面對復雜性、人際性社會問題的分析時,大數據方法還不夠細致入微。
「大數據一個非常重要的特徵是『價值密度低』,數據內容可能並不是特定研究者所關心的,因此不一定都能滿足特定問題研究的需要。」杜海峰提出,對於大數據獲得的信息,傳統社會調查不但是其必要的補充,也是專項研究更為必要的基礎資料。
大數據技術所獲取的信息相當於普查和非概率樣本,盡管如此,大數據也並非沒有邊界,如果不能認識或約定其界限,數據雖大,卻不能用於科學研究。如李丁所分析,被互聯網、智能設備感知和記錄的社會行動者並不能覆蓋全部的行動者。如果認識不到大數據的覆蓋率或者代表怎樣的群體,即便樣本規模再大,得出來的知識和規律也有可能是誤導性的。
此外,大數據的邊界還在於變數意義上。「不同企業和研究單位根據其自身需要所採集的數據雖有很大的樣本量,但每個樣本的變數信息很少。如果不能將這些不同類型的資料庫信息串並起來,增加變數即各個研究對象的有效信息量,那麼研究價值也非常有限。」李丁說。
李丁認為,傳統社會調查獲得的信息密度非常高,其目的直接性、設計性、標准化程度更強,效率非常高。「如果不使用傳統的社會調查方法,即便今天世界上能力最強的互聯網公司可能也無法從現有互聯網痕跡數據中獲得一個和中國綜合社會調查具有同等代表性、信度、效度、信息密度和相同變數的數據集。」
實現兩種方法優勢互補
正如李丁所說,一方面,在大數據時代背景下,從大數據中提取出有價值的信息和知識,有可能獲得有關行動者的新知識、社會運行的新規律;另一方面,研究人員應該認識到大數據的局限性,以及傳統研究方式的優勢,避免盲目崇拜。傳統的調查方式在獲得某些高密度的、具有統計代表性的數據上仍具有成本優勢和科學性優勢。
對於學界出現的將兩種方法非此即彼對立起來的爭議,唐魁玉認為,我們在對不同類型、不同復雜程度的社會事實和社會問題進行分析時,要恰當地選擇和使用傳統的社會調查或大數據方法。
未來的社會科學研究或可實現大數據與傳統社會調查方法的優勢互補。受訪學者提出一些設想。李丁認為,傳統的質性研究方法和抽樣調查方法能夠補充大數據的不足,幫助我們理解大數據的社會含義。大數據也能為傳統調查研究提供重要的信息補充,質性研究如果能夠在既有的訪談、觀察的基礎上,還能獲得受訪對象在互聯網的痕跡數據、社會交往數據、行動軌跡數據等,就能對研究對象有更全面的了解和把握。
㈤ 大數據技術常用的數據處理方式有哪些
大數據技術常用的數據處理方式,有傳統的ETL工具利用多線程處理文件的方式;有寫MapRece,有利用Hive結合其自定義函數,也可以利用Spark進行數據清洗等,每種方式都有各自的使用場景。
在實際的工作中,需要根據不同的特定場景來選擇數據處理方式。
1、傳統的ETL方式
傳統的ETL工具比如Kettle、Talend、Informatica等,可視化操作,上手比較快,但是隨著數據量上升容易導致性能出問題,可優化的空間不大。
2、Maprece
寫Maprece進行數據處理,需要利用java、python等語言進行開發調試,沒有可視化操作界面那麼方便,在性能優化方面,常見的有在做小表跟大表關聯的時候,可以先把小表放到緩存中(通過調用Maprece的api),另外可以通過重寫Combine跟Partition的介面實現,壓縮從Map到rece中間數據處理量達到提高數據處理性能。
3、Hive
在沒有出現Spark之前,Hive可謂獨占鰲頭,涉及離線數據的處理基本都是基於Hive來做的,Hive採用sql的方式底層基於Hadoop的Maprece計算框架進行數據處理,在性能優化上也不錯。
