Ⅰ 大數據的應用領域有哪些
1.了解和定位客戶
這是大數據目前最廣為人知的應用領域。很多企業熱衷於社交媒體數據、瀏覽器日誌、文本挖掘等各類數據集,通過大數據技術創建預測模型,從而更全面地了解客戶以及他們的行為、喜好。
利用大數據,美國零售商Target公司甚至能推測出客戶何時會有Baby;電信公司可以更好地預測客戶流失;沃爾瑪可以更准確的預測產品銷售情況;汽車保險公司能更真實的了解客戶實際駕駛情況。
滑雪場利用大數據來追蹤和鎖定客戶。如果你是一名狂熱的滑雪者,想像一下,你會收到最喜歡的度假勝地的邀請;或者收到定製化服務的簡訊提醒;或者告知你最合適的滑行線路。。。。。。同時提供互動平台(網站、手機APP)記錄每天的數據——多少次滑坡,多少次翻越等等,在社交媒體上分享這些信息,與家人和朋友相互評比和競爭。
除此之外,政府競選活動也引入了大數據分析技術。一些人認為,奧巴馬在2012年總統大選中獲勝,歸功於他們團隊的大數據分析能力更加出眾。
2.
改善醫療保健和公共衛生
大數據分析的能力可以在幾分鍾內解碼整個DNA序列,有助於我們找到新的治療方法,更好地理解和預測疾病模式。試想一下,當來自所有智能手錶等可穿戴設備的數據,都可以應用於數百萬人及其各種疾病時,未來的臨床試驗將不再局限於小樣本,而是包括所有人!
蘋果公司的一款健康APP ResearchKit有效將手機變成醫學研究設備。通過收集用戶的相關數據,可以追蹤你一天走了多少步,或者提示你化療後感覺如何,帕金森病進展如何等問題。研究人員希望這一過程變得更容易、更自動化,吸引更多的參與者,並提高數據的准確度。
大數據技術也開始用於監測早產兒和患病嬰兒的身體狀況。通過記錄和分析每個嬰兒的每一次心跳和呼吸模式,提前24小時預測出身體感染的症狀,從而及早干預,拯救那些脆弱的隨時可能生命危險的嬰兒。
更重要的是,大數據分析有助於我們監測和預測流行性或傳染性疾病的暴發時期,可以將醫療記錄的數據與有些社交媒體的數據結合起來分析。比如,谷歌基於搜索流量預測流感爆發,盡管該預測模型在2014年並未奏效——因為你搜索「流感症狀」並不意味著真正生病了,但是這種大數據分析的影響力越來越為人所知。
3.提供個性化服務
大數據不僅適用於公司和政府,也適用於我們每個人,比如從智能手錶或智能手環等可穿戴設備採集的數據中獲益。Jawbone的智能手環可以分析人們的卡路里消耗、活動量和睡眠質量等。Jawbone公司已經能夠收集長達60年的睡眠數據,從中分析出一些獨到的見解反饋給每個用戶。從中受益的還有網路平台「尋找真愛」,大多數婚戀網站都使用大數據分析工具和演算法為用戶匹配最合適的對象。
4.
了解和優化業務流程
大數據也越來越多地應用於優化業務流程,比如供應鏈或配送路徑優化。通過定位和識別系統來跟蹤貨物或運輸車輛,並根據實時交通路況數據優化運輸路線。
人力資源業務流程也在使用大數據進行優化。Sociometric Solutions公司通過在員工工牌里植入感測器,檢測其工作場所及社交活動——員工在哪些工作場所走動,與誰交談,甚至交流時的語氣如何。美國銀行在使用中發現呼叫中心表現最好的員工——他們制定了小組輪流休息制度,平均業績提高了23%。
如果在手機、鑰匙、眼鏡等隨身物品上粘貼RFID標簽,萬一不小心丟失就能迅速定位它們。假想一下未來可能創造出貼在任何東西上的智能標簽。它們能告訴你的不僅是物體在哪裡,還可以反饋溫度,濕度,運動狀態等等。這將打開一個全新的大數據時代,「大數據」領域尋求共性的信息和模式,那麼孕育其中的「小數據」著重關注單個產品。
5.
改善城市和國家建設
大數據被用於改善我們城市和國家的方方面面。目前很多大城市致力於構建智慧交通。車輛、行人、道路基礎設施、公共服務場所都被整合在智慧交通網路中,以提升資源運用的效率,優化城市管理和服務。
加州長灘市正在使用智能水表實時檢測非法用水,幫助一些房主減少80%的用水量。洛杉磯利用磁性道路感測器和交通攝像頭的數據來控制交通燈信號,從而優化城市的交通流量。據統計目前已經控制了全市4500個交通燈,將交通擁堵狀況減少了約16%。
6.提升科學研究
大數據帶來的無限可能性正在改變科學研究。歐洲核子研究中心(CERN)在全球遍布了150個數據中心,有65,000個處理器,能同時分析30pb的數據量,這樣的計算能力影響著很多領域的科學研究。比如政府需要的人口普查數據、自然災害數據等,變的更容易獲取和分析,從而為我們的健康和社會發展創造更多的價值。
7.提升機械設備性能
大數據使機械設備更加智能化、自動化。例如,豐田普銳斯配備了攝像頭、全球定位系統以及強大的計算機和感測器,在無人干預的條件下實現自動駕駛。Xcel Energy在科羅拉多州啟動了「智能電網」的首批測試,在用戶家中安裝智能電表,然後登錄網站就可實時查看用電情況。「智能電網」還能夠預測使用情況,以便電力公司為未來的基礎設施需求進行規劃,並防止出現電力耗盡的情況。在愛爾蘭,雜貨連鎖店Tescos的倉庫員工佩戴專用臂帶,追蹤貨架上的商品分配,甚至預測一項任務的完成時間。
8.強化安全和執法能力
大數據在改善安全和執法方面得到了廣泛應用。美國國家安全局(NSA)利用大數據技術,檢測和防止網路攻擊(挫敗恐怖分子的陰謀)。警察運用大數據來抓捕罪犯,預測犯罪活動。信用卡公司使用大數據來檢測欺詐交易等等。
2014年2月,芝加哥警察局對大數據生成的「名單」——有可能犯罪的人員,進行通告和探訪,目的是提前預防犯罪。
9.
