導航:首頁 > 網路數據 > 大數據需要的數學知識點

大數據需要的數學知識點

發布時間:2023-03-10 02:06:57

『壹』 學大數據需要什麼基礎知識和能力

大數據的發展歷程總體上可以劃分為三個重要階段,萌芽期、成熟期和大規模應用期,20世紀90年至21世紀初,為萌芽期,隨著,一批商業智能工具和知識管理技術的開始和應用,度過了數據萌芽。

21世紀前十年則為成熟期,主要標志為,大數據解決方案逐漸走向成熟,形成了並行計算與分布式系統兩大核心技,谷歌的GFS和MapRece等大數據技術受到追捧,Hadoop平台開始大行期道,2010年以後,為大規模應用期,標志為,數據應用滲透各行各業,數據驅動決策,信息社會智能化程度快速提高。

點擊鏈接加入群聊【大數據學習交流群】:互聯網科技發展蓬勃興起,人工智慧時代來臨,抓住下一個風口。為幫助那些往想互聯網方向轉行想學習,卻因為時間不夠,資源不足而放棄的人。我自己整理的一份最新的大數據進階資料和高級開發教程, 歡迎進階中和進想深入大數據的小夥伴加入。

數據時代的到來,也推動了數據行業的發展,包括企業使用數據獲取價值,促使了大量人員從事於數據的學習,學習大數據需要掌握基礎知識,接下從我的角度,為大家做個簡要的闡述。

學習大數據需要掌握的知識,初期了解概念,後期就要學習數據技術,主要包括:

1.大數據概念

2.大數據的影響

3.大數據的影響

4.大數據的應用

5.大數據的產業

6.大數據處理架構Hadoop

7.大數據關鍵技術

8.大數據的計算模式

後三個牽涉的數據技技術,就復雜一點了,可以細說一下:

1.大數據處理架構Hadoop:Hadoop的特性、Hadoop生態系統、Hadoop的安裝與使用;

2.大數據關鍵技術技術:數據採集、數據存儲與管理、數據處理與分析、數據隱私與安全;

3.大數據處理計算模式:批處理計算、流計算、圖計算、查詢分析計算

數據的核心技術就是獲取數據價值,獲取數據前提是,先要有數據,這就牽涉數據挖掘了。

一、java語言以java語言為基礎掌握面向對象編程思想所涉及的知識,以及該知識在面向對象編程思想中的應用,培養學生設計程序的能力。掌握程度:精通

二、數據結構與演算法掌握基於JAVA語言的底層數據結構和演算法原理,並且能夠自己動手寫出來關於集合的各種演算法和數據結構,並且了解這些數據結構處理的問題和優缺點。掌握程度:熟練。
三、資料庫原理與MYSQL資料庫掌握關系型資料庫的原理,掌握結構化數據的特性。掌握關系型資料庫的範式。通過MYSQL資料庫掌握通過SQL語言與MYSQL資料庫進行交互。熟練掌握各種復雜SQL語句的編寫。掌握程度:熟練。
四、LINUX操作系統全面了解LINUX。詳解LINUX下的管理命令、用戶管理、網路配置管理等。掌握SHELL腳本編程,能夠根據具體業務進行復雜SHELL腳本的編寫。掌握程度:精通。
五、Hadoop技術學習Hadoop技術的兩個核心:分布式文件系統HDFS和分布式計算框架MapRece。掌握MR的運行過程及相關原理,精通各種業務的MR程序編寫。掌握Hadoop的核心源碼及實現原理。掌握使用Hadoop進行海量數據的存儲、計算與處理。掌握程度:精通。
六、分布式資料庫技術:精通分布式資料庫HBASE、掌握Mongodb及了解其它分布式資料庫技術。精通分布式資料庫原理、應用場景、HBASE資料庫的設計、操作等,能結合HIVE等工具進行海量數據的存儲於檢索。掌握程度:精通。
七、數據倉庫HIVE精通基於hadoop的數據倉庫HIVE。精通HIVESQL的語法,精通使用HIVESQL進行數據操作。內部表、外部表及與傳統資料庫的區別,掌握HIVE的應用場景及Hive與HBase的結合使用。掌握程度:精通。
八、PYTHON語言精通PYTHON語言基礎語法及面向對象。精通PYTHON語言的爬蟲、WEB、演算法等框架。並根據業務可以基於PYTHON語言開發完成的業務功能和系統。掌握程度:精通。
九、機器學習演算法熟練掌握機器學習經典演算法,掌握演算法的原理,公式,演算法的應用場景。熟練掌握使用機器學習演算法進行相關數據的分析,保證分析結果的准確性。掌握程度:熟練。
十、Spark高級編程技術掌握Spark的運行原理與架構,熟悉Spark的各種應用場景,掌握基於SparkRDD的各種運算元的使用;精通SparkStreaming針對流處理的底層原理,熟練應用SparkSql對各種數據源處理,熟練掌握Spark機器學習演算法庫。達到能夠在掌握Spark的各種組件的基礎上,能夠構建出大型的離線或實時的業務項目。掌握程度:精通。
十一、真實大數據項目實戰通過幾個真實的大數據項目把之前學習的知識與大數據技術框架貫穿,學習真實的大數據項目從數據採集、清洗、存儲、處理、分析的完整過程,掌握大數據項目開發的設計思想,數據處理技術手段,解決開發過程中遇到的問題和技術難點如何解決。