4、Spark
Spark基於內存計算的准Maprece,在離線數據處理中,一般使用Spark sql進行數據清洗,目標文件一般是放在hdf或者nfs上,在書寫sql的時候,盡量少用distinct,group by recebykey 等之類的運算元,要防止數據傾斜。
㈥ 大數據分析與傳統計量分析方法的異同有哪些
首先大數據更趨向自動化,另外數據的維度上較傳統統計也有差異,例如平時做app的可能更關注日活,但是大數據可能就會從原有的日活中找到權重,發現新的統計名詞,例如tad。總體來說大數據就是自動化的權重比例更為清晰化的統計,這里我們還忽略了模型和數據比對,大數據的模型是串聯起來的,數據比對也是可以橫向、縱向比對的,相對傳統來說靈活性更強。
㈦ 教育大數據分析方法主要包括哪三類
一、大數據與大數據分析概述
隨著數據獲取、存儲等技術的不斷發展,以及人們對數據的重視程度不斷提高,大數據得到了廣泛的重視,不僅僅在IT領域,包括經濟學領域、醫療領域、營銷領域等等。例如,在移動社交網路中,用戶拍照片、上網、評論、點贊等信息積累起來都構成大數據;醫療系統中的病例、醫學影像等積累起來也構成大數據;在商務系統中,顧客購買東西的行為被記錄下來,也形成了大數據。
時至今日,大數據並沒有特別公認的定義。有三個不同角度的定義:(1)「大數據」指的是所涉及的數據量規模巨大到無法通過人工在合理時間內達到截取、管理、處理並整理成為人類所能解讀的信息[1]。(2)「大數據」指不用隨機分析法(抽樣調查)這樣的捷徑,而採用所有數據進行分析處理的方法的數據[2]。(3)「大數據」是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。
通常把大數據的特點歸納為4個V,即數據量大(Volume)、數據類型多(Varity)、數據的價值密度低(Value)以及數據產生和處理的速度非常快(Velocity)。
對大數據進行分析可以產生新的價值。數據分析的概念誕生於大數據時代之前,但傳統的數據分析和大數據分析是不同的。傳統的數據分析往往是由客戶提出一個問題,分析者圍繞該問題建立一個系統,進而基於該系統解釋這個問題;而大數據分析有時候並沒有明確的問題,而是通過搜集數據,瀏覽數據來提出問題。
另一方面,傳統的數據分析是在可用的信息上進行抽樣,大數據分析則是對數據進行不斷的探索,通過全局分析連接數據,達到數據分析的目的。
傳統的數據分析的方法,往往是大膽假設小心求證,先做出假設,再對數據進行分析,從而驗證先前的假設;而大數據分析則是對大數據進行探索來發現結果,甚至發現錯誤的結果,之後再通過數據驗證結果是否正確。
因此,傳統的數據分析可以看成一種靜態的分析,大數據分析可以看成一種動態的分析。盡管如此,大數據分析和傳統數據分析也並非是涇渭分明的,傳統數據分析的方法是大數據分析的基礎,在很多大數據分析的工作中仍沿用了傳統數據分析的方法。
基於上述討論,我們給出「大數據分析」的定義:用適當的統計分析方法對大數據進行分析,提取有用信息並形成結論,從而對數據加以詳細研究和概括總結的過程。
大數據分析分為三個層次[3],即描述分析、預測分析和規范分析。描述分析是探索歷史數據並描述發生了什麼(分析已經發生的行為),預測分析用於預測未來的概率和趨勢(分析可能發生的行為),規范分析根據期望的結果、特定場景、資源以及對過去和當前事件的了解對未來的決策給出建議(分析應該發生的行為)。例如,對於學生學習成績的分析,描述分析是通過分析描述學生的行為,如是否成績高的同學回答問題較多;預測分析是根據學生的學習行為數據對其分數進行預測,如根據學生回答問題的次數預測其成績;而規范分析則是根據學生的數據得到學生下一步的學習計劃,如對學生回答問題的最優次數提出建議。