提高體育運動技能
如今大多數頂尖的體育賽事都採用了大數據分析技術。用於網球比賽的IBM SlamTracker工具,通過視頻分析跟蹤足球落點或者棒球比賽中每個球員的表現。許多優秀的運動隊也在訓練之外跟蹤運動員的營養和睡眠情況。NFL開發了專門的應用平台,幫助所有球隊根據球場上的草地狀況、天氣狀況、以及學習期間球員的個人表現做出最佳決策,以減少球員不必要的受傷。
還有一件非常酷的事情是智能瑜伽墊:嵌入在瑜伽墊中的感測器能對你的姿勢進行反饋,為你的練習打分,甚至指導你在家如何練習。
10.金融交易
大數據在金融交易領域應用也比較廣泛。大多數股票交易都是通過一定的演算法模型進行決策的,如今這些演算法的輸入會考慮來自社交媒體、新聞網路的數據,以便更全面的做出買賣決策。同時根據客戶的需求和願望,這些演算法模型也會隨著市場的變化而變化。
更多精彩:14_spark體系之分布式計算課程Spark 集群搭建+S
Ⅱ 大數據應用的領域主要有哪些
大數據是信息技術與專業技術、信息技術產業與各行業領域緊密融合的典型領域,有著旺盛的應用需求、廣闊的應用前景。為把握這一新興領域帶來的新機遇,需要不斷跟蹤研究大數據,不斷提升對大數據的認知和理解,堅持技術創新與應用創新的協同共進,加快經濟社會各領域的大數據開發與利用,推動國家、行業、企業對於數據的應用需求和應用水平進入新的階段。
Ⅲ 大數據的應用領域有哪些
近年來,大數據不斷向世界的各行各業滲透,影響著我們的衣食住行。例如,網上購物時,經常會發現電子商務門戶網站向我們推薦商品,往往這類商品都是我們最近需要的。這是因為用戶上網行為軌跡的相關數據都會被搜集記錄,並通過大數據分析,使用推薦系統將用戶可能需要的物品進行推薦,從而達到精準營銷的目的。下面簡單介紹幾種大數據的應用場景。
大數據讓就醫看病更簡單。過去,對於患者的治療方案,大多數都是通過醫師的經驗來進行,優秀的醫師固然能夠為患者提供好的治療方案,但由於醫師的水平不相同,所以很難保證患者都能夠接受最佳的治療方案。
而隨著大數據在醫療行業的深度融合,大數據平台積累了海量的病例、病例報告、治癒方案、葯物報告等信息資源.所有常見的病例、既往病例等都記錄在案,醫生通過有效、連續的診療記錄,能夠給病人優質、合理的診療方案。這樣不僅提高醫生的看病效率,而且能夠降低誤診率,從而讓患者在最短的時間接受最好的治療。下面列舉大數據在醫療行業的應用,具體如下。
(1) 優化醫療方案,提供最佳治療方法。
面對數目及種類眾多的病菌、病毒,以及腫瘤細胞時,疾病的確診和治療方案的確定也是很困難的。藉助於大數據平台,可以搜集不同病人的疾病特徵、病例和治療方案,從而建立醫療行業的病人分類資料庫。如果未來基因技術發展成熟,可以根據病人的基因序列特點進行分類,建立醫療行業的病人分類資料庫。在醫生診斷病人時可以參考病人的疾病特徵、化驗報告和檢測報告,參考疾病資料庫來快速幫助病人確診,明確地定位疾病。在制訂治療方案時,醫生可以依據病人的基因特點,調取相似基因、年齡、人種、身體情況相同的有效治療方案,制訂出適合病人的治療方案,幫助更多人及時進行治療。同時這些數據也有利於醫葯行業研發出更加有效的葯物和醫療器械。
(2)有效預防預測疾病。
解決患者的疾病,最為簡單的方式就是防患於未然。通過大數據對於群眾的人體數據監控,將各自的健康數據、生命體征指標都集合在資料庫和健康檔案中。通過大數據分析應用,推動覆蓋全生命周期的預防、治療、康復和健康管理的一體化健康服務,這是未來健康服務管理的新趨勢。當然,這一點不僅需 要醫療機構加快大數據的建設,還需要群眾定期去做檢查,及時更新數據,以便通過大數據來預防和預測疾病的發生,做到早治療、早康復。當然,隨著大數據的不斷發展,以及在各個領域的應用,一些大規模的流感也能夠通過大數據實現預測。
隨著大數據技術的應用,越來越多的金融企業也開始投身到大數據應用實踐中。麥肯錫的一份研究顯示,金融業在大數據價值潛力指數中排名第一。下面列舉若干大數據在金融行業的典型應用,具體如下。
(1) 精準營銷。
銀行在互聯網的沖擊下,迫切需要掌握更多用戶信息,繼而構建用戶360立體畫像,即可對細分的客戶進行精準營銷、實時營銷等個性化智慧營銷。
(2) 風險管控。
應用大數據平台,可以統一管理金融企業內部多源異構數據和外部徵信數據,更好地完善風控體系。內部可保證數據的完整性與安全性,外部可控制用戶風險。
(3) 決策支持。
通過大數據分析方法改善經營決策,為管理層提供可靠的數據支撐,從而使經營決策更高效、敏捷、精準。
(4) 服務創新。
通過對大數據的應用,改善與客戶之間的交互、增加用戶黏性,為個人與政府提供增值服務,不斷增強金融企業業務核心競爭力。
(5) 產品創新。
通過高端數據分析和綜合化數據分享,有效對接銀行、保險、信託、基金等各類金融產品,使金融企業能夠從其他領域借鑒並創造出新的金融產品。
美國零售業曾經有這樣一個傳奇故事,某家商店將紙尿褲和啤酒並排放在一起銷售,結果紙尿褲和啤酒的銷量雙雙增長!為什麼看起來風馬牛不相及的兩種商品搭配在一起,能取到如此驚人的效果呢?後來經過分析發現,這些購買者多數是已婚男士,這些男士在為小孩購買尿不濕的同時,會同時為自己購買一些啤酒。發現這個秘密後,沃爾瑪超市就大膽地將啤酒擺放在尿不濕旁邊,這樣顧客購買的時候更方便,銷量自然也會大幅上升。
之所以講「啤酒-尿布」這個例子,其實是想告訴大家,挖掘大數據潛在的價值,是零售業競爭的核心競爭力,下面列舉若干大數據在零售業的創新應用,具體如下。
(1) 精準定位零售行業市場。
企業想進人或開拓某一區域零售行業市場,首先要進行項目評估和可行性分析,只有通過項目評估和可行性分析才能最終決定是否適合進人或者開拓這塊市場。通常需要分析這個區域流動人口是多少?消費水平怎麼樣?客戶的消費習慣是什麼?市場對產品的認知度怎麼樣?當前的市場供需情況怎麼樣等等,這些問題背後包含的海量信息構成了零售行業市場調研的大數據,對這些大數據的分析就是市場定位過程。
(2) 支撐行業收益管理。
大數據時代的來臨,為企業收益管理工作的開展提供了更加廣闊的空間。需求預測、細分市場和敏感度分析對數據需求量很大,而傳統的數據分析大多採集的是企業自身的歷史數據來進行預測和分析,容易忽視整個零售行業信息數據,因此難免使預測結果存在偏差。企業在實施收益管理過程中如果能在自有數據的基礎上,依靠一些自動化信息採集軟體來收集更多的零售行業數據,了解更多的零售行業市場信息,這將會對制訂准確的收益策略,贏得更高的收益起到推進作用。
(3) 挖掘零售行業新需求。