『貳』 大數據分析師 應該要學什麼知識

大數據分析師應該要學的知識有,統計概率理論基礎,軟體操作結合分析模型進行實際運用,數據挖掘或者數據分析方向性選擇,數據分析業務應用。

1、統計概率理論基礎

這是重中之重,千里之台,起於壘土,最重要的就是最下面的那幾層。統計思維,統計方法,這里首先是市場調研數據的獲取與整理,然後是最簡單的描述性分析,其次是常用的推斷性分析,方差分析,到高級的相關,回歸等多元統計分析,掌握了這些原理,才能進行下一步。

2、軟體操作結合分析模型進行實際運用

關於數據分析主流軟體有(從上手度從易到難):Excel,SPSS,Stata,R,SAS等。首先是學會怎樣操作這些軟體,然後是利用軟體從數據的清洗開始一步步進行處理,分析,最後輸出結果,檢驗及解讀數據。

3、數據挖掘或者數據分析方向性選擇

其實數據分析也包含數據挖掘,但在工作中做到後面會細分到分析方向和挖掘方向,兩者已有區別,關於數據挖掘也涉及到許多模型演算法,如:關聯法則、神經網路、決策樹、遺傳演算法、可視技術等。

4、數據分析業務應用

這一步也是最難學習的一步,行業有別,業務不同,業務的不同所運用的分析方法亦有區分,實際工作是解決業務問題,因此對業務的洞察能力非常重要。

(2)大數據需要的數學知識點擴展閱讀

分析工作內容

1、搜索引擎分析師(Search Engine Optimization Strategy Analyst,簡稱SEO分析師)是一項新興信息技術職業,主要關注搜索引擎動態,修建網站,拓展網路營銷渠道,網站內部優化,流量數據分析,策劃外鏈執行方案,負責競價推廣。

2、SEO分析師需要精通商業搜索引擎相關知識與市場運作。通過編程,HTML,CSS,JavaScript,MicrosoftASP.NET,Perl,PHP,Python等建立網站進行各種以用戶體驗為主同時帶給公司盈利但可能失敗的項目嘗試。

『叄』 學習大數據分析要用到哪些知識

每一個大數據的愛好者應該心目中都有一個數據分析師的夢吧,我們都知道數據分析師是一個非常神秘的職位,看著一堆數據就能洞悉全局,很神奇吧,今天來給大家送福利了,想提高你的數據分析能力嗎,看下文吧。

1.Excel是否精鑽?
除了常用的Excel函數(sum、average、if、countifs、sumifs、offset、match、index等)之外,Excel圖表(餅圖、線圖、柱形圖、雷達圖等)和簡單分析技能也是經常用的,可以幫助你快速分析業務走勢和異常情況;另外,Excel裡面的函數結合透視表以及VBA功能是完善報表開發的利器,讓你一鍵輕松搞定報表。
2.你需要更懂資料庫
常用的資料庫如MySQL,Sql Server、Oracle、DB2、MongoDB等;除去SQL語句的熟練使用,對於資料庫的存儲讀取過程也要熟練掌握。在對於大數據量處理時,如何想辦法加快程序的運行速度、減少網路流量、提高資料庫的安全性是非常有必要的。
3.掌握數據整理、可視化和報表製作
數據整理,是將原始數據轉換成方便實用的格式,實用工具有Excel、R、Python等工具。數據可視化,是創建和研究數據的視覺表現,方便業務方快速分析數據並定位具體問題,實用工具有Tableau、FineBI、Qlikview.
如果常用excel,那需要用PPT展示,這項技能也需要琢磨透。如果用tableau、FineBI之類的工具做數據可視化,FineBI有推送查看功能,也就是在企業上下建立一套系統,通過許可權的分配讓不同的人看到許可權范圍內的報表。
4.多學幾項技能
大多數據分析師都是從計算機、數學、統計這些專業而來的,也就意味著數學知識是重要基礎。尤其是統計學,更是數據分析師的基本功,從數據採集、抽樣到具體分析時的驗證探索和預測都要用到統計學。
現在社會心理學也逐漸囊括到數據分析師的能力體系中來了,尤其是從事互聯網產品運營的同學,需要了解用戶的行為動向,分析背後的動機。把握了整體方向後,數據分析的過程也就更容易。

