⑴ 醫葯大數據對於醫葯行業的作用是什麼
現在是大數據時代,我們每天都在產生海量的數據,利用好這些數據,不但能夠為人們的工作生活帶來便利,而且能促進生產環節更加高效地配置資源,提高效率,促進產業升級,醫葯行業也在大數據時代脫穎而出,在生物醫葯領域,大數據更是人類挑戰疾病的重要武器。
在大數據技術尚未成熟之前,葯物研發與試葯環節是一項復雜且龐大的工程,耗時長、回報慢、風險大。可以說,任何一個制葯公司在向市場推廣葯物產品之前,都要經過幾千甚至上萬次的實驗和大量候選葯物的折磨。
由於葯物研發是化學、生物、葯理、臨床等十幾個學科知識的綜合運用,平均每個葯物背後的研發數據資料多達數千甚至數萬頁。如何在海量信息中快速高效地搜尋整理,在重重迷霧里找到真正的價值所在,是每家創新葯企和相關機構的切實需求。
而通過大數據技術,各葯企/研發單位得以提高自己掌握市場信息的速度和完整性,輔助項目的立項過程,加快葯物研發的進度……在有限的時間內,研發更多對人類更有意義的葯品/治療方式。大數據讓葯物的篩選過程變得更為簡單、快捷,也更為安全,是一種高效又經濟的葯物分析技術手段。
同時,在集采常態化、新葯審評審批加快、醫保談判降價的大趨勢下,市場為真正具有臨床應用價值的葯品騰出了空間,全球科學家都在不斷努力提高新葯研發成功率。如何博採眾長,研發出滿足臨床需求、所需投入盡可能少、市場效益更好、成功率更高的葯品?
葯渡資料庫
在功能上:注冊時光軸,檢索功能豐富,支持訂閱審評,研發數據多維度關聯。
在開放程度:封閉式。
總體來說葯渡醫葯數據針對的是創新葯的研發,打造的是研發型資料庫,目前沒有中標數據,市場數據等。
問題還是比較寬泛,主要能解決的有了解市場數據、了解研發數據、銷售數據等等。
⑵ 大數據在醫學領域有什麼應用
1、健康監測
大數據技術可以提供居民的健康檔案,包括全部診療信息、體檢信息,這些信息可以為患病居民提供更有針對性的治療方案。並且通過智能手錶等可穿戴設備,隨時帶著,可以實時匯報病人的健康情況。應用於數百萬人及其各種疾病的預測和分析,並且在未來的臨床試驗將不再局限於小樣本,而是包括所有人。
2、數據電子化管理
患者的影像數據,病歷數據、檢驗檢查結果、診療費用等各種數據錄入大數據系統,統一管理起來,每位醫生都能夠在系統中查到病人的詳細資料以及變更記錄。而無需再通過耗時的紙質工作來完成,這對於大夫更好地把握疾病的診斷和治療十分重要。
3、醫療科研
在醫療科研領域,運用大數據技術對各種數據進行篩選、分析,可以為科研工作提供強有力的數據分析支持。例如健康危險因素分析的科研中,利用大數據技術可以在系統全面地收集健康危險因素數據,包括環境因素,生物因素,經濟社會因素,個人行為和心理因素,醫療衛生服務因素,以及人類生物遺傳因素等的基礎上,進行比對關聯分析,針對不同區域、家族進行評估和遴選,研究某些疾病發病的家族性、地區區域分布性等特性。
⑶ AI賦能醫療的背後,臨床大數據該如何「跑起來」
19世紀,英國流行病學家、麻醉學家約翰·斯諾運用近代早期的數據科學,記錄每天的死亡人數和傷患 人數,並將死亡者的地址標注在地圖上,繪制了倫敦霍亂爆發的「群聚」地圖,霍亂在過去被普遍認為是由有害空氣導致,斯諾通過調查數據的匯總,確定了霍亂的元兇是被污 染的公共水井,並同時奠定了疾病細菌理論的基礎,這算是大數據運用的早期雛形之一。
斯諾大概不會想到,在近兩百年後,大數據的應用早已不再是偶然,隨著醫療衛生信息化的迅速發展,其通過與AI的結合在生物醫葯研發、疾病管理、公共衛生和 健康 管理等方面的滲透已逐漸常態化,但問題也相應地隨之凸顯。