作為零售行業企業,如果能對網上零售行業的評論數據進行收集,建立網評大資料庫,然後再利用分詞、聚類、情感分析了解消費者的消費行為、價值取向、評論中體現的新消費需求和企業產品質量問題,以此來改進和創新產品,量化產品價值,制定合理的價格及提高服務質量,從中獲取更大的收益。
Ⅳ 大數據可以應用在哪些方面
可以應用在雲計算方面。
大數據具體的應用:
1、洛杉磯警察局和加利福尼亞大學合作利用大數據預測犯罪的發生。
2、google流感趨勢(Google Flu Trends)利用搜索關鍵詞預測禽流感的散布。
3、統計學家內特.西爾弗(Nate Silver)利用大數據預測2012美國選舉結果。
4、麻省理工學院利用手機定位數據和交通數據建立城市規劃。
5、梅西百貨的實時定價機制。根據需求和庫存的情況,該公司基於SAS的系統對多達7300萬種貨品進行實時調價。
6、醫療行業早就遇到了海量數據和非結構化數據的挑戰,而近年來很多國家都在積極推進醫療信息化發展,這使得很多醫療機構有資金來做大數據分析。
7、及時解析故障、問題和缺陷的根源,每年可能為企業節省數十億美元。
8、為成千上萬的快遞車輛規劃實時交通路線,躲避擁堵。
9、分析所有SKU,以利潤最大化為目標來定價和清理庫存。
10、根據客戶的購買習慣,為其推送他可能感興趣的優惠信息。
大數據的用處:
1、與雲計算的深度結合。大數據離不開雲處理,雲處理為大數據提供了彈性可拓展的基礎設備,是產生大數據的平台之一。
自2013年開始,大數據技術已開始和雲計算技術緊密結合,預計未來兩者關系將更為密切。除此之外,物聯網、移動互聯網等新興計算形態,也將一齊助力大數據革命,讓大數據營銷發揮出更大的影響力。
2、科學理論的突破。隨著大數據的快速發展,就像計算機和互聯網一樣,大數據很有可能是新一輪的技術革命。可能會改變數據世界裡的很多演算法和基礎理論,實現科學技術上的突破。
網路--大數據
Ⅳ 大數據時代創新創業的三個方向和四大挑戰
大數據時代創新創業的三個方向和四大挑戰
大數據時代創新創業的三個方向和四大挑戰【導語】從傳統互聯網的人機互聯,人人互聯,到工業互聯網的物物互聯,人機物三種端各自互聯,才帶來大數據的產生,利用雲進行大數據的存儲和計算,實現數據的融合和服務,數據從哪裡來,到哪裡去,數據如何關聯,如何找到市場需求實現價值是關鍵。數據採集加工的跑馬圈地已入中盤,數據分析與應用的商業模式才剛剛開盤,而這需要模式具備可持續性和可擴展性。如今時代變了,以前以企業為核心的理念轉向以消費者、以用戶為核心的理念,以前的設計在進行創意時以往主要靠拍腦袋決策,如今需要數據的支持和支撐來指導創意。基於大數據的創新創業面臨的挑戰,主要有四個方面:一是拿到可以利用的數據比較難,目前不少創業公司都是基於互聯網上公開的數據在進行應用開發。二是大數據應用可能威脅到企業中傳統的角色地位甚至生存,這就涉及到與傳統利益的沖突,因此大數據應用推廣需要一把手牽頭推動。第三個瓶頸是人力資源,不管美國還是中國大數據人才非常緊缺,包括數據科學家和數據分析師,這些人才需要高校和企業一起合作來進行培養。
第四關於投資的難度加大,需要有更多大數據商業應用成功的項目和例子來引領投資的方向。
大數據時代創新創業的三個方向和四大挑戰
——ADEC聯手浙大、五葉草大數空間舉辦「大數據時代的創新創業實踐與思考」研討會
在大眾創新、萬眾創業的熱潮中,基於大數據的創業創新備受關注。12月17日,阿里數據經濟研究中心(ADEC)、浙江大學管理學院、五葉草大數空間三者攜手合作,邀請20餘位浙大學者走入雲棲小鎮,在杭州這個創新創業的基地,聆聽大數據創業創新實踐者的感受,共同開展「大數據時代創業創新的實踐和思考」的相關話題研討。
三家大數據創新創業領域的企業數能科技、華院數據和洛可可公司的負責人給大家分享了他們的實踐方向、面臨挑戰以及心得體會。在分享結束後,就大家關注的話題分組討論的環節受到參會企業以及研究者們的歡迎。
三個方向和四大挑戰
浙江大學管理學院教授劉淵老師在分享中提到,從傳統互聯網的人機互聯,人人互聯,到工業互聯網的物物互聯,人機物三種端各自互聯,才帶來大數據的產生,利用雲進行大數據的存儲和計算,實現數據的融合和服務,數據從哪裡來,到哪裡去,數據如何關聯,如何找到市場需求實現價值是關鍵。
圖為浙江大學管理學院教授劉淵
以浙江大學郭斌老師為組長的小組認為大數據創新創業的商業模式有三個方向(Analytics , Data, Services ,ADS)值得關注,其中A相當於為企業提供數據的計算分析能力;第二類D是提供數據為主,要做有效的決策背後所使用的數據可能來源於多個數據源,可以集聚數據成為運營的資源;第三類S相當於提供基於數據的服務,這種服務要嵌入到企業運營的業務流程。
以鄭剛老師為代表的小組總結了基於大數據的創新創業面臨的挑戰,主要有以下四個方面:一是拿到可以利用的數據比較難,目前不少創業公司都是基於互聯網上公開的數據在進行應用開發,二是大數據應用可能威脅到企業中傳統的角色地位甚至生存,這就涉及到與傳統利益的沖突,因此大數據應用推廣需要一把手牽頭推動;第三個瓶頸是人力資源,不管美國還是中國大數據人才非常緊缺,包括數據科學家和數據分析師,這些人才需要高校和企業一起合作來進行培養;第四關於投資的難度加大,需要有更多大數據商業應用成功的項目和例子來引領投資的方向。
大數據創新創業的三個實踐
數能科技:數據分析老兵的創業之路
數能科技的總經理張曉明先生在國外有20多年的數據分析的經驗,他在分享中談到,美國的大數據指的是用常規方法無法處理的數據,比如音頻、視頻等數據,而中國的大數據實際上是大數據+小數據,以電影行業為例,通常都是數據採集後轉化為小數據來進行統計分析和數據挖掘。
圖為數能科技的總經理張曉明
張總認為,中國發展大數據面臨三大挑戰:一是數據孤島現象嚴重,二是行業知識缺乏,在業務、技術和行政人員三方面溝通比較困難,跨學科的溝通以前比較缺乏,使得整個行業發展在應用層面的發展不快,三是過去中國的發展是粗曠式的,哪有機會往哪跑,現在是精細化管理,進行資源的優化配置,而政府官員對這種需求的優先順序不高。
在大數據的商業模式方面,張總認為,數據採集加工的跑馬圈地已入中盤,數據分析與應用的商業模式才剛剛開盤,而這需要模式具備可持續性和可擴展性,其中人才也是發展的一個瓶頸,尤其欠缺具備硬實力和軟實力的數據分析師,尤其是軟實力方面對於理工科學生來說更難,軟實力主要指的是溝通、好奇心和業務理解力。