『肆』 數據科學與大數據技術對數學的要求

數據科學與大數據技術專業的學分要求按數據科學家(偏統計學)方向和大數據回工程師(偏計算機科學)方向這答兩種類型設置,系統掌握大數據建模與分析的基礎理論及其計算機處理的基本技能及計算機處理的基本技能,熟悉自然科學和社會科學等應用領域中大數據的特徵,能夠綜合運用數據科學相關的理論,以及大數據分析方法、技術和工具解決領域應用中的實際問題

『伍』 學習大數據分析要用到哪些知識

1、需要有應用數學、統計學、數量經濟學專業本科或者工學碩士層次水平的專數學知識背景。屬
2、至少熟練SPSS、STATISTIC、Eviews、SAS等數據分析軟體中的一門。
3、至少能夠用Acess等進行資料庫開發;
4、至少掌握一門數學軟體:matalab,mathmatics進行新模型的構建。
5、至少掌握一門編程語言;
6,當然還要其他應用領域方面的知識,比如市場營銷、經濟統計學等,因為這是數據分析的主要應用領域。

『陸』 大數據專業需要數學功底嗎

學習大數據確實需要一定的數學基礎。數學功底越好,對大數據學習越有幫助,。但並以不是說,數學不好的人就不能學大數據了,這都是大眾對於大數據的誤解,在實際的工作中,大數據可以分為很多崗位,不同的崗位對數學的要求不同,而且大多數大數據崗位對數學的要求並不高。

『柒』 學大數據需要什麼基礎

說到大數據,肯定少不了分析軟體,這應該是大數據工作的根基,但市面上很多各種分析軟體,如果不是過來人,真的很難找到適合自己或符合企業要求的。小編通過各大企業對大數據相關行業的崗位要求,總結了以下幾點:
(1)SQL資料庫的基本操作,會基本的數據管理
(2)會用Excel/SQL做基本的數據分析和展示
(3)會用腳本語言進行數據分析,Python or R
(4)有獲取外部數據的能力,如爬蟲
(5)會基本的數據可視化技能,能撰寫數據報告
(6)熟悉常用的數據挖掘演算法:回歸分析、決策樹、隨機森林、支持向量機等
對於學習大數據,總體來說,先學基礎,再學理論,最後是工具。基本上,每一門語言的學習都是要按照這個順序來的。
1、學習數據分析基礎知識,包括概率論、數理統計。基礎這種東西還是要掌握好的啊,基礎都還沒扎實,知識大廈是很容易倒的哈。
2、你的目標行業的相關理論知識。比如金融類的,要學習證券、銀行、財務等各種知識,不然到了公司就一臉懵逼啦。
3、學習數據分析工具,軟體結合案列的實際應用,關於數據分析主流軟體有(從上手度從易到難):Excel,SPSS,stata,R,Python,SAS等。
4、學會怎樣操作這些軟體,然後是利用軟體從數據的清洗開始一步步進行處理,分析,最後輸出結果,檢驗及解讀數據。
當然,學習數學與應用數學、統計學、計算機科學與技術等理工科專業的人確實比文科生有著客觀的優勢,但能力大於專業,興趣才會決定你走得有多遠。畢竟數據分析不像編程那樣,需要你天天敲代碼,要學習好多的編程語言,數據分析更注重的是你的實操和業務能力。如今的軟體學習都是非常簡單便捷的,我們真正需要提升的是自己的邏輯思維能力,以及敏銳的洞察能力,還得有良好的溝通表述能力。這些都是和自身的努力有關,而不是單純憑借理工科背景就可以啃得下來的。相反這些能力更加傾向於文科生,畢竟好奇心、創造力也是一個人不可或缺的。

