導航:首頁 > 網路數據 > 大數據分析建模方法

大數據分析建模方法

發布時間:2023-03-08 00:52:16

『壹』 創建有效的大數據模型的6個技巧

創建有效的大數據模型的6個技巧
數據建模是一門復雜的科學,涉及組織企業的數據以適應業務流程的需求。它需要設計邏輯關系,以便數據可以相互關聯,並支持業務。然後將邏輯設計轉換成物理模型,該物理模型由存儲數據的存儲設備、資料庫文件組成。
歷史上,企業已經使用像SQL這樣的關系資料庫技術來開發數據模型,因為它非常適合將數據集密鑰和數據類型靈活地鏈接在一起,以支持業務流程的信息需求。
不幸的是,大數據現在包含了很大比例的管理數據,並不能在關系資料庫上運行。它運行在像NoSQL這樣的非關系資料庫上。這導致人們認為可能不需要大數據模型。
問題是,企業確實需要對大數據進行數據建模。
以下是大數據建模的六個提示:
1.不要試圖將傳統的建模技術強加於大數據
傳統的固定記錄數據在其增長中穩定且可預測的,這使得建模相對容易。相比之下,大數據的指數增長是不可預測的,其無數形式和來源也是如此。當網站考慮建模大數據時,建模工作應該集中在構建開放和彈性數據介面上,因為人們永遠不知道何時會出現新的數據源或數據形式。這在傳統的固定記錄數據世界中並不是一個優先事項。
2.設計一個系統,而不是一個模式
在傳統的數據領域中,關系資料庫模式可以涵蓋業務對其信息支持所需的數據之間的大多數關系和鏈接。大數據並非如此,它可能沒有資料庫,或者可能使用像NoSQL這樣的資料庫,它不需要資料庫模式。
正因為如此,大數據模型應該建立在系統上,而不是資料庫上。大數據模型應包含的系統組件包括業務信息需求、企業治理和安全、用於數據的物理存儲、所有類型數據的集成、開放介面,以及處理各種不同數據類型的能力。
3.尋找大數據建模工具
有商業數據建模工具可以支持Hadoop以及像Tableau這樣的大數據報告軟體。在考慮大數據工具和方法時,IT決策者應該包括為大數據構建數據模型的能力,這是要求之一。
4.關注對企業的業務至關重要的數據
企業每天都會輸入大量的數據,而這些大數據大部分是無關緊要的。創建包含所有數據的模型是沒有意義的。更好的方法是確定對企業來說至關重要的大數據,並對這些數據進行建模。
5.提供高質量的數據
如果組織專注於開發數據的正確定義和完整的元數據來描述數據來自何處、其目的是什麼等等,那麼可以對大數據模型產生更好的數據模型和關系。可以更好地支持支持業務的數據模型。
6.尋找數據的關鍵切入點
當今最常用的大數據載體之一就是地理位置,這取決於企業的業務和行業,還
有其他用戶需要的大數據常用密鑰。企業越能夠識別數據中的這些常用入口點,就越能夠設計出支持企業關鍵信息訪問路徑的數據模型。

『貳』 數據分析建模步驟有哪些

1、分類和聚類


分類演算法是極其常用的數據挖掘方法之一,其核心思想是找出目標數據項的共同特徵,並按照分類規則將數據項劃分為不同的類別。聚類演算法則是把一組數據按照相似性和差異性分為若干類別,使得同一類別數據間的相似性盡可能大,不同類別數據的相似性盡可能小。分類和聚類的目的都是將數據項進行歸類,但二者具有顯著的區別。分類是有監督的學習,即這些類別是已知的,通過對已知分類的數據進行訓練和學習,找到這些不同類的特徵,再對未分類的數據進行分類。而聚類則是無監督的學習,不需要對數據進行訓練和學習。常見的分類演算法有決策樹分類演算法、貝葉斯分類演算法等;聚類演算法則包括系統聚類,K-means均值聚類等。


2、回歸分析


回歸分析是確定兩種或兩種以上變數間相互依賴的定量關系的一種統計分析方法,其主要研究的問題包括數據序列的趨勢特徵、數據序列的預測以及數據間的相關關系等。按照模型自變數的多少,回歸演算法可以分為一元回歸分析和多元回歸分析;按照自變數和因變數間的關系,又可分為線性回歸和非線性回歸分析。