數能科技開發的「電影票房預測」應用和「電影排片寶」應用都是典型的基於數據的新應用,電影票房預測每天早晨9點半會發布當天的票房預測結果,希望成為全國以及各個城市電影票房的預測風向標,為發行人進行精準營銷提供依據,「電影排片寶」應用通過收集來自媒體、影院的歷史數據、網上售票的預售數據等信息為各大影院排片提供建議。這種應用場景還可以衍生到客流預測與資源優化管理,比如在旅遊景點、大型超市等。
華院數據:數據分析人才基地的孵化新模式
國內專業的數據分析挖掘人才有很多都來自於華院數據,來自華院數據的執行總裁麥星在分享「華院數據——產業大數據生態的深度孵化器」的主題時談到,華院數據目前聚焦是以大數據行業解決方案為核心,基於自己多年的技術積累,提供數據互聯、人工智慧引擎等核心能力和產品,融入於垂直行業,在各行業孵化出獨立、專注、聚焦的大數據子公司。
圖為華院數據的執行總裁麥星
目前已經孵化了數雲、數創、數尊、華院分析等多家大數據+電商、零售、O2O、運營商的創業公司,這些創業公司形成產業大數據的生態,比如數雲科技是電商數據應用的創業公司,為阿里巴巴平台上的商家提供CRM解決方案,連續三年都是金牌淘拍檔。
洛可可:傳統工業設計公司的大數據創新轉向消費者為中心
洛可可作為一家工業設計公司,它所推出的一款55度杯子一上市就備受歡迎,杭州分公司負責人夏治朋在分享時提到,如今時代變了,以前以企業為核心的理念轉向以消費者、以用戶為核心的理念,以前的設計在進行創意時以往主要靠拍腦袋決策,如今需要數據的支持和支撐來指導創意,而且數據不僅是B端的需求,更重要的需要最終消費者的需求,讓創意和設計更加精準。
圖為洛可可杭州分公司總經理夏治朋
以前的產品只有功能,現在的產品還要有服務、有情感,產品具備智能的基礎需要有大數據,現在的產品大都是軟硬體結合的,同時還有app,從而了解用戶的行為和習慣,通過App端數據的抓取來獲知用戶的行為和習慣,從而改變創意和設計,使得用戶感知到產品是為之定製的。
大數據的創新創業剛剛開始
在信息經濟發展迅猛的今天,隨著數據扮演生產要素的角色,雲計算發揮公共計算基礎設施的作用,數據的開放、共享與流動成為可能,數據的融合激發新的生產力。與以往任何一個時代相比,大數據時代的創業創新將擁有更多的機會、更大的空間。雖然現階段我國數據相關的法規政策尚不完善,基於數據的創業創新實踐尚在探索階段,業務和服務模式還不成熟,不確定性正意味著更多機會,因此我國不斷涌現出企業進行基於大數據的新模式的嘗試和探索。阿里數據經濟研究中心(ADEC)期待與更多學界研究者進行深入合作,共同推動中國數據經濟的良性快速發展。
Ⅵ 大數據如何創新應用在社會治理、民生服務、產業升級等領域
大數據促進我國經濟社會創新發展
本文作者:工信部賽迪研究院互聯網研究所 陸峰博士
近日,國務院印發《「十三五」國家信息化規劃》,明確提出要建立統一開放的大數據體系,加強數據資源規劃建設,構建統一高效、互聯互通、安全可靠的國家數據資源體系,推動數據應用,強化數據資源管理,注重數據安全保護。
數據與煤炭、石油等能源資源一樣,是國家基礎性和戰略性資源。近兩年來,我國大數據產業生態體系不斷完善,管理服務應用創新層出不窮,新服務、新模式、新業態不斷涌現,為推進產業轉型升級、創新社會治理模式、優化民生保障服務提供了重要保障,成為中國經濟社會創新發展的重要驅動力。加快推進大數據在經濟社會各領域創新應用,促進產業創新、管理創新、服務創新和治理創新,已經成為落實創新、協調、綠色、開放、共享五大發展理念重要抓手,成為推動中國經濟社會創新發展重要途徑。
一、大數據促進了產業發展模式創新,推動了產業轉型升級和提質增效
一是大數據促進傳統產業組織和運行模式創新,讓傳統產業研發設計、生產製造、物流運輸、售後服務更加精準、高效和智能。基於客戶需求反饋大數據的研發設計模式,有效解決了研發設計閉門造車問題,讓企業研發設計更加具有針對性和導向性。物流大數據有效解決了物流運輸信息不對稱問題,讓物流資源調度更加優化和智能,物流倉儲、車輛、人員等物流資源利用更加匹配和高效。生產製造大數據解決了生產數據車間流動問題,讓企業生產流線更加柔性化,有效支撐了個性化定製、體驗式製造、網路製造等新型製造業態。遠程運維、在線監測等大數據有效解決了大型機械裝備售後管理和維修問題,加強了產品的全生命周期管理,實現了對產品故障提前智能預警,促進了維修資源的優化配置,顯著縮短了維修周期。
二是大數據促進了新型信息服務業態的孵化,各領域大數據分析挖掘行業信息服務快速崛起。營銷、徵信、互聯網金融等領域大數據信息服務的崛起,讓產業經濟發展更加高效、健康。營銷大數據信息服務的發展,指導了企業商業規劃,優化商業資源配置,提高商業營銷效率,實現了精準營銷。徵信大數據信息服務的發展,有效解決了交易雙方信用信息不對稱問題,提高了交易可靠性保障,讓商業活動發展更加守信和健康。互聯網金融大數據信息服務的發展,縮減了互聯網金融運營成本,降低了普惠金融的發展門檻,有效解決了中小企業短期資金缺口問題,對傳統金融服務起到了有效補充。
三是大數據倒逼著信息通信技術加速創新,為我國信息通信產業實現後發趕超、由大變強提供了難得歷史機遇。大數據技術倒逼著傳統單機數據存儲和計算分析模式向網路分布式存儲和協同計算模式方向發展,對主機存儲、網路傳輸、計算控制提出了新的要求,倒逼了存儲、傳輸、計算等技術升級換代,為我國企業利用互聯網產業發展契機,推進存儲、傳輸、計算等技術自主可控提供了歷史機遇。
二、大數據促進了社會治理模式創新,加速了國家治理能力和治理體系現代化
一是大數據提升了政府社會管理能力,基於大數據的社會管理模式讓社會管理更加主動、精準、高效。城市管網、園林綠化、市容市貌等市政管理大數據的採集、挖掘和利用,加強了對城市基礎運行部件的實時監控和智能管理,優化了市政管理資源的配置,促進了城市綠色、清潔、高效、安全運行。公路、鐵路、地鐵、水運、航空等交通大數據的採集、挖掘和利用,有效指導了道路交通規劃,促進了交通運輸資源配置優化,實現了對交通的實時疏導能力,提高了對交通事故的預判能力,更好地滿足公眾安全、高效出行需要。水災、火災、台風等應急救災大數據的採集、挖掘和利用,提高了對災難發生的預判能力,優化了救災資源配置和調度,強化了災難發展動向科學評估,促進了災難損失的降低。城市規劃大數據的採集、挖掘和利用,讓城市居住和產業規劃布局更加科學合理,實現了人口早晚合理潮汐流動,降低了城市交通擁堵,促進了城市宜商宜居和產城融合。
二是大數據提升了政府宏觀調控能力,讓宏觀調控更加精準和科學。電子支付、移動支付、互聯網金融等金融大數據的採集、挖掘和利用,實現了國家對金融運行精準掌控,提高了國家對金融運行的綜合分析能力和金融調控的決策能力。電子商務大數據的採集、挖掘和利用,實現了國家對社會商貿活動運行狀態的有效把控,促進了供需調控的精準化,為了推進供給側改革、促進產業結構調整、優化產業布局提供了科學依據。煤炭、電力、石油等能源大數據的採集、挖掘和利用,實現了國家對全社會經濟運行活躍性的有效評估,為推進節能減排、加強環境治理、優化產業政策提供了科學依據。