大數據分析的過程可以劃分為如下7個步驟:(1)業務調研,即明確分析的目標;(2)數據准備,收集需要的數據;(3)數據瀏覽,發現數據可能存在的關聯;(4)變數選擇,找出自變數與因變數;(5)定義模式,確定模型;(6)計算模型的參數;(7)模型評估。
我們以預測學生學習成績為例解釋上述過程。首先,我們的目的是根據學生的行為預測學習成績。接下來,對於傳統的方法來說,通過專家的分析確定需要什麼數據,比如專家提出對學生成績有影響的數據,包括出勤率、作業的完成率等,可以從數據源獲取這樣的數據;大數據分析的方法有所不同,是找到所有可能相關的數據,甚至包括血型等,這些數據與成績之間的關系未必有影響,就算發現了關系也未必可以解釋,但是獲取盡可能多的數據有可能發現未知的關聯關系。
㈧ 大數據可以用傳統方式儲存嗎
可以的。
大數據從獲取到分析的各個階段都可能會涉及到數據集的存儲,考慮到大數據有別於傳統數據集,因此大數據存儲技術有別於傳統存儲技術。大數據一般通過分布式系統、NoSQL資料庫等方式(還有雲資料庫)進行存儲。
㈨ 傳統的數據處理方式能否應對大數據
數據分析行業發展的時間也不短了,以前的數據發展成現在的大數據了。因此有很多人擔憂,傳統的數據處理方法還是否能夠應對大數據,其實這個擔憂是正確的,我們不能總是想著一勞永逸,只有居安思危才能夠讓技術得到發展。下面我們就給大家介紹一下現在傳統數據處理方式和現今大數據的具體情況。
首先我們需要說的就是大數據環境下的數據處理需求。其實大數據環境下數據來源非常豐富且數據類型多樣,存儲和分析挖掘的數據量龐大,對數據展現的要求較高,並且很看重數據處理的高效性和可用性。但是傳統數據處理的方法有什麼不足呢?傳統的數據採集來源單一,且存儲、管理和分析數據量也相對較小,大多採用關系型資料庫和並行數據倉庫即可處理。對依靠並行計算提升數據處理速度方面而言,傳統的並行資料庫技術追求高度一致性和容錯性,根據CAP理論,難以保證其可用性和擴展性。而傳統的數據處理方法是以處理器為中心,而大數據環境下,需要採取以數據為中心的模式,減少數據移動帶來的開銷。因此,傳統的數據處理方法,已經不能適應大數據的需求。所以說我們需要馬上解決這些問題。
那麼大數據的處理流程有什麼步驟呢?每個步驟需要什麼工具呢?其實大數據的基本處理流程與傳統數據處理流程並無太大差異,主要區別在於:由於大數據要處理大量、非結構化的數據,所以在各個處理環節中都可以採用MapRece等方式進行並行處理。
那麼大數據技術為什麼能夠提高數據的處理速度呢?這是因為大數據有並行處理的好工具,這個工具就是MapRece。而大數據可以通過MapRece這一並行處理技術來提高數據的處理速度。MapRece的設計初衷是通過大量廉價伺服器實現大數據並行處理,對數據一致性要求不高,其突出優勢是具有擴展性和可用性,特別適用於海量的結構化、半結構化及非結構化數據的混合處理。當然,MapRece將傳統的查詢、分解及數據分析進行分布式處理,將處理任務分配到不同的處理節點,因此具有更強的並行處理能力。作為一個簡化的並行處理的編程模型,MapRece還降低了開發並行應用的門檻。這是因為MapRece是一套軟體框架,包括Map(映射)和Rece(化簡)兩個階段,可以進行海量數據分割、任務分解與結果匯總,從而完成海量數據的並行處理。