3、神經網路


神經網路演算法是在現代神經生物學研究的基礎上發展起來的一種模擬人腦信息處理機制的網路系統,不但具備一般計算能力,還具有處理知識的思維、學習和記憶能力。它是一種基於導師的學習演算法,可以模擬復雜系統的輸入和輸出,同時具有非常強的非線性映射能力。基於神經網路的挖掘過程由數據准備、規則提取、規則應用和預測評估四個階段組成,在數據挖掘中,經常利用神經網路演算法進行預測工作。


4、關聯分析


關聯分析是在交易數據、關系數據或其他信息載體中,查找存在於項目集合或對象集合之間的關聯、相關性或因果結構,即描述資料庫中不同數據項之間所存在關系的規則。例如,一項數據發生變化,另一項也跟隨發生變化,則這兩個數據項之間可能存在某種關聯。關聯分析是一個很有用的數據挖掘模型,能夠幫助企業輸出很多有用的產品組合推薦、優惠促銷組合,能夠找到的潛在客戶,真正的把數據挖掘落到實處。4市場營銷大數據挖掘在精準營銷領域的應用可分為兩大類,包括離線應用和在線應用。其中,離線應用主要是基於客戶畫像進行數據挖掘,進行不同目的針對性營銷活動,包括潛在客戶挖掘、流失客戶挽留、制定精細化營銷媒介等。而在線應用則是基於實時數據挖掘結果,進行精準化的廣告推送和市場營銷,具體包括DMP,DSP和程序化購買等應用。

『叄』 大數據建模一般有哪些步驟

1、數據測量


數據測量包括ECU內部數據獲取,車內匯流排數據獲取以及模擬量數據獲取,特別是對於新能源汽車電機、逆變器和整流器等設備頻率高達100KHz的信號測量,ETAS提供完整的解決方案。


2、大數據管理與分析


目前的汽車嵌入式控制系統開發環境下,人們可以通過各種各樣不同的途徑(如真實物體、模擬環境、模擬計算等)獲取描述目標系統行為和表現的海量數據。


正如前文所述,ETAS數據測量環節獲取了大量的ECU內部以及模擬量數據,如何存儲並有效地利用這些數據,並從中發掘出目標系統的潛力,用以指引進一步的研發過程,成為極其重要的課題。


3、虛擬車輛模型建模與校準


基於大數據管理與分析環節對測量數據進行的分析,我們得到了一些參數之間的相互影響關系,以及相關物理變數的特性曲線。如何將這些隱含在大量數據中的寶貴的知識和數據保存下來並為我們後續的系統模擬分析所用呢?


模型是一個比較好的保存方式,我們可以通過建立虛擬車輛及虛擬ECU模型庫,為後續車輛及ECU的開發驗證提供標准化的模擬模型。ETAS除提供相關車輛子系統模型,還提供基於數據的建模和參數校準等完整解決方案。


4、測試與驗證(XiL)


在測試與驗證環節,通常包含模型在環驗證(MiL),軟體在環驗證(SiL),虛擬測試系統驗證(VTS)以及硬體在環驗證(HiL)四個階段,ETAS提供COSYM實現在同一軟體平台上開展四個環節模擬驗證工作。


關於大數據建模一般有哪些步驟,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。

『肆』 如何對數據進行分析 大數據分析方法整理

【導讀】隨著互聯網的發展,數據分析已經成了非常熱門的職業,大數據分析師也成了社會打工人趨之若鶩的職業,不僅高薪還沒有很多職場微世界的繁瑣事情,不過要想做好數據分析工作也並不簡單,今天小編就來和大家說說如何對數據進行分析?為此小編對大數據分析方法進行的歸納整理,一起來看看吧!

畫像分群

畫像分群是聚合契合某種特定行為的用戶,進行特定的優化和剖析。

比方在考慮注冊轉化率的時候,需求差異移動端和Web端,以及美國用戶和我國用戶等不同場景。這樣可以在途徑戰略和運營戰略上,有針對性地進行優化。

趨勢維度

樹立趨勢圖表可以活絡了解商場,用戶或產品特徵的根柢體現,便於進行活絡迭代;還可以把方針依據不同維度進行切分,定位優化點,有助於挑選方案的實時性。

趨勢維度

漏斗查詢

經過漏斗剖析可以從先到後的次序恢復某一用戶的途徑,剖析每一個轉化節點的轉化數據。

悉數互聯網產品、數據分析都離不開漏斗,不論是注冊轉化漏斗,仍是電商下單的漏斗,需求注重的有兩點。首先是注重哪一步丟掉最多,第二是注重丟掉的人都有哪些行為。

注重注冊流程的每一進程,可以有用定位高損耗節點。

漏斗查詢

行為軌道

行為軌道是進行全量用戶行為的恢復,只看PV、UV這類數據,無法全面了解用戶怎樣運用你的產品。了解用戶的行為軌道,有助於運營團隊注重具體的用戶領會,發現具體問題,依據用戶運用習氣規劃產品、投進內容。