信息孤島仍存
近兩年,關於醫療大 健康 數據的政策頻出,從頂層設計、具體規劃指導、數 據隱私和安全、數據管理等多個方面提出了相關的指導意見。
2016年6月,國務院辦公廳下發《關於促進和規范 健康 醫療大數據應用發展的指導意見》指出,鼓勵各類醫療衛生機構推進 健康 醫療大數據採集、存儲,加強應用支撐和運維技術保障,打通數據資源共享通道,加快建設和完善以居民電子 健康 檔案、電子病歷、電子處方等為核心的基礎資料庫。
2018年9月, 國家衛生 健康 委印發《國家 健康 醫療大數據標准、安全和服務管理辦法(試行)》,對醫療 健康 大數據行業從規范管理和開發利用的角度出發進行規范。《辦法》從醫療大數據標准、醫 療大數據安全、醫療大數據服務、醫療大數據監督四個方面提出指導意見,直擊目前醫療大數 據領域的痛點,未來對數據的統籌標准管理、落實安全責任、規范數據服務和管理具有重要意義。
然而,即使有專項政策的支持,但都限於宏觀層面,相較於其他成熟領域而言, 健康 醫療大數據領域的法律法規依然存在明顯的滯後性,缺乏比較全面、細致、明確的指引和規則,使其的發展受到嚴重製約。雖然現階段,已有很多企業在醫療大數據領域進行深耕布局,但受制於市場准入和產業政策的不確定性,目前尚在摸著石頭過河,市場熱情和活力並未得到充分、有效地釋放。
復旦大學上海醫學院生物醫學研究院教授劉雷認為,正是醫療大數據政策的不明朗,標準的不統一,也直接導致了各個系統之間難以進行數據交換和信息共享,產生了大量的「信息孤島」。舉個簡單的例子,患者在A醫院拍的片子到了B醫院卻不認,B醫院的醫生想要了解患者的信息則需要從零開始,患者曾在A醫院做的檢查需要在B醫院重新再來一輪,「想要打通醫療機構間臨床大數據資源的共享通道,至少在現階段是一件挺困難的事情。」劉雷表示。
相似的困擾也發生在相距超過一萬公里之外的美國,華盛頓大學醫學院信息研究所所長Philip Paynes在接受醫谷采訪時表示:臨床大數據間的彼此「孤立」給國家醫保機構、患者和醫院都帶來了負擔,實現大數據間的互通互用,是全世界范圍內都在著力解決的問題。
作為兩所頂尖大學的知名研究學者,劉雷和Paynes想在臨床大數據領域做一些努力和嘗試。
兩人共有的想法迅速得到了學校層面的大力支持,2019年7月26-29日,由復旦大學醫學院和聖路易斯華盛頓大學醫學院聯合授課的「應用臨床信息學和數據分析研修班」進行了第一次開班。
復旦大學生物醫學研究院教授、復旦大學大數據研究院醫學信息與醫學影像智能診斷研究所所長劉雷授課
據劉雷介紹,此次研修班得到了業界人士的積極響應,在第一屆學員中,來自醫院、醫療企業、高校各佔了三分之一,「就是純粹地想把對臨床大數據分析和感興趣的業界人士聚集在一起,通過共有的努力,能把臨床大數據的有效運用更推進一步。」
聖路易斯華盛頓大學醫學院信息學研究所主任Philip Paynes授課
「希望通過這種國際化的合作,能讓臨床大數據在醫療機構間甚至跨國間真正地』跑』起來多一種可能性。」 Paynes說道。
各自所做的 探索
而在這種可能性之前,劉雷和Paynes各自所在的研究機構均已做了大量的工作。
據悉,劉雷所在的復旦大學上海醫學院生物醫學研究作為一家致力於創建「中國第一、世界一流的生物醫學交叉學術研究機構」,已經在生物醫學交叉學科領域形成「代謝與腫瘤的分子細胞生物學」、「醫學表觀遺傳學」、「系統生物醫學」三個優勢方向,並正在努力拓展轉化醫學研究和精準醫學研究,包括老年醫學、腫瘤和心血管疾病、出生缺陷、靶點結構與活性小分子、組學和大數據、生物治療與干預,形成新的交叉學科生長點和下游技術。