三是大數據提升了政府市場監管能力,強化線上線下一體化監管,實現事中監管和事前預防有機結合。煤礦、非煤礦山、煙花爆竹、石化冶煉、危化品等企業安全生產大數據的採集、挖掘和利用,提高了重點危險源企業安全生產在線監管水平,實現了對重點危險源風險的科學預判,有效防範了潛在事故和重特大事故發生,降低了安全生產事故發生概率。食品、葯品等大數據的採集、挖掘和利用,強化了產品全生命周期監管,提高了產品的溯源能力,保障了涉及民生產品安全。銀行、證券、外管等金融大數據的採集、挖掘、利用,強化了對洗錢、詐騙、非法集資、內幕操作等非法金融活動監管,有效防範了金融系統性風險的發生,保障了金融運行的穩定。金融、納稅、環保、行政處罰、刑事處罰等領域信用大數據的採集、挖掘和利用,促進了信用信息「全國一張網」建設,市場主體誠信檔案、行業黑名單制度和市場退出機制逐步健全,強化了聯合激勵與懲戒機制,實現了讓「守信者一路綠燈,失信者處處受限」。同時,大數據應用完善了政府市場監管機制,實現了讓權力運行處處留痕,把執法權力關進了「數據鐵籠」。
四是大數據提升了政府網路空間治理能力,網路社會治理更加高效、科學。網路輿情大數據的採集、挖掘和利用,提高了對網路社會關注焦點的即時發現能力,加強了對物理社會潛在燃點的研判,倒逼社會重要問題解決,為解決社會問題提供了有效的決策數據支撐和贏得寶貴時間窗口期。網路安全大數據的採集、挖掘和利用,強化了對網路安全態勢的全面感知,提高了網路黑客攻擊發現能力,完善了網路安全保障體系,提升了對網路空間的管控能力。
三、大數據促進了民生服務模式創新,提升了民生保障便民、利民和惠民水平
一是大數據促進了民生服務資源優化配置,以人為本發展理念得到更加充分落實。大眾出行大數據的採集、挖掘和利用,促進了公共交通運輸資源配置,提升對道路交通的實時誘導,實現讓大眾出行道路更加順暢和換乘更加銜接。電、水、熱、氣、通信等服務大數據的採集、挖掘和利用,促進了服務資源的優化調度配置,讓服務更加均衡協調。流動人口、老年人口、學前兒童、居住人口等大數據的採集、挖掘和利用,完善了流動人口計劃生育、子女入學、醫療保障等服務,促進了醫養、學前教育、生活服務等資源優化配置。
二是大數據提高了大眾醫療衛生保障水平,構建起了人類生命新守護環。電子病歷、居民健康檔案、可穿戴智能健康設備數據等醫療衛生大數據的採集、挖掘和利用,提高醫療機構臨床決策智能化水平和遠程病人監控精準化水平,提升了衛生部門公共衛生和公眾健康監控的效率,縮短科研機構醫療葯品研發周期,為全社會防控大規模疫情發生、優化醫療資源配置、提高人的健康保障提供了有效的決策依據。
大數據正在深刻影響和改變世界發展,對產業發展、社會治理、民生服務帶來影響才剛剛開始,應用前景非常寬廣。牢牢把握科技革命歷史機遇,率先搶佔大數據發展先機,大力發展數據產業,推進大數據在經濟社會各領域深入應用,完善大數據採集挖掘、存儲傳輸、流通交易、安全保障等相關制度,充分釋放數據資源紅利,必將為中國經濟社會創新發展注入新的發展動力,推動中國經濟社會發展邁上新的發展台階、開啟發展新方位。
(聯系郵箱:[email protected])
Ⅶ 大數據三大核心技術:拿數據、算數據、賣數據!
大數據的由來
對於「大數據」(Big data)研究機構Gartner給出了這樣的定義。「大數據」是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力來適應海量、高增長率和多樣化的信息資產。
1
麥肯錫全球研究所給出的定義是:一種規模大到在獲取、存儲、管理、分析方面大大超出了傳統資料庫軟體工具能力范圍的數據集合,具有海量的數據規模、快速的數據流轉、多樣的數據類型和價值密度低四大特徵。
大數據技術的戰略意義不在於掌握龐大的數據信息,而在於對這些含有意義的數據進行專業化處理。換而言之,如果把大數據比作一種產業,那麼這種產業實現盈利的關鍵,在於提高對數據的「加工能力」,通過「加工」實現數據的「增值」。
從技術上看,大數據與雲計算的關系就像一枚硬幣的正反面一樣密不可分。大數據必然無法用單台的計算機進行處理,必須採用分布式架構。它的特色在於對海量數據進行分布式數據挖掘。但它必須依託雲計算的分布式處理、分布式資料庫和雲存儲、虛擬化技術。
大數據需要特殊的技術,以有效地處理大量的容忍經過時間內的數據。適用於大數據的技術,包括大規模並行處理(MPP)資料庫、數據挖掘、分布式文件系統、分布式資料庫、雲計算平台、互聯網和可擴展的存儲系統。
最小的基本單位是bit,按順序給出所有單位:bit、Byte、KB、MB、GB、TB、PB、EB、ZB、YB、BB、NB、DB。
大數據的應用領域
大數據無處不在,大數據應用於各個行業,包括金融、 汽車 、餐飲、電信、能源、體能和 娛樂 等在內的 社會 各行各業都已經融入了大數據的印跡。
製造業,利用工業大數據提升製造業水平,包括產品故障診斷與預測、分析工藝流程、改進生產工藝,優化生產過程能耗、工業供應鏈分析與優化、生產計劃與排程。
金融行業,大數據在高頻交易、社交情緒分析和信貸風險分析三大金融創新領域發揮重大作用。
汽車 行業,利用大數據和物聯網技術的無人駕駛 汽車 ,在不遠的未來將走入我們的日常生活。
互聯網行業,藉助於大數據技術,可以分析客戶行為,進行商品推薦和針對性廣告投放。
電信行業,利用大數據技術實現客戶離網分析,及時掌握客戶離網傾向,出台客戶挽留措施。
能源行業,隨著智能電網的發展,電力公司可以掌握海量的用戶用電信息,利用大數據技術分析用戶用電模式,可以改進電網運行,合理設計電力需求響應系統,確保電網運行安全。
物流行業,利用大數據優化物流網路,提高物流效率,降低物流成本。
城市管理,可以利用大數據實現智能交通、環保監測、城市規劃和智能安防。
體育 娛樂 ,大數據可以幫助我們訓練球隊,決定投拍哪種 題財的 影視作品,以及預測比賽結果。
安全領域,政府可以利用大數據技術構建起強大的國家安全保障體系,企業可以利用大數據抵禦網路攻擊,警察可以藉助大數據來預防犯罪。
個人生活, 大數據還可以應用於個人生活,利用與每個人相關聯的「個人大數據」,分析個人生活行為習慣,為其提供更加周到的個性化服務。
大數據的價值,遠遠不止於此,大數據對各行各業的滲透,大大推動了 社會 生產和生活,未來必將產生重大而深遠的影響。
大數據方面核心技術有哪些?
