① 人口統計大數據分析有什麼產品優勢可信么
首先是全。以全網數據為依託,涵蓋近9億的移動用戶,而且可以自定義選擇全國多個省份的數據統計;其次是精。多維度、多模型的數據分析和比對,可以滿足用戶個性化需求。從春運客流分析到政 府整體監管,人口統計大數據值得信賴。
② 大數據在哪些領域有應用前景
1、電商行業
電商行業是最早將大數據用於精準營銷的行業,它可以根據消費者的習慣提前生產物料和物流管理,這樣有利於美好社會的精細化生產。隨著電子商務的越來越集中,大數據在行業中的數據量變得越大,並且種類非常多。在未來的發展中,大數據在電子商務中有大多的想像,其中主要包括預測趨勢,消費趨勢,區域消費特徵,顧客消費習慣,消費者行為,消費熱點和影響消費的重要因素。
2、金融行業
大數據在金融行業的使用是非常廣泛的,主要使用在交易過程中。現在許多股權交易都是使用大數據演算法進行的。這些演算法能夠越來越多地考慮社交媒體和網站新聞,並且決定接下來的幾秒內是選擇購買還是出售。
3、生物技術
基因技術是人類未來挑戰疾病的重要武器。科學家可以利用大數據技術的應用,這樣能夠加速他們自己的基因和其他動物基因的研究過程,並且還能成為人類未來克服疾病的重要武器之一。技術不僅可以改良作物,還可以利用遺傳技術培育人體器官,消滅細菌等。
③ 用大數據分析人口特徵有什麼優缺點
更清晰年齡段和流動性,但並不能有效判斷競爭力的方向,對於非體力勞動
④ 大數據分析技術應用領域有哪些啊,生活中有用嗎
應該有用的吧
⑤ 大數據分析技術應用領域有哪些
大數據分析應用的十大應用領域!每當我們說到大數據應用分析的時候,很多人都會覺得那是一個龐大的伺服器集群,其實大數據應用分析平台開發在人類社會實踐中發揮著巨大的優勢,它被應用的深度和廣度超乎我們的相像,今天小編給大家介紹一下大數據應用分析平台的十大常見應用領域,一起來了解一下吧。
1、了解和定位客戶:這是大數據分析應用平台目前最廣為人知的應用領域。很多企業熱衷於社交媒體數據、瀏覽器日誌、文本挖掘等各類數據集,通過大數據技術創建預測模型,從而更全面地了解客戶以及他們的行為、喜好,從而對客戶或產品進行定位。
2、了解和優化業務流程:大數據分析應用平台也越來越多地應用於優化業務流程,比如供應鏈或配送路徑優化。通過定位和識別系統來跟蹤貨物或運輸車輛,並根據實時交通路況數據優化運輸路線。
3、提供個性化服務:大數據分析應用平台不僅適用於公司和政府,也適用於我們每個人,比如從智能手錶或智能手環等可穿戴設備採集的數據中獲益。假如:智能手環可以分析人們的卡路里消耗、活動量和睡眠質量等。婚戀網站都使用大數據分析工具和演算法為用戶匹配最合適的對象等。
4、改善醫療保健和公共衛生:大數據分析應用平台的數據分析的能力可以在幾分鍾內解碼整個DNA序列,有助於我們找到新的治療方法,更好地理解和預測疾病模式。更重要的是,大數據分析有助於我們監測和預測流行性或傳染性疾病的暴發時期,可以將醫療記錄的數據與有些社交媒體的數據結合起來分析。
5、提高體育運動技能:如今大多數頂尖的體育賽事都採用了大數據分析技術。可採集並分析運動員在訓練之外跟蹤運動員的營養和睡眠情況。以及運動場所的狀況、天氣狀況、以及學習期間運動員的個人表現做出最佳決策,以減少球員不必要的受傷。
6、提升科學研究:大數據分析應用帶來的無限可能性正在改變科學研究。比如政府需要的人口普查數據、自然災害數據等,變的更容易獲取和分析,從而為我們的健康和社會發展創造更多的價值。
7、提升機械設備性能:大數據分析應用使機械設備更加智能化、自動化。
8、強化安全和執法能力:大數據分析應用在改善安全和執法方面得到了廣泛應用。
9、改善城市和國家建設:分析應用被用於改善我們城市和國家的方方面面。目前很多大城市致力於構建智慧交通。車輛、行人、道路基礎設施、公共服務場所都被整合在智慧交通網路中,以提升資源運用的效率,優化城市管理和服務。