另悉,目前,復旦大學上海醫學院生物醫學研究還在申請一個超算中心的建設項目,以該項目來支撐生物學大數據的研究,「復旦大學有包括中山醫院、華山醫院、仁濟醫院等17所附屬教學醫院,這其中有一些醫院也在做自身的臨床大數據中心,從研究所層面,希望能夠給他們提供一些人才培養和技術研究的有力支持。」劉雷表示。
Paynes所在的華盛頓大學醫學院信息研究所則是華盛頓大學所有大數據計劃的中心, 「我們擁有世界上最好的基因組研究所和最具生產力和影響力的基礎科學研究企業」,在醫學信息技術方面的能力非常強,但在大數據的整合方面還有待加強。」而這也成了Paynes擔任華盛頓大學醫學院信息研究所第一屆所長之後重點開展的工作。
自Paynes上任後,首先將研究所與旗下15所附屬教學醫院進行了打通聯動,從臨床大數據的收集到整合再到挖掘,最後到應用,鋪設了一條全鏈式的臨床大數據之路。
在Paynes看來:研究所下屬的15所教學醫院簡直就是大數據來源的寶藏,這15家在全美醫療機構中排名比較靠前的醫院每天產生大量的臨床數據,依託這些已有的臨床數據的回顧性研究,是分析研究疾病最基本、最重要的研究方法之一,通過將這些海量的臨床數據進行統計分析,分析的結果又將反過來為醫生臨床診療全過程提供疾病共享的發病及治療總體情況信息,幫助醫生科學決策,實現精準醫療。
「我們的夢想是不僅僅是利用臨床大數據幫助患者,而是希望這些臨床大數能滲透到他們的生活和工作,甚至休閑 娛樂 ,通過大數據的分析能夠把他們患病的概率降到最低,讓人們能一直保持 健康 的狀態。」 Paynes對醫谷展望道。
未來發展構想
在劉雷、Paynes和其團隊所做的大量臨床數據整合的工作中,由於各自旗下擁有多所強大的教學醫院,數據的來源已不是問題,然而,擺在他們面前更為現實的問題有兩個,一是要解決多模態臨床大數據的選擇問題。臨床大數據來源多樣,是一種多模態數據,其包括有結構化很好的數據,比如化驗單、處方;還有一些半結構化的數據,比如住院小結、出院小結;還有完全無結構化的數據,比如醫療影像;還有像基因測序這樣的組學數據;以及時間序列數據,比如ICU里會看到患者插著各種各樣的儀器測量血壓心率脈搏等各種流數據。
怎樣從這些不同模態的數據裡面選出需要的數據,劉雷表示他們,他們需要的更多的是結構化很好的臨床數據,為了得到這部分數據,會通過一定的技術平台會對數據進行一定的清洗,從中選取高質量的有效數據。
這個問題解決後,還有一個臨床大數據一直以來繞不開的一個爭議--安全和隱私問題。
對此,劉雷表示,依託現有的技術,目前收集的臨床大數據基本都能做到「不出院」,這在一定程度程度上很好地保證了數據的安全性。Paynes也指出,美國對於醫療大數據有很嚴密的保護法規,患者的關鍵隱私數據,如姓名、住址、電話、身份證號等進入數據管理的時候必須要打馬賽克,同時對數據進行強加密,數據即使被泄露也是不可解密的,對所有的數據訪問(誰什麼時間能訪問什麼)都要有一套嚴格的訪問控制,通過這樣的方式來保證數據安全性。
當技術的問題已不再是問題, 這意味著臨床大數據和AI的結合會變得更為完美,因此,劉雷和Paynes更多希望監管層能在未來對基於大數據訓練的AI能進行更多關於有效性和安全性方面的評估,也就是審批准入要做到嚴,同時,還要加強公眾對醫療AI的認知,不管AI發展到多麼先進的程度,總歸存在一定的局限性,它永遠不可能替代醫生,只能是醫生的一種輔助診斷工具。