大數據技術的體系龐大且復雜,基礎的技術包含數據的採集、數據預處理、分布式存儲、NoSQL資料庫、數據倉庫、機器學習、並行計算、可視化等各種技術范疇和不同的技術層面。首先給出一個通用化的大數據處理框架,主要分為下面幾個方面:數據採集與預處理、數據存儲、數據清洗、數據查詢分析和數據可視化。
數據採集與預處理
對於各種來源的數據,包括移動互聯網數據、社交網路的數據等,這些結構化和非結構化的海量數據是零散的,也就是所謂的數據孤島,此時的這些數據並沒有什麼意義,數據採集就是將這些數據寫入數據倉庫中,把零散的數據整合在一起,對這些數據綜合起來進行分析。數據採集包括文件日誌的採集、資料庫日誌的採集、關系型資料庫的接入和應用程序的接入等。在數據量比較小的時候,可以寫個定時的腳本將日誌寫入存儲系統,但隨著數據量的增長,這些方法無法提供數據安全保障,並且運維困難,需要更強壯的解決方案。
Flume NG
Flume NG作為實時日誌收集系統,支持在日誌系統中定製各類數據發送方,用於收集數據,同時,對數據進行簡單處理,並寫到各種數據接收方(比如文本,HDFS,Hbase等)。Flume NG採用的是三層架構:Agent層,Collector層和Store層,每一層均可水平拓展。其中Agent包含Source,Channel和 Sink,source用來消費(收集)數據源到channel組件中,channel作為中間臨時存儲,保存所有source的組件信息,sink從channel中讀取數據,讀取成功之後會刪除channel中的信息。
NDC
Logstash
Logstash是開源的伺服器端數據處理管道,能夠同時從多個來源採集數據、轉換數據,然後將數據發送到您最喜歡的 「存儲庫」 中。一般常用的存儲庫是Elasticsearch。Logstash 支持各種輸入選擇,可以在同一時間從眾多常用的數據來源捕捉事件,能夠以連續的流式傳輸方式,輕松地從您的日誌、指標、Web 應用、數據存儲以及各種 AWS 服務採集數據。
Sqoop
Sqoop,用來將關系型資料庫和Hadoop中的數據進行相互轉移的工具,可以將一個關系型資料庫(例如Mysql、Oracle)中的數據導入到Hadoop(例如HDFS、Hive、Hbase)中,也可以將Hadoop(例如HDFS、Hive、Hbase)中的數據導入到關系型資料庫(例如Mysql、Oracle)中。Sqoop 啟用了一個 MapRece 作業(極其容錯的分布式並行計算)來執行任務。Sqoop 的另一大優勢是其傳輸大量結構化或半結構化數據的過程是完全自動化的。
流式計算
流式計算是行業研究的一個熱點,流式計算對多個高吞吐量的數據源進行實時的清洗、聚合和分析,可以對存在於社交網站、新聞等的數據信息流進行快速的處理並反饋,目前大數據流分析工具有很多,比如開源的strom,spark streaming等。
Strom集群結構是有一個主節點(nimbus)和多個工作節點(supervisor)組成的主從結構,主節點通過配置靜態指定或者在運行時動態選舉,nimbus與supervisor都是Storm提供的後台守護進程,之間的通信是結合Zookeeper的狀態變更通知和監控通知來處理。nimbus進程的主要職責是管理、協調和監控集群上運行的topology(包括topology的發布、任務指派、事件處理時重新指派任務等)。supervisor進程等待nimbus分配任務後生成並監控worker(jvm進程)執行任務。supervisor與worker運行在不同的jvm上,如果由supervisor啟動的某個worker因為錯誤異常退出(或被kill掉),supervisor會嘗試重新生成新的worker進程。
Zookeeper
Zookeeper是一個分布式的,開放源碼的分布式應用程序協調服務,提供數據同步服務。它的作用主要有配置管理、名字服務、分布式鎖和集群管理。配置管理指的是在一個地方修改了配置,那麼對這個地方的配置感興趣的所有的都可以獲得變更,省去了手動拷貝配置的繁瑣,還很好的保證了數據的可靠和一致性,同時它可以通過名字來獲取資源或者服務的地址等信息,可以監控集群中機器的變化,實現了類似於心跳機制的功能。
數據存儲
Hadoop作為一個開源的框架,專為離線和大規模數據分析而設計,HDFS作為其核心的存儲引擎,已被廣泛用於數據存儲。
HBase
HBase,是一個分布式的、面向列的開源資料庫,可以認為是hdfs的封裝,本質是數據存儲、NoSQL資料庫。HBase是一種Key/Value系統,部署在hdfs上,克服了hdfs在隨機讀寫這個方面的缺點,與hadoop一樣,Hbase目標主要依靠橫向擴展,通過不斷增加廉價的商用伺服器,來增加計算和存儲能力。
Phoenix
Phoenix,相當於一個Java中間件,幫助開發工程師能夠像使用JDBC訪問關系型資料庫一樣訪問NoSQL資料庫HBase。
Yarn
Yarn是一種Hadoop資源管理器,可為上層應用提供統一的資源管理和調度,它的引入為集群在利用率、資源統一管理和數據共享等方面帶來了巨大好處。Yarn由下面的幾大組件構成:一個全局的資源管理器ResourceManager、ResourceManager的每個節點代理NodeManager、表示每個應用的Application以及每一個ApplicationMaster擁有多個Container在NodeManager上運行。
Mesos
Mesos是一款開源的集群管理軟體,支持Hadoop、ElasticSearch、Spark、Storm 和Kafka等應用架構。
Redis
Redis是一種速度非常快的非關系資料庫,可以存儲鍵與5種不同類型的值之間的映射,可以將存儲在內存的鍵值對數據持久化到硬碟中,使用復制特性來擴展性能,還可以使用客戶端分片來擴展寫性能。
Atlas
Atlas是一個位於應用程序與MySQL之間的中間件。在後端DB看來,Atlas相當於連接它的客戶端,在前端應用看來,Atlas相當於一個DB。Atlas作為服務端與應用程序通訊,它實現了MySQL的客戶端和服務端協議,同時作為客戶端與MySQL通訊。它對應用程序屏蔽了DB的細節,同時為了降低MySQL負擔,它還維護了連接池。Atlas啟動後會創建多個線程,其中一個為主線程,其餘為工作線程。主線程負責監聽所有的客戶端連接請求,工作線程只監聽主線程的命令請求。