行為軌道

留存剖析

留存是了解行為或行為組與回訪之間的相關,留存老用戶的本錢要遠遠低於獲取新用戶,所以剖析中的留存是十分重要的方針之一。

除了需求注重全體用戶的留存情況之外,商場團隊可以注重各個途徑獲取用戶的留存度,或各類內容招引來的注冊用戶回訪率,產品團隊注重每一個新功用用戶的回訪影響等。

留存剖析

A/B查驗

A/B查驗是比照不同產品規劃/演算法對效果的影響。

產品在上線進程中常常會運用A/B查驗來查驗產品效果,商場可以經過A/B查驗來完畢不同構思的查驗。

要進行A/B查驗有兩個必備要素:

1)有滿意的時刻進行查驗

2)數據量和數據密度較高

由於當產品流量不行大的時候,做A/B查驗得到核算經果是很難的。

A/B查驗

優化建模

當一個商業方針與多種行為、畫像等信息有相關時,咱們一般會運用數據挖掘的辦法進行建模,猜測該商業效果的產生。

優化建模

例如:作為一家SaaS企業,當咱們需求猜測判別客戶的付費自願時,可以經過用戶的行為數據,公司信息,用戶畫像等數據樹立付費溫度模型。用更科學的辦法進行一些組合和權重,得知用戶滿意哪些行為之後,付費的或許性會更高。

以上就是小編今天給大家整理分享關於「如何對數據進行分析
大數據分析方法整理」的相關內容希望對大家有所幫助。小編認為要想在大數據行業有所建樹,需要考取部分含金量高的數據分析師證書,一直學習,這樣更有核心競爭力與競爭資本。

『伍』 大數據分析基礎——維度模型

維度模型的概念出自於數據倉庫領域,是數據倉庫建設中的一種數據建模方法。維度模型主要由事實表和維度表這兩個基本要素構成。

維度是度量的環境,用來反映業務的一類屬性 , 這類屬性的集合構成一個維度 , 也可以稱為實體對象。 維度屬於一個數據域,如地理維度(其中包括國家、地區、 省以及城市等級別的內容)、時間維度(其中包括年、季、月、周、日等級別的內容)。

維度是維度建模的基礎和靈魂。在維度建模中,將度量稱為「事實」 , 將環境描述為「維度」,維度是用於分析事實所需要的多樣環境。例如, 在分析交易過程時,可以通過買家、賣家、商品和時間等維度描述交易發生的環境。

維度所包含的表示維度的列,稱為維度屬性。維度屬性是查詢約束條件、分組和報表標簽生成的基本來源,是數據易用性的關鍵。

事實表是維度模型的基本表,每個數據倉庫都包含一個或者多個事實數據表。事實數據表可能包含業務銷售數據,如銷售商品所產生的數據,與軟體中實際表概念一樣。

事實表作為數據倉庫維度建模的核心,緊緊圍繞著業務過程來設計,通過獲取描述業務過程的度量來表達業務過程,包含了引用的維度和與業務過程有關的度量。

事實表中一條記錄所表達的業務細節程度被稱為粒度。通常粒度可以通過兩種方式來表述:一種是維度屬性組合所表示的細節程度:一種是所表示的具體業務含義。

作為度量業務過程的事實,一般為整型或浮點型的十進制數值,有可加性、半可加性和不可加性三種類型。

相對維度來說,通常事實表要細長,行的增加速度也比維度錶快的多,維度表正好相反。

事實表有三種類型 :