盡管還有一段路要走,但對於臨床大數據和AI的搭配,劉雷和Paynes都充滿信心,至少在他們現有開展工作的規劃里,「應用臨床信息學和數據分析研修班」能最終逐步發展為一個碩士人才培養項目,為臨床大數據和人工智慧培養更多專業人才。同時,基於兩個研究機構現階段開展的工作,有天能實現跨國界的匯聚統一,可以把所有的臨床大數據統一在同一個模型上,建立一個類似於聯盟數據一樣的聯合體,這對於數據的整合和應用就會變得游刃有餘。
【凡本網註明來源非大 健康 Pai的作品,均轉載自其它媒體,目的在於傳遞更多信息,並不代表本網贊同其觀點和對其真實性負責。】
⑷ 大數據行業對於醫葯行業有什麼作用呢
一、大數據有助於精確醫療行業市場定位
醫療行業企業需要架構大數據戰略,拓寬醫療行業調研數據的廣度和深度,從大數據中了解醫療行業市場構成、細分市場特徵、消費者需求和競爭者狀況等眾多因素,在科學系統的信息數據收集、管理、分析的基礎上,提出更好的解決問題的方案和建議。
企業想進入或開拓某一區域醫療行業市場,首先要進行項目評估和可行性分析,這個區域人口是多少?消費水平怎麼樣?客戶的消費習慣是什麼?市場對產品的認知度怎麼樣?當前的市場供需情況怎麼樣?公眾的消費喜好是什麼等等,這些問題背後包含的海量信息構成了醫療行業市場調研的大數據。
隨著大數據時代的來臨,藉助數據挖掘和信息採集技術不僅能給研究人員提供足夠的樣本量和數據信息,還能夠建立基於大數據數學模型對未來市場進行預測。當然,依靠傳統的人工數據收集和統計顯然難以滿足大數據環境下的數據需求,這就需要依靠相關大數據技術開發公司(如北京恆泰博遠科技)來進行大數據採集、分析、監控、分發系統的開發。
二、大數據成為醫療行業市場營銷的利器
互聯網上的信息總量正以極快的速度不斷暴漲,我們每天在不同平台上分享各種文本、照片、視頻、音頻、數據等信息高達的幾百億甚至幾千億條,這些信息涵蓋著商家信息、個人信息、行業資訊、產品使用體驗、商品瀏覽記錄、商品成交記錄、產品價格動態等等海量信息。這些數據通過聚類可以形成醫療行業大數據,其背後隱藏的是醫療行業的市場需求。
以醫療行業在對顧客的消費行為和趣向分析方面為例,消費者購買產品的花費、選擇的產品渠道、偏好產品的類型、產品使用周期、購買產品的目的、消費者家庭背景、工作和生活環境、個人消費觀和價值觀等。如果企業收集到了這些數據,建立消費者大資料庫,便可通過統計和分析來掌握消費者的消費行為、興趣偏好和產品的市場口碑現狀,再根據這些總結出來的行為、興趣愛好和產品口碑現狀制定有針對性的營銷方案和營銷戰略。
三、大數據支撐醫療行業收益管理
大數據時代的來臨,為企業收益管理工作的開展提供了更加廣闊的空間。需求預測、細分市場和敏感度分析對數據需求量很大,而傳統的數據分析大多是採集的是企業自身的歷史數據來進行預測和分析,容易忽視整個醫療行業信息數據,因此難免使預測結果存在偏差。
四、大數據創新醫療行業需求開發
在微博、微信、論壇、評論版等平台隨處可見網友使用某款產品優點點評、缺點的吐槽、功能需求點評、質量好壞與否點評、外形美觀度點評、款式樣式點評等信息,這些都構成了產品需求大數據。作為醫療行業企業,如果能對網上醫療行業的評論數據進行收集,建立網評大資料庫,然後再利用分詞、聚類、情感分析了解消費者的消費行為、價值趣向、評論中體現的新消費需求和企業產品質量問題,以此來改進和創新產品,制訂合理的價格及提高服務質量,從中獲取更大的收益。
⑸ 醫療行業大數據數據治理概況
1、醫療行業大數據數據治理痛點
醫療行業的大數據,存在數據收集、存儲、整合、管理不規范的情況,導致數據利用率不高;加之跨部門、跨機構之間數據共享機制的缺失,「信息孤島」現象普遍,直接影響到大數據的有效利用。