關於MapRece的具體情況我們就給大家介紹到這里了,通過這篇文章我們不難發現,傳統的數據分析工具是不能夠應對大數據的,不過MapRece可以能夠更高效地解決問題。
㈩ 傳統數據和大數據的區別
傳統數據和大數據的區別
無疑,數據信息的大爆炸不斷提醒著我們,未來將會因大數據技術而改變。大數據(Big data)通常用來形容數字化時代下創造出的大量非結構化和半結構化數據。大數據無疑是未來影響各行各業發展的最受矚目的技術之一。2009年時,全世界關於大數據的研究項目還非常有限,從2011年開始,越來越多的管理者開始意識到,大數據將是未來發展不可規避的問題,而到2012年年底,世界財富500 強企業中90%的企業都開展了大數據的項目。IDC的研究顯示,到2015年,大數據市場前景將達到169億美元的規模。當前所有企業的商業數據每隔1.2年就將遞增一倍。
那麼,大數據為什麼成為所有人關注的焦點?大數據帶來了什麼樣的本質性改變?為此,我們與中國計算機學會大數據學術帶頭人、中國人民大學信息學院院長杜小勇教授進行了訪談。
杜小勇教授認為,大數據帶來了三大根本改變:第一、大數據讓人們脫離了對演算法和模型的依賴,數據本身即可幫助人們貼近事情的真相;第二、大數據弱化了因果關系。大數據分析可以挖掘出不同要素之間的相關關系。人們不需要知道這些要素為什麼相關就可以利用其結果,在信息復雜錯綜的現代社會,這樣的應用將大大提高效率;第三、與之前的資料庫相關技術相比,大數據可以處理半結構化或非結構化的數據。這將使計算機能夠分析的數據范圍迅速擴大。
傳統數據和大數據的區別
第一、計算機科學在大數據出現之前,非常依賴模型以及演算法。人們如果想要得到精準的結論,需要建立模型來描述問題,同時,需要理順邏輯,理解因果,設計精妙的演算法來得出接近現實的結論。因此,一個問題,能否得到最好的解決,取決於建模是否合理,各種演算法的比拼成為決定成敗的關鍵。然而,大數據的出現徹底改變了人們對於建模和演算法的依賴。舉例來說,假設解決某一問題有演算法A和演算法B。在小量數據中運行時,演算法A的結果明顯優於演算法B。也就是說,就演算法本身而言,演算法A能夠帶來更好的結果;然而,人們發現,當數據量不斷增大時,演算法B在大量數據中運行的結果優於演算法A在小量數據中運行的結果。這一發現給計算機學科及計算機衍生學科都帶來了里程碑式的啟示:當數據越來越大時,數據本身(而不是研究數據所使用的演算法和模型)保證了數據分析結果的有效性。即便缺乏精準的演算法,只要擁有足夠多的數據,也能得到接近事實的結論。數據因此而被譽為新的生產力。
第二、當數據足夠多的時候,不需要了解具體的因果關系就能夠得出結論。
例如,Google 在幫助用戶翻譯時,並不是設定各種語法和翻譯規則。而是利用Google資料庫中收集的所有用戶的用詞習慣進行比較推薦。Google檢查所有用戶的寫作習慣,將最常用、出現頻率最高的翻譯方式推薦給用戶。在這一過程中,計算機可以並不了解問題的邏輯,但是當用戶行為的記錄數據越來越多時,計算機就可以在不了解問題邏輯的情況之下,提供最為可靠的結果。可見,海量數據和處理這些數據的分析工具,為理解世界提供了一條完整的新途徑。
第三、由於能夠處理多種數據結構,大數據能夠在最大程度上利用互聯網上記錄的人類行為數據進行分析。大數據出現之前,計算機所能夠處理的數據都需要前期進行結構化處理,並記錄在相應的資料庫中。但大數據技術對於數據的結構的要求大大降低,互聯網上人們留下的社交信息、地理位置信息、行為習慣信息、偏好信息等各種維度的信息都可以實時處理,立體完整地勾勒出每一個個體的各種特徵。