10、金融交易:分析應用在金融交易領域應用也比較廣泛。大多數股票交易都是通過一定的演算法模型進行決策的,如今這些演算法的輸入會考慮來自社交媒體、新聞網路的數據,以便更全面的做出買賣決策。同時根據客戶的需求和願望,這些演算法模型也會隨著市場的變化而變化。
隨著大數據分析應用平台開發成本的降低和人們可接受度的提高,大數據會更加普及到日常生活中,未來將會出現哪些新的應用領域,我們值得期待。
⑥ 大數據可以應用在哪些方面
可以應用在雲計算方面。
大數據具體的應用:
1、洛杉磯警察局和加利福尼亞大學合作利用大數據預測犯罪的發生。
2、google流感趨勢(Google Flu Trends)利用搜索關鍵詞預測禽流感的散布。
3、統計學家內特.西爾弗(Nate Silver)利用大數據預測2012美國選舉結果。
4、麻省理工學院利用手機定位數據和交通數據建立城市規劃。
5、梅西百貨的實時定價機制。根據需求和庫存的情況,該公司基於SAS的系統對多達7300萬種貨品進行實時調價。
6、醫療行業早就遇到了海量數據和非結構化數據的挑戰,而近年來很多國家都在積極推進醫療信息化發展,這使得很多醫療機構有資金來做大數據分析。
7、及時解析故障、問題和缺陷的根源,每年可能為企業節省數十億美元。
8、為成千上萬的快遞車輛規劃實時交通路線,躲避擁堵。
9、分析所有SKU,以利潤最大化為目標來定價和清理庫存。
10、根據客戶的購買習慣,為其推送他可能感興趣的優惠信息。
大數據的用處:
1、與雲計算的深度結合。大數據離不開雲處理,雲處理為大數據提供了彈性可拓展的基礎設備,是產生大數據的平台之一。
自2013年開始,大數據技術已開始和雲計算技術緊密結合,預計未來兩者關系將更為密切。除此之外,物聯網、移動互聯網等新興計算形態,也將一齊助力大數據革命,讓大數據營銷發揮出更大的影響力。
2、科學理論的突破。隨著大數據的快速發展,就像計算機和互聯網一樣,大數據很有可能是新一輪的技術革命。可能會改變數據世界裡的很多演算法和基礎理論,實現科學技術上的突破。
網路--大數據
⑦ 大數據如何激發城市群的「群體智能」
城市群是全球城市化發展的重要趨勢和現象,城市群承擔了核心國家和區域主要的人口與經濟規模,在此基礎上的最終成型,在於形成整個區域中,各個城市產業、經濟功能互補及專業化功能協調的空間結構。在我國城鎮化的後半程(城鎮化率達到50%以後),城市群作為新型城鎮化的主體形態,已經成為我國生產力布局的核心增長點,也是我國創新驅動發展戰略的重要載體和空間平台。城市群的發展進入了新的階段,面臨著從增量擴張到存量提升的轉型提升過程。在這一過程中,大數據與智慧城市技術將深刻地影響城市群的發展變革。
近年來,基於信息技術和數據科學的城市定量研究,成為了城市規劃行業變革的重要推動力量。特別是隨著大數據技術方法的瓶頸不斷被突破,海量數據不斷形成深度積累,大數據研究也出現新的趨勢——逐漸由以往對單個城市內部空間結構的靜態描述,向更大區域尺度的全面研究躍遷。最新的動態系統、復雜網路、多維流空間等研究,已經逐步應用到城市群的理論研究和規劃實踐中。
城市群的本質是流的空間:人流、物流、經濟流、信息流等多維的流。在市場經濟的導向下,多重要素在城市間的流動與融合,促進了城市群的形成與發展。城市群即為建立在這種復雜流網路之上的復合空間。
城市是一個動態的生命體,而城市群作為城市的集合,生命體征的復雜度更是以指數增長。如果說傳統的統計數據像傳統醫學一般,根據經驗為城市群的發展開葯方,那麼,大數據則會像新興的精準醫學那樣,通過對城市群體征的全息檢測,提供個性化、有針對性和精準的治療方案。
對於城市管理部門來說,以數據為基礎,構建動態的監測指標體系和信息化管理平台,是城市群協同發展、智慧提升的必然要求,也是現代化城市群治理體系的一部分。大數據為城市群協同發展提供智能支撐,支撐區域政策的制定科學化、管理的精細化。