2、醫療行業對數據治理的要求
(1)數據採集環節:存在海量多源異構數據,數據採集工具需覆蓋全業務、多終端、多形態的數據。
(2)數據處理環節:需要標准化的數據處理工具,將匯集整合的數據,與國際標准、國家標准、行業標准進行比對,轉換為統一格式的標准化數據。
(3)數據質控環節:可通過數據邏輯校驗,對數據的完整性、准確性、一致性、關聯性、規范性、可用性等方面的質量進行評價管理,並及時對匯總數據進行修正,從而提高數據質量。
(4)數據安全環節:需要滿足數據採集、傳輸、存儲、處理、交換及銷毀等各環節的數據安全防護需求,實現數據的分類分級管控、許可權管控、敏感數據監控、數據操作異常行為監控、數據加密等服務。
(5)數據應用環節:需要面對輔助診斷、精準醫療、臨床科研等數據應用場景,提供便捷的數據查詢、分析和展示服務,並基於一定的安全保障措施,實現數據流全流程留痕、可查詢、可追溯。
3、醫療行業數據治理工具全景
中國電子技術標准化研究院新出的《數據治理工具圖譜研究報告(2021版)》中,將數據治理工具分為三層,數據戰略層、數據管理層和數據操作層,如下為全景圖譜。
⑹ 生物醫學基因大數據有哪些具體應用
基因大數據分析就是像佳學基因那樣通過分子生物學、分子病理學、分子葯理學的最新科技建立《人的基因序列變化與人體疾病表徵》資料庫,再加上臨床樣本的收集、優化和調整,可以對人任何一種疾病找到基因的原因,對任何一種基因序列預測人體可能出現的疾病和能力變化。通過佳學基因大數據分析可以進行人的天賦基因解碼、人的健康成長呵護基因解碼、致病基因鑒定基因解碼、用葯指導基因解碼、婚戀咨詢基因解碼和完美寶貝基因解碼。
⑺ 最近很火的醫療大數據分析到底是個什麼鬼
這個是根據國家的政策來執行的
⑻ 大數據在醫療行業的應用有哪些
大數據專業屬於交叉學科:以統計學、數學、計算機為三大支撐性學科;生物、醫學、環境科學、經濟學、社會學、管理學為應用拓展性學科。所以大數據在眾多行業都有應用,下面說說其在醫療領域的應用。
隨著互聯網規模不斷的擴大,大數據正在改變著這個時代的絕大一部分的行業或者企業,醫療行業也不例外,醫療健康正在成為人們關注的重點問題,以智能化、數字化為特徵的醫療信息化正在蓬勃興起,醫療行業的數據類型也在向海量、復雜、多樣的類型方式轉變。
1.就醫數據進行電子化管理
對電子醫療記錄的收集,包括個人病史、家族病史、過敏症以及所有醫療檢測結果等。在信息系統中進行分享,每一個醫生都能夠在系統中添加或變更記錄,而無需再通過耗時的紙質工作來完成。這些記錄同時也能幫助病人掌握自己的用葯情況,同時也是醫學研究的重要數據參考。
2.健康預測
通過智能手錶等可穿戴設備的數據,建立健康預測模型,通過這些可穿戴設備持續不斷地收集健康數據並存儲在雲端,實時匯報病人的健康狀況。應用於數百萬人及其各種疾病的預測和分析,並且在未來的臨床試驗將不再局限於小樣本,而是包括所有人。
3.醫學影像以及臨床診斷
通過讓大數據機器人來識別記住各類海量的醫學影像,例如X射線、核磁共振成像、超聲波……等各種的圖像。對大量病歷進行深度挖掘與學習,訓練其對影片的診斷,最終實現輔助醫生進行臨床決策,規范診療路徑,提高醫生的工作效率。
4.葯品研發
利用大數據進行數據建模並進行分析,預測葯物的臨床結果,可以為臨床階段的實驗結果提供參考,節省臨床階段的時間並優化臨床實驗結果。制葯公司也可以通過數據建模進行分析,從而生產出治療成功率更高的葯品並極大地縮短葯品從研發到投入市場的時間。