『捌』 大數據分析需要哪些知識

數據分析需要掌握的知識:
1、數學知識
數學知識是數據分析師的基礎知識。對於初級數據分析師,了解一些描述統計相關的基礎內容,有一定的公式計算能力即可,了解常用統計模型演算法則是加分。
對於高級數據分析師,統計模型相關知識是必備能力,線性代數(主要是矩陣計算相關知識)最好也有一定的了解。
2、分析工具
對於初級數據分析師,玩轉Excel是必須的,數據透視表和公式使用必須熟練,VBA是加分。另外,還要學會一個統計分析工具,SPSS作為入門是比較好的。
對於高級數據分析師,使用分析工具是核心能力,VBA基本必備,SPSS/SAS/R至少要熟練使用其中之一,其他分析工具(如Matlab)視情況而定。
3、分析思維
比如結構化思維、思維導圖、或網路腦圖、麥肯錫式分析,了解一些smart、5W2H、SWOT等等那就更好了。不一定要掌握多深多全,但一定要了解一些。
4、資料庫知識
大數據大數據,就是數據量很多,Excel就解決不了這么大數據量的時候,就得使用資料庫。如果是關系型資料庫,比如Oracle、mysql、sqlserver等等,你還得要學習使用SQL語句,篩選排序,匯總等等。非關系型資料庫也得要學習,比如:Cassandra、Mongodb、CouchDB、Redis、 Riak、Membase、Neo4j 和 HBase等等,起碼常用的了解一兩個,比如Hbase,Mongodb,redis等。
5、開發工具及環境
比如:Linux OS、Hadoop(存儲HDFS,計算Yarn)、Spark、或另外一些中間件。目前用得多的開發工具Java、python等等語言工具。

『玖』 大數據分析需要學習什麼知識呀

1、學習大數據首先要學習Java基礎
怎樣進行大數據學習的快速入門?學大數據課程之前要先學習一種計算機編程語言。Java是大數據學習需要的編程語言基礎,因為大數據的開發基於常用的高級語言。而且不論是學習hadoop,還是數據挖掘,都需要有編程語言作為基礎。因此,如果想學習大數據開發,掌握Java基礎是必不可少的。

2、學習大數據必須學習大數據核心知識

Hadoop生態系統;HDFS技術;HBASE技術;Sqoop使用流程;數據倉庫工具HIVE;大數據離線分析Spark、Python語言;數據實時分析Storm;消息訂閱分發系統Kafka等。

如果把大數據比作容器,那麼這個容器的容量無限大,什麼都能往裡裝,大數據離不開物聯網,移動互聯網,大數據還和人工智慧、雲計算和機器學習有著千絲萬縷的關系,大數據海量數據存儲要高擴展就離不開雲計算,大數據計算分析採用傳統的機器學習、數據挖掘技術會比較慢,需要做並行計算和分布式計算擴展。
3數學知識,數學知識是數據分析師的基礎知識。對於數據分析師,了解一些描述統計相關的內容,需要有一定公式計算能力,了解常用統計模型演算法。而對於數據挖掘工程師來說,各類演算法也需要熟練使用,對數學的要求是最高的。

編程語言,對於想學大數據的同學,至少需要具備一門編程語言,比如SQL、hadoop、hive查詢、Python等均可。

4、學習大數據可以應用的領域

大數據技術可以應用在各個領域,比如公安大數據、交通大數據、醫療大數據、就業大數據、環境大數據、圖像大數據、視頻大數據等等,應用范圍非常廣泛,大數據技術已經像空氣一樣滲透在生活的方方面面。大數據技術的出現將社會帶入了一個高速發展的時代,這不僅是信息技術的終極目標,也是人類社會發展管理智能化的核心技術驅動力。

閱讀全文

與大數據需要的數學知識點相關的資料

熱點內容
哪些紅頭文件的抬頭下面是雙紅線 瀏覽:638
炒股app有哪個 瀏覽:108
汽車鑰匙編程器哪個好 瀏覽:688
誤刪除文件怎麼恢復 瀏覽:885
360wifi擴展器版本升級 瀏覽:336
word批量刪除某個同一圖片logo 瀏覽:637
蘋果5應用需要證書 瀏覽:531
觸摸屏編程有哪些優勢 瀏覽:550
ps文件存儲環境 瀏覽:74
文件名怎麼改不了大小寫 瀏覽:613
眼睛驗光數據什麼樣算假近視 瀏覽:269
1在編程里代表什麼 瀏覽:193
密碼文件櫃哪裡便宜 瀏覽:949
box文件怎麼打開 瀏覽:114
線切割編程哪個好用 瀏覽:70
反詐app官方已下載怎麼注冊 瀏覽:496
安卓5flash游戲 瀏覽:895
什麼卡有免費微信提示 瀏覽:511
iphone看不了文件管理 瀏覽:783
數據包如何上傳寶貝 瀏覽:885

友情鏈接