原子指標和度量含義相同,基於某一業務事件行為下的度量,是業務定義中不可 再拆分的指標,具有明確業務含義的名詞 ,如支付金額。

事實表和維度交叉匯聚的點,度量和維度構成OLAP的主要概念,這裡面對於在事實表或者一個多維立方體裡面存放的數值型的、連續的欄位,就是度量。

維度表是事實表不可分割的部分。維度表是進入事實表的入口。豐富的維度屬性給出了豐富的分析切割能力。維度給用戶提供了使用數據倉庫的介面。最好的屬性是文本的和離散的。屬性應該是真正的文字而不應是一些編碼簡寫符號。應該通過用更為詳細的文本屬性取代編碼,力求最大限度地減少編碼在維度表中的使用。

維度表和事實表二者的融合也就是「維度模型」,「維度模型」一般採用「星型模式」或者「雪花模式」,「雪花模式」可以看作是「星型模式」的拓展,表現為在維度表中,某個維度屬性可能還存在更細粒度的屬性描述,即維度表的層級關系。

維度屬性也可以存儲到事實表中,這種存儲到事實表中的維度列被稱為「退化維度」。與其他存儲在維表中的維度一樣 ,退化維度也可以用來進行事實表的過濾查詢、實現聚合操作等。

下表顯示的是一個維度(「城市」)和兩個指標(「會話數」和「每次會話瀏覽頁數」)。

維度中的一些描述屬性以層次方式或一對多的方式相互關聯,可以被理解為包含連續主從關系的屬性層次。比如商品類目的最低級別是葉子類目,葉子類目屬於二級類目,二級類目屬於一級類目。在屬性的層次結構中進行鑽取是數據鑽取的方法之一。

當屬性層次被實例化為一系列維度,而不是單一的維度時,被稱為雪花模式。

大多數聯機事務處理系統( OLTP)的底層數據結構在設計時採用此種規范化技術,通過規范化處理將重復屬性移至其自身所屬的表中,刪除冗餘數據。

將維度的屬性層次合並到單個維度中的操作稱為反規范化。分析系 統的主要目的是用於數據分析和統計,如何更方便用戶進行統計分析決 定了分析系統的優劣。採用雪花模式,用戶在統計分析的過程中需要 大 量的關聯操作,使用復雜度高,同時查詢性能很差;而採用反規范化處 理,則方便、易用且性能好。

數據倉庫匯流排架構的重要基石之一就是一致性維度。在針對不同數 據域進行迭代構建或並行構建時,存在很多需求是對於不同數據域的業 務過程或者同 一數據域的不同業務過程合並在 一起觀察。比如對於日誌數據域,統計了商品維度的最近一天的 PV 和 UV; 對於交易數據域, 統計了商品維度的最近一天的下單MV。現在將不同數據域的商品的 事實合並在一起進行數據探查 ,如計算轉化率等,稱為交叉探查。

我們先來看數據倉庫的定義:數據倉庫是一個面向主題的、 集成的 、 非易失的且隨時間變化的數據集合,用來支持管理人員的決策。

數據由面向應用的操作型環境進人數據倉庫後,需要進行數據 集成。將面向應用的數據轉換為面向主題的數據倉庫數據,本身就是一種集成。

具體體現在如下幾個方面:

表級別的整合,有兩種表現形式。

水平拆分
維度通常可以按照類別或類型進行細分。由於維度分類的不同而存在特殊的維度屬性,可以通過水平拆分的方式解決此問題。

在設計過程中需要重點考慮以下三個原則。

根據數據模型設計思想,在對維度進行水平拆分時,主要考慮如下兩個依據。

垂直拆分
在維度設計內容中,我們提到維度是維度建模的基礎和靈魂,維度 屬性的豐富程度直接決定了數據倉庫的能力。在進行維度設計時,依據 維度設計的原則,盡可能豐富維度屬性,同時進行反規范化處理。

某些維度屬性的來源表產出時間較早,而某些維度屬性的來 源 表產出時間較晚;或者某些維度屬性的熱度高、使用頻繁,而某些維度屬性的熱度低、較少使用 ; 或者某些維度屬性經常變化,而某些維度屬性比較穩定。在「水平拆分」中提到的模型設計的三個原則同樣適合解決此問題。

出於擴展性、產出時間、易用性等方面的考慮,設計 主從維度。主 維表存放穩定 、 產出時間早、熱度高的屬性;從維表存放變化較快、產 出時間晚、熱度低的屬性。

參考
《The Data Warehouse Toolkit-The Complete Guide to Dimensional Modeling》
《Google Analytics》
《大數據之路》

歡迎關注 高廣超的博客 與 收藏文章 !
歡迎關注 頭條號:互聯網技術棧 !