而對於開發商來說,隨著城市群發展與區域聯動的進展,以及我國大都市郊區化和要素外溢,各大城市的外圍輻射區域也開始成為我國城市開發新的增長點。大數據可以幫助開發商精準研判城市群價值空間特徵,尋找城市群核心城市外圍輻射區域的價值潛力。通過構建全周期、集成化、定量化、智慧化的城市開發和資本運營平台,優化投資和開發效績。
公眾亦在大數據介入城市群發展的過程中獲益。事實上,各種人流、車流、信息流等大數據,均來自公眾的時空活動行為。每個人都在以「用腳投票」的方式,為城市群的全息觀測和研究提供了行為樣本。基於大數據的人口監測將促進人口的有序流動,有力推動我國城鎮化的健康有序發展,最終為城市群發展的核心主體——居民們提供更完善的福祉。
以往的智慧城市都是單一城市的發展路徑,如今大數據與城市群發展的融合,將實現多個城市的「群體智能」。最新的大數據、深度學習、神經網路等「新IT時代」的技術,將在新時代的城市群發展和運營中全面、綜合、動態地實現數據價值,為城市問題提供與時俱進的系統性解決方案。
大數據能知道用戶需要什麼。
⑧ 大數據的應用領域有哪些
1.了解和定位客戶
這是大數據目前最廣為人知的應用領域。很多企業熱衷於社交媒體數據、瀏覽器日誌、文本挖掘等各類數據集,通過大數據技術創建預測模型,從而更全面地了解客戶以及他們的行為、喜好。
利用大數據,美國零售商Target公司甚至能推測出客戶何時會有Baby;電信公司可以更好地預測客戶流失;沃爾瑪可以更准確的預測產品銷售情況;汽車保險公司能更真實的了解客戶實際駕駛情況。
滑雪場利用大數據來追蹤和鎖定客戶。如果你是一名狂熱的滑雪者,想像一下,你會收到最喜歡的度假勝地的邀請;或者收到定製化服務的簡訊提醒;或者告知你最合適的滑行線路。。。。。。同時提供互動平台(網站、手機APP)記錄每天的數據——多少次滑坡,多少次翻越等等,在社交媒體上分享這些信息,與家人和朋友相互評比和競爭。
除此之外,政府競選活動也引入了大數據分析技術。一些人認為,奧巴馬在2012年總統大選中獲勝,歸功於他們團隊的大數據分析能力更加出眾。
2.
改善醫療保健和公共衛生
大數據分析的能力可以在幾分鍾內解碼整個DNA序列,有助於我們找到新的治療方法,更好地理解和預測疾病模式。試想一下,當來自所有智能手錶等可穿戴設備的數據,都可以應用於數百萬人及其各種疾病時,未來的臨床試驗將不再局限於小樣本,而是包括所有人!
蘋果公司的一款健康APP ResearchKit有效將手機變成醫學研究設備。通過收集用戶的相關數據,可以追蹤你一天走了多少步,或者提示你化療後感覺如何,帕金森病進展如何等問題。研究人員希望這一過程變得更容易、更自動化,吸引更多的參與者,並提高數據的准確度。
大數據技術也開始用於監測早產兒和患病嬰兒的身體狀況。通過記錄和分析每個嬰兒的每一次心跳和呼吸模式,提前24小時預測出身體感染的症狀,從而及早干預,拯救那些脆弱的隨時可能生命危險的嬰兒。
更重要的是,大數據分析有助於我們監測和預測流行性或傳染性疾病的暴發時期,可以將醫療記錄的數據與有些社交媒體的數據結合起來分析。比如,谷歌基於搜索流量預測流感爆發,盡管該預測模型在2014年並未奏效——因為你搜索「流感症狀」並不意味著真正生病了,但是這種大數據分析的影響力越來越為人所知。
3.提供個性化服務
大數據不僅適用於公司和政府,也適用於我們每個人,比如從智能手錶或智能手環等可穿戴設備採集的數據中獲益。Jawbone的智能手環可以分析人們的卡路里消耗、活動量和睡眠質量等。Jawbone公司已經能夠收集長達60年的睡眠數據,從中分析出一些獨到的見解反饋給每個用戶。從中受益的還有網路平台「尋找真愛」,大多數婚戀網站都使用大數據分析工具和演算法為用戶匹配最合適的對象。
4.