Ku
Ku是圍繞Hadoop生態圈建立的存儲引擎,Ku擁有和Hadoop生態圈共同的設計理念,它運行在普通的伺服器上、可分布式規模化部署、並且滿足工業界的高可用要求。其設計理念為fast analytics on fast data。作為一個開源的存儲引擎,可以同時提供低延遲的隨機讀寫和高效的數據分析能力。Ku不但提供了行級的插入、更新、刪除API,同時也提供了接近Parquet性能的批量掃描操作。使用同一份存儲,既可以進行隨機讀寫,也可以滿足數據分析的要求。Ku的應用場景很廣泛,比如可以進行實時的數據分析,用於數據可能會存在變化的時序數據應用等。
在數據存儲過程中,涉及到的數據表都是成千上百列,包含各種復雜的Query,推薦使用列式存儲方法,比如parquent,ORC等對數據進行壓縮。Parquet 可以支持靈活的壓縮選項,顯著減少磁碟上的存儲。
數據清洗
MapRece作為Hadoop的查詢引擎,用於大規模數據集的並行計算,」Map(映射)」和」Rece(歸約)」,是它的主要思想。它極大的方便了編程人員在不會分布式並行編程的情況下,將自己的程序運行在分布式系統中。
隨著業務數據量的增多,需要進行訓練和清洗的數據會變得越來越復雜,這個時候就需要任務調度系統,比如oozie或者azkaban,對關鍵任務進行調度和監控。
Oozie
Oozie是用於Hadoop平台的一種工作流調度引擎,提供了RESTful API介面來接受用戶的提交請求(提交工作流作業),當提交了workflow後,由工作流引擎負責workflow的執行以及狀態的轉換。用戶在HDFS上部署好作業(MR作業),然後向Oozie提交Workflow,Oozie以非同步方式將作業(MR作業)提交給Hadoop。這也是為什麼當調用Oozie 的RESTful介面提交作業之後能立即返回一個JobId的原因,用戶程序不必等待作業執行完成(因為有些大作業可能會執行很久(幾個小時甚至幾天))。Oozie在後台以非同步方式,再將workflow對應的Action提交給hadoop執行。
Azkaban
Azkaban也是一種工作流的控制引擎,可以用來解決有多個hadoop或者spark等離線計算任務之間的依賴關系問題。azkaban主要是由三部分構成:Relational Database,Azkaban Web Server和Azkaban Executor Server。azkaban將大多數的狀態信息都保存在MySQL中,Azkaban Web Server提供了Web UI,是azkaban主要的管理者,包括project的管理、認證、調度以及對工作流執行過程中的監控等;Azkaban Executor Server用來調度工作流和任務,記錄工作流或者任務的日誌。
流計算任務的處理平台Sloth,是網易首個自研流計算平台,旨在解決公司內各產品日益增長的流計算需求。作為一個計算服務平台,其特點是易用、實時、可靠,為用戶節省技術方面(開發、運維)的投入,幫助用戶專注於解決產品本身的流計算需求
數據查詢分析
Hive
Hive的核心工作就是把SQL語句翻譯成MR程序,可以將結構化的數據映射為一張資料庫表,並提供 HQL(Hive SQL)查詢功能。Hive本身不存儲和計算數據,它完全依賴於HDFS和MapRece。可以將Hive理解為一個客戶端工具,將SQL操作轉換為相應的MapRece jobs,然後在hadoop上面運行。Hive支持標準的SQL語法,免去了用戶編寫MapRece程序的過程,它的出現可以讓那些精通SQL技能、但是不熟悉MapRece 、編程能力較弱與不擅長Java語言的用戶能夠在HDFS大規模數據集上很方便地利用SQL 語言查詢、匯總、分析數據。
Hive是為大數據批量處理而生的,Hive的出現解決了傳統的關系型資料庫(MySql、Oracle)在大數據處理上的瓶頸 。Hive 將執行計劃分成map->shuffle->rece->map->shuffle->rece…的模型。如果一個Query會被編譯成多輪MapRece,則會有更多的寫中間結果。由於MapRece執行框架本身的特點,過多的中間過程會增加整個Query的執行時間。在Hive的運行過程中,用戶只需要創建表,導入數據,編寫SQL分析語句即可。剩下的過程由Hive框架自動的完成。
Impala
Impala是對Hive的一個補充,可以實現高效的SQL查詢。使用Impala來實現SQL on Hadoop,用來進行大數據實時查詢分析。通過熟悉的傳統關系型資料庫的SQL風格來操作大數據,同時數據也是可以存儲到HDFS和HBase中的。Impala沒有再使用緩慢的Hive+MapRece批處理,而是通過使用與商用並行關系資料庫中類似的分布式查詢引擎(由Query Planner、Query Coordinator和Query Exec Engine三部分組成),可以直接從HDFS或HBase中用SELECT、JOIN和統計函數查詢數據,從而大大降低了延遲。Impala將整個查詢分成一執行計劃樹,而不是一連串的MapRece任務,相比Hive沒了MapRece啟動時間。
Hive 適合於長時間的批處理查詢分析,而Impala適合於實時互動式SQL查詢,Impala給數據人員提供了快速實驗,驗證想法的大數據分析工具,可以先使用Hive進行數據轉換處理,之後使用Impala在Hive處理好後的數據集上進行快速的數據分析。總的來說:Impala把執行計劃表現為一棵完整的執行計劃樹,可以更自然地分發執行計劃到各個Impalad執行查詢,而不用像Hive那樣把它組合成管道型的map->rece模式,以此保證Impala有更好的並發性和避免不必要的中間sort與shuffle。但是Impala不支持UDF,能處理的問題有一定的限制。
Spark
Spark擁有Hadoop MapRece所具有的特點,它將Job中間輸出結果保存在內存中,從而不需要讀取HDFS。Spark 啟用了內存分布數據集,除了能夠提供互動式查詢外,它還可以優化迭代工作負載。Spark 是在 Scala 語言中實現的,它將 Scala 用作其應用程序框架。與 Hadoop 不同,Spark 和 Scala 能夠緊密集成,其中的 Scala 可以像操作本地集合對象一樣輕松地操作分布式數據集。
Nutch