『陸』 大數據分析領域有哪些分析模型

數據角度的模型一般指的是統計或數據挖掘、機器學習、人工智慧等類型的模型,是純粹從科學角度出發定義的。
1. 降維
在面對海量數據或大數據進行數據挖掘時,通常會面臨「維度災難」,原因是數據集的維度可以不斷增加直至無窮多,但計算機的處理能力和速度卻是有限的;另外,數據集的大量維度之間可能存在共線性的關系,這會直接導致學習模型的健壯性不夠,甚至很多時候演算法結果會失效。因此,我們需要降低維度數量並降低維度間共線性影響。
數據降維也被成為數據歸約或數據約減,其目的是減少參與數據計算和建模維度的數量。數據降維的思路有兩類:一類是基於特徵選擇的降維,一類是是基於維度轉換的降維。
2. 回歸
回歸是研究自變數x對因變數y影響的一種數據分析方法。最簡單的回歸模型是一元線性回歸(只包括一個自變數和一個因變數,且二者的關系可用一條直線近似表示),可以表示為Y=β0+β1x+ε,其中Y為因變數,x為自變數,β1為影響系數,β0為截距,ε為隨機誤差。
回歸分析按照自變數的個數分為一元回歸模型和多元回歸模型;按照影響是否線性分為線性回歸和非線性回歸。
3. 聚類
聚類是數據挖掘和計算中的基本任務,聚類是將大量數據集中具有「相似」特徵的數據點劃分為統一類別,並最終生成多個類的方法。聚類分析的基本思想是「物以類聚、人以群分」,因此大量的數據集中必然存在相似的數據點,基於這個假設就可以將數據區分出來,並發現每個數據集(分類)的特徵。
4. 分類
分類演算法通過對已知類別訓練集的計算和分析,從中發現類別規則,以此預測新數據的類別的一類演算法。分類演算法是解決分類問題的方法,是數據挖掘、機器學習和模式識別中一個重要的研究領域。
5. 關聯
關聯規則學習通過尋找最能夠解釋數據變數之間關系的規則,來找出大量多元數據集中有用的關聯規則,它是從大量數據中發現多種數據之間關系的一種方法,另外,它還可以基於時間序列對多種數據間的關系進行挖掘。關聯分析的典型案例是「啤酒和尿布」的捆綁銷售,即買了尿布的用戶還會一起買啤酒。
6. 時間序列
時間序列是用來研究數據隨時間變化趨勢而變化的一類演算法,它是一種常用的回歸預測方法。它的原理是事物的連續性,所謂連續性是指客觀事物的發展具有合乎規律的連續性,事物發展是按照它本身固有的規律進行的。在一定條件下,只要規律賴以發生作用的條件不產生質的變化,則事物的基本發展趨勢在未來就還會延續下去。
7. 異常檢測
大多數數據挖掘或數據工作中,異常值都會在數據的預處理過程中被認為是「噪音」而剔除,以避免其對總體數據評估和分析挖掘的影響。但某些情況下,如果數據工作的目標就是圍繞異常值,那麼這些異常值會成為數據工作的焦點。
數據集中的異常數據通常被成為異常點、離群點或孤立點等,典型特徵是這些數據的特徵或規則與大多數數據不一致,呈現出「異常」的特點,而檢測這些數據的方法被稱為異常檢測。
8. 協同過濾
協同過濾(Collaborative Filtering,CF))是利用集體智慧的一個典型方法,常被用於分辨特定對象(通常是人)可能感興趣的項目(項目可能是商品、資訊、書籍、音樂、帖子等),這些感興趣的內容來源於其他類似人群的興趣和愛好,然後被作為推薦內容推薦給特定對象。
9. 主題模型
主題模型(Topic Model),是提煉出文字中隱含主題的一種建模方法。在統計學中,主題就是詞彙表或特定詞語的詞語概率分布模型。所謂主題,是文字(文章、話語、句子)所表達的中心思想或核心概念。
10. 路徑、漏斗、歸因模型
路徑分析、漏斗分析、歸因分析和熱力圖分析原本是網站數據分析的常用分析方法,但隨著認知計算、機器學習、深度學習等方法的應用,原本很難衡量的線下用戶行為正在被識別、分析、關聯、打通,使得這些方法也可以應用到線下客戶行為和轉化分析。