了解和優化業務流程
大數據也越來越多地應用於優化業務流程,比如供應鏈或配送路徑優化。通過定位和識別系統來跟蹤貨物或運輸車輛,並根據實時交通路況數據優化運輸路線。
人力資源業務流程也在使用大數據進行優化。Sociometric Solutions公司通過在員工工牌里植入感測器,檢測其工作場所及社交活動——員工在哪些工作場所走動,與誰交談,甚至交流時的語氣如何。美國銀行在使用中發現呼叫中心表現最好的員工——他們制定了小組輪流休息制度,平均業績提高了23%。
如果在手機、鑰匙、眼鏡等隨身物品上粘貼RFID標簽,萬一不小心丟失就能迅速定位它們。假想一下未來可能創造出貼在任何東西上的智能標簽。它們能告訴你的不僅是物體在哪裡,還可以反饋溫度,濕度,運動狀態等等。這將打開一個全新的大數據時代,「大數據」領域尋求共性的信息和模式,那麼孕育其中的「小數據」著重關注單個產品。
5.
改善城市和國家建設
大數據被用於改善我們城市和國家的方方面面。目前很多大城市致力於構建智慧交通。車輛、行人、道路基礎設施、公共服務場所都被整合在智慧交通網路中,以提升資源運用的效率,優化城市管理和服務。
加州長灘市正在使用智能水表實時檢測非法用水,幫助一些房主減少80%的用水量。洛杉磯利用磁性道路感測器和交通攝像頭的數據來控制交通燈信號,從而優化城市的交通流量。據統計目前已經控制了全市4500個交通燈,將交通擁堵狀況減少了約16%。
6.提升科學研究
大數據帶來的無限可能性正在改變科學研究。歐洲核子研究中心(CERN)在全球遍布了150個數據中心,有65,000個處理器,能同時分析30pb的數據量,這樣的計算能力影響著很多領域的科學研究。比如政府需要的人口普查數據、自然災害數據等,變的更容易獲取和分析,從而為我們的健康和社會發展創造更多的價值。
7.提升機械設備性能
大數據使機械設備更加智能化、自動化。例如,豐田普銳斯配備了攝像頭、全球定位系統以及強大的計算機和感測器,在無人干預的條件下實現自動駕駛。Xcel Energy在科羅拉多州啟動了「智能電網」的首批測試,在用戶家中安裝智能電表,然後登錄網站就可實時查看用電情況。「智能電網」還能夠預測使用情況,以便電力公司為未來的基礎設施需求進行規劃,並防止出現電力耗盡的情況。在愛爾蘭,雜貨連鎖店Tescos的倉庫員工佩戴專用臂帶,追蹤貨架上的商品分配,甚至預測一項任務的完成時間。
8.強化安全和執法能力
大數據在改善安全和執法方面得到了廣泛應用。美國國家安全局(NSA)利用大數據技術,檢測和防止網路攻擊(挫敗恐怖分子的陰謀)。警察運用大數據來抓捕罪犯,預測犯罪活動。信用卡公司使用大數據來檢測欺詐交易等等。
2014年2月,芝加哥警察局對大數據生成的「名單」——有可能犯罪的人員,進行通告和探訪,目的是提前預防犯罪。
9.
提高體育運動技能
如今大多數頂尖的體育賽事都採用了大數據分析技術。用於網球比賽的IBM SlamTracker工具,通過視頻分析跟蹤足球落點或者棒球比賽中每個球員的表現。許多優秀的運動隊也在訓練之外跟蹤運動員的營養和睡眠情況。NFL開發了專門的應用平台,幫助所有球隊根據球場上的草地狀況、天氣狀況、以及學習期間球員的個人表現做出最佳決策,以減少球員不必要的受傷。
還有一件非常酷的事情是智能瑜伽墊:嵌入在瑜伽墊中的感測器能對你的姿勢進行反饋,為你的練習打分,甚至指導你在家如何練習。
10.金融交易
大數據在金融交易領域應用也比較廣泛。大多數股票交易都是通過一定的演算法模型進行決策的,如今這些演算法的輸入會考慮來自社交媒體、新聞網路的數據,以便更全面的做出買賣決策。同時根據客戶的需求和願望,這些演算法模型也會隨著市場的變化而變化。
更多精彩:14_spark體系之分布式計算課程Spark 集群搭建+S