Nutch 是一個開源Java 實現的搜索引擎。它提供了我們運行自己的搜索引擎所需的全部工具,包括全文搜索和Web爬蟲。
Solr
Solr用Java編寫、運行在Servlet容器(如Apache Tomcat或Jetty)的一個獨立的企業級搜索應用的全文搜索伺服器。它對外提供類似於Web-service的API介面,用戶可以通過http請求,向搜索引擎伺服器提交一定格式的XML文件,生成索引;也可以通過Http Get操作提出查找請求,並得到XML格式的返回結果。
Elasticsearch
Elasticsearch是一個開源的全文搜索引擎,基於Lucene的搜索伺服器,可以快速的儲存、搜索和分析海量的數據。設計用於雲計算中,能夠達到實時搜索,穩定,可靠,快速,安裝使用方便。
還涉及到一些機器學習語言,比如,Mahout主要目標是創建一些可伸縮的機器學習演算法,供開發人員在Apache的許可下免費使用;深度學習框架Caffe以及使用數據流圖進行數值計算的開源軟體庫TensorFlow等,常用的機器學習演算法比如,貝葉斯、邏輯回歸、決策樹、神經網路、協同過濾等。
數據可視化
對接一些BI平台,將分析得到的數據進行可視化,用於指導決策服務。主流的BI平台比如,國外的敏捷BI Tableau、Qlikview、PowrerBI等,國內的SmallBI和新興的網易有數等。
在上面的每一個階段,保障數據的安全是不可忽視的問題。
基於網路身份認證的協議Kerberos,用來在非安全網路中,對個人通信以安全的手段進行身份認證,它允許某實體在非安全網路環境下通信,向另一個實體以一種安全的方式證明自己的身份。
控制許可權的ranger是一個Hadoop集群許可權框架,提供操作、監控、管理復雜的數據許可權,它提供一個集中的管理機制,管理基於yarn的Hadoop生態圈的所有數據許可權。可以對Hadoop生態的組件如Hive,Hbase進行細粒度的數據訪問控制。通過操作Ranger控制台,管理員可以輕松的通過配置策略來控制用戶訪問HDFS文件夾、HDFS文件、資料庫、表、欄位許可權。這些策略可以為不同的用戶和組來設置,同時許可權可與hadoop無縫對接。
簡單說有三大核心技術:拿數據,算數據,賣數據。
Ⅷ 大數據應用在哪些領域
大數據應用於各個行業,包括金融、汽車、餐飲、電信、能源、娛樂等在內的社會各行各業都已經融入了大數據的痕跡。
1、製造業:利用工業大數據提升製造業水平,包括產品故障診斷與預測、分析工藝流程、改進生產工藝,優化生產過程能耗、工業供應鏈分析與優化、生產計劃與排程。
2、金融業:大數據在高頻交易、社交情緒分析和信貸風險分析三大金融創新領域發揮重大作用。
3、汽車行業:利用大數據和物聯網技術的無人駕駛汽車,在不遠的未來將走入我們的日常生活。
4、互聯網行業:藉助於大數據技術分析用戶行為,進行商品推薦和針對性廣告投放。
5、餐飲行業:利用大數據實現餐飲O2O模式,徹底改變傳統餐飲經營方式。
6、電信行業:利用大數據技術實現客戶離網分析,及時掌握客戶離網傾向,出台客戶挽留措施。
7、能源行業:隨著智能電網的發展,電力公司可以掌握海量的用戶用電信息,利用大數據技術分析用戶用電模式,可以改進電網運行,合理設計電力需求響應系統,確保電網運行安全。
8、物流行業:利用大數據優化物流網路,提高物流效率,降低物流成本。
9、城市管理:利用大數據實現智能交通、環保監測、城市規劃和智能安防。
10、生物醫學:大數據可以幫助我們實現流行病預測、智慧醫療、健康管理,同時還可以幫助我們解讀DNA,了解更多的生命奧秘。
11、公共安全領域:政府利用大數據技術構建強大的國家安全保障體系,公共安全領域的大數據分析應用,反恐維穩與各類案件分析的信息化手段,藉助大數據預防犯罪。
12、個人生活:大數據還可以應用於個人生活,利用與每個人相關聯的「個人大數據」,分析個人生活行為軌跡,為其提供更加周到的個性化服務。
大數據的價值遠不止於此,大數據對各行各業的滲透,是推動社會生產和生活的核心要素。
(8)大數據創新領域擴展閱讀
七個典型的大數據應用案例
1、梅西百貨的實時定價機制。根據需求和庫存的情況,該公司基於SAS的系統對多達7300萬種貨品進行實時調價。
2、Tipp24AG針對歐洲博彩業構建的下注和預測平台。該公司用KXEN軟體來分析數十億計的交易以及客戶的特性,然後通過預測模型對特定用戶進行動態的營銷活動。這項舉措減少了90%的預測模型構建時間。SAP公司正在試圖收購KXEN。
3、沃爾瑪的搜索。這家零售業寡頭為其網站Walmart.com自行設計了最新的搜索引擎Polaris,利用語義數據進行文本分析、機器學習和同義詞挖掘等。根據沃爾瑪的說法,語義搜索技術的運用使得在線購物的完成率提升了10%到15%。「對沃爾瑪來說,這就意味著數十億美元的金額。」Laney說。
4、快餐業的視頻分析。該公司通過視頻分析等候隊列的長度,然後自動變化電子菜單顯示的內容。如果隊列較長,則顯示可以快速供給的食物;如果隊列較短,則顯示那些利潤較高但准備時間相對長的食品。
5、Morton牛排店的品牌認知。當一位顧客開玩笑地通過推特向這家位於芝加哥的牛排連鎖店訂餐送到紐約Newark機場(他將在一天工作之後抵達該處)時,Morton就開始了自己的社交秀。首先,分析推特數據,發現該顧客是本店的常客,也是推特的常用者。根據客戶以往的訂單,推測出其所乘的航班,然後派出一位身著燕尾服的侍者為客戶提供晚餐。
6、PredPolInc.。PredPol公司通過與洛杉磯和聖克魯斯的警方以及一群研究人員合作,基於地震預測演算法的變體和犯罪數據來預測犯罪發生的幾率,可以精確到500平方英尺的范圍內。在洛杉磯運用該演算法的地區,盜竊罪和暴力犯罪分布下降了33%和21%。
7、TescoPLC(特易購)和運營效率。這家超市連鎖在其數據倉庫中收集了700萬部冰箱的數據。通過對這些數據的分析,進行更全面的監控並進行主動的維修以降低整體能耗。
Ⅸ 大數據可以應用在哪些行業
大數據基礎知識有三個主要部分,分別是數學、統計學和計算機,同時輔助社會學、經濟學、醫學等學科。
可以到這邊看看
Ⅹ 大數據主要涉及哪些領域
大數據的應用領域主要包括大科學、RFID、感測設備網路、天文學、大氣學、交通運輸、專基因組學屬、生物學、大社會數據分析、互聯網文件處理、製作互聯網搜索引擎索引、通信記錄明細、軍事偵查、金融大數據,醫療大數據,社交網路、通勤時間預測、醫療記錄、照片圖像和視頻封存、大規模的電子商務等