『柒』 大數據分析方法與模型有哪些

1、分類分析數據分析法


在數據分析中,如果將數據進行分類就能夠更好的分析。分類分析是將一些未知類別的部分放進我們已經分好類別中的其中某一類;或者將對一些數據進行分析,把這些數據歸納到接近這一程度的類別,並按接近這一程度對觀測對象給出合理的分類。這樣才能夠更好的進行分析數據。


2、對比分析數據分析方法


很多數據分析也是經常使用對比分析數據分析方法。對比分析法通常是把兩個相互有聯系的數據進行比較,從數量上展示和說明研究對象在某一標準的數量進行比較,從中發現其他的差異,以及各種關系是否協調。


3、相關分析數據分析法


相關分析數據分析法也是一種比較常見數據分析方法,相關分析是指研究變數之間相互關系的一類分析方法。按是否區別自變數和因變數為標准一般分為兩類:一類是明確自變數和因變數的關系;另一類是不區分因果關系,只研究變數之間是否相關,相關方向和密切程度的分析方法。


4、綜合分析數據分析法


層次分析法,是一種實用的多目標或多方案的決策方法。由於他在處理復雜的決策問題上的實用性和有效性,而層次分析數據分析法在世界范圍得到廣泛的應用。它的應用已遍及經濟計劃和管理,能源政策和分配,行為科學、軍事指揮、運輸、農業、教育、醫療和環境等多領域。

『捌』 大數據工程師常見數據分析方法是什麼

1、可視化分析
不管是對數據分析專家還是普通用戶,數據可視化是數據分析工具最基本的要求。可視化可以直觀的展示數據,讓數據自己說話,讓群眾們以更直觀,更易懂的方式了解結果。
2、數據挖掘演算法
數據挖掘又稱資料庫中的知識發現人工智慧機式別、統計學、資料庫、可視化技術等,高度自動化地分析企業的數據,做出歸納性的推理,從中挖掘出潛在的模式,幫助決策者調整市場策略,減少風險,做出正確的決策。
3、預測性分析能力
預測性分析結合了多種高級分析功能,包括特設統計分析、預測性建模、數據挖掘、文本分析、優化、實時評分、機器學習等。這些工具可以幫助企業發現數據中的模式,並超越當前所發生的情況預測未來進展。
4、語義引擎
由於非結構化數據的多樣性帶來了數據分析的新的挑戰,需要一系列的工具去解析,提取,分析數據。語義引擎需要被設計成能夠從「文檔」中智能提取信息。
5、數據質量和數據管理
數據質量和數據管理是一些管理方面的最佳實踐。通過標准化的流程和工具對數據進行處理可以保證一個預先定義好的高質量的分析結果。

『玖』 大數據建模常用方法有哪些

第一步:選擇模型或自定義模式
一般情況,模型都有一個固定的模樣和形式。但是,有些模型包含的范圍較廣,比如回歸模型,其實不是某一個特定的模型,而是一類模型。我們知道,所謂的回歸模型,其實就是自變數和因變數的一個函數關系式而已,如下表所示。因此,回歸模型的選擇,也就有了無限的可能性,回歸模型的樣子(或叫方程)可以是你能夠想到的任何形式的回歸方程。所以,從某種意義上看,你自己想出一個很少人見過的回歸方程,也可以勉強算是自定義模型了哈!
第二步:訓練模型
當模型選擇好了以後,就到了訓練模型這一步。
我們知道,之所以叫模型,這個模型大致的形狀或模式是固定的,但模型中還會有一些不確定的東東在裡面,這樣模型才會有通用性,如果模型中所有的東西都固定死了,模型的通用性就沒有了。模型中可以適當變化的部分,一般叫做參數,就比如前面回歸模型中的α、β等參數。
所謂訓練模型,其實就是要基於真實的業務數據來確定最合適的模型參數而已。模型訓練好了,也就是意味著找到了最合適的參數。一旦找到最優參數,模型就基本可用了。
第三步:評估模型
模型訓練好以後,接下來就是評估模型。
所謂評估模型,就是決定一下模型的質量,判斷模型是否有用。
前面說過,模型的好壞是不能夠單獨評估的,一個模型的好壞是需要放在特定的業務場景下來評估的,也就是基於特定的數據集下才能知道哪個模型好與壞。
第四步:應用模型
如果評估模型質量在可接受的范圍內,而且沒有出現過擬合,於是就可以開始應用模型了。
這一步,就需要將可用的模型開發出來,並部署在數據分析系統中,然後可以形成數據分析的模板和可視化的分析結果,以便實現自動化的數據分析報告。
應用模型,就是將模型應用於真實的業務場景。構建模型的目的,就是要用於解決工作中的業務問題的,比如預測客戶行為,比如劃分客戶群,等等。
五步:優化模型
優化模型,一般發生在兩種情況下:
一是在評估模型中,如果發現模型欠擬合,或者過擬合,說明這個模型待優化。
二是在真實應用場景中,定期進行優化,或者當發現模型在真實的業務場景中效果不好時,也要啟動優化。
如果在評估模型時,發現模型欠擬合(即效果不佳)或者過擬合,則模型不可用,需要優化模型。所謂的模型優化,可以有以下幾種情況:
1)重新選擇一個新的模型;
2)模型中增加新的考慮因素;
3)嘗試調整模型中的閾值到最優;
4)嘗試對原始數據進行更多的預處理,比如派生新變數。
不同的模型,其模型優化的具體做法也不一樣。比如回歸模型的優化,你可能要考慮異常數據對模型的影響,也要進行非線性和共線性的檢驗;再比如說分類模型的優化,主要是一些閾值的調整,以實現精準性與通用性的均衡。

『拾』 7.阿里大數據——大數據建模

數據模型就是數據組織和存儲方法,它強調從業務、數據存取和使用角度合理存儲數據。
適合業務和基礎數據存儲環境的模型,大數據能獲得以下好處:

大數據系統需要數據模型方法來幫助更好的組織和存儲數據,以便在性能、成本、效率和質量之間取得最佳平衡。

不管是Hadoop、Spark還是阿里巴巴集團的MaxCompute系統,仍然在大規模使用SQL進行數據的加工和處理,仍然在用Table存儲數據,仍然在使用關系理論描述數據之間的關系,只是在大數據領域,基於其數據存取的特點在關系數據模型的範式上有了不同的選擇而已。

從全企業的高度設計一個3NF模型,用實體關系(Entity Relationship,ER)模型描述企業業務,在範式理論上符合3NF。數據倉庫中的3NF與OLTP中不同過,有以下特點:

ER模型建設數據倉庫的出發點是整合數據,為數據分析決策服務。建模步驟分為三個階段:

維度建模從分析決策的需求出發構建模型,為分析需求服務,因此它重點關注用戶如何更快速地完成需求分析,同時具有較好的大規模復雜查詢的響應性能。其典型代表事星形模型,以及在一些特殊場景下使用的雪花模型。其設計步驟如下:

它是ER模型的衍生,其設計的出發點也是為了實現數據的整合,但不能直接用於數據分析決策。它強調建立一個可審計的基礎數據層,也就是強調數據的歷史性、可追溯性和原子性,而不要求對數據進行過度的一致性處理和整合。該模型由一下幾部分組成:

Anchor對Data Vault模型做了進一步規范化處理,設計的初衷是一個高度可擴展的模型,其核心思想是所有的擴展只是添加而不是修改,因此將模型規范到6NF,基本變成了k-v結構化模型。組成如下:

經歷了多個階段:

閱讀全文

與大數據分析建模方法相關的資料

熱點內容
自學編程哪個機構好學 瀏覽:308
ps文件里哪一個是卸載 瀏覽:312
linux怎麼知道被黑 瀏覽:161
diy需要什麼工具 瀏覽:941
java比較器的工作原理 瀏覽:490
文件上傳伺服器工具哪個好用 瀏覽:170
yy怎麼升級更快 瀏覽:846
人際溝通的工具是什麼 瀏覽:817
HTC手機s510可安裝微信嗎 瀏覽:650
聯想win10無法更新 瀏覽:825
在編程中驗證結果的目的是什麼 瀏覽:774
中興隱藏文件在哪裡 瀏覽:330
網路推廣簡歷個人獲獎情況怎麼寫 瀏覽:800
win10易升失敗 瀏覽:941
網路無法接收到伺服器怎麼辦 瀏覽:617
pic編程中tmp什麼意思 瀏覽:460
農業種植微信號 瀏覽:322
js如何插入數據 瀏覽:145
java訪問網站地址 瀏覽:680
微鯨電視文件在哪裡 瀏覽:558

友情鏈接