A. 從谷歌大數據中能發現什麼規律得出什麼結論
馬克吐溫說過:“世上有三種謊言,即謊言,拙劣的謊言和統計數據。”傳統的調研方法得出的結論只是調研者希望得到的結論,而不是真實結論。當你拿起筆,開始在調查表上劃對勾時,你已經走進調研設計者為你畫好的框架之中。跟著調查報告的既定思路走,勾畫有限的選項,本能地迴避對自己不利的選項。
無論是善意還是惡意,人們面對他人時,總要展露自己優秀的光明面,隱藏拙劣不堪的陰影面。但是,當人們面對屏幕時,往往會放下戒備,吐露心聲,甚至還會釋放誇張內心的惡魔。這就是為什麼會有那麼多的鍵盤俠。
谷歌數據分析家,賽思•斯蒂芬斯-達維多維茨,從屏幕背後的大數據中,得出許多出乎意料的結論。
1、先看一個例子,你猜猜,與失業率高度相關的網路數據是什麼?找工,寫簡歷,面試,再教育培訓?以上答案都不對。最高相關的數據不是找工,而是一個黃片網站,其次是“蜘蛛紙牌”。知道答案後的你有沒有會心一笑?數據說明了真相:有大把時間很無聊的失業人士,把他們的時間花在數據看得見的地方。
B. 大數據安全分析的6個要點
大數據安全分析的6個要點
現在,很多行業都已經開始利用大數據來提高銷售,降低成本,精準營銷等等。然而,其實大數據在網路安全與信息安全方面也有很長足的應用。特別是利用大數據來甄別和發現風險和漏洞。
通過大數據,人們可以分析大量的潛在安全事件,找出它們之間的聯系從而勾勒出一個完整的安全威脅。通過大數據,分散的數據可以被整合起來,使得安全人員能夠採用更加主動的安全防禦手段。
今天,網路環境極為復雜,APT攻擊以及其他一些網路攻擊可以通過對從不同數據源的數據的搜索和分析來對安全威脅加以甄別,要做到這一點,就需要對一系列數據源的進行監控,包括DNS數據,命令與控制(C2),黑白名單等。從而能夠把這些數據進行關聯來進行發囧。
企業針對安全的大數據分析下面是一些要點:
DNS數據
DNS數據能夠提供一系列新注冊域名,經常用來進行垃圾信息發送的域名,以及新創建的域名等等,所有這些信息都可以和黑白名單結合起來,所有這些數據都應該收集起來做進一步分析。
如果自有DNS伺服器,就能過檢查那些對外的域名查詢,這樣可能發現一些無法解析的域名。這種情況就可能意味著你檢測到了一個「域名生成演算法」。這樣的信息就能夠讓安全團隊對公司網路進行保護。而且如果對區域網流量數據日誌進行分析的話,就有可能找到對應的受到攻擊的機器。
命令與控制(C2)系統
把命令與控制數據結合進來可以得到一個IP地址和域名的黑名單。對於公司網路來說,網路流量絕對不應該流向那些已知的命令與控制系統。如果網路安全人員要仔細調查網路攻擊的話,可以把來自C2系統的流量引導到公司設好的「蜜罐」機器上去。
安全威脅情報
有一些類似與網路信譽的數據源可以用來判定一個地址是否是安全的。有些數據源提供「是」與「否」的判定,有的還提供一些關於威脅等級的信息。網路安全人員能夠根據他們能夠接受的風險大小來決定某個地址是否應該訪問。
網路流量日誌
有很多廠商都提供記錄網路流量日誌的工具。在利用流量日誌來分析安全威脅的時候,人們很容易被淹沒在大量的「噪音」數據中。不過流量日誌依然是安全分析的基本要求。有一些好的演算法和軟體能夠幫助人們提供分析質量。
「蜜罐」數據
「蜜罐」可以有效地檢測針對特定網路的惡意軟體。此外,通過「蜜罐」獲得的惡意軟體可以通過分析獲得其特徵碼,從而進一步監控網路中其他設備的感染情況。這樣的信息是非常有價值的,尤其是很多APT攻擊所採用的定製的惡意代碼往往無法被常規防病毒軟體所發現。參見本站文章企業設置「蜜罐」的五大理由
數據質量很重要
最後,企業要注意數據的質量。市場上有很多數據可用,在安全人員進行大數據安全分析時,這些數據的質量和准確性是一個最重要的考量。因此,企業需要有一個內部的數據評估團隊針對數據來源提出相應的問題,如:最近的數據是什麼時候添加的?有沒有樣本數據以供評估?每天能夠添加多少數據?這些數據哪些是免費的?數據總共收集了多久?等等。
安全事件和數據泄露的新聞幾乎每天都能夠出現在報紙上,即使企業已經開始採取手段防禦APT,傳統的安全防禦手段對於APT之類的攻擊顯得辦法不多。而利用大數據,企業可以採取更為主動的防禦措施,使得安全防禦的深度和廣度都大為加強。
C. 大數據失敗案例提醒 8個不能犯的錯誤
大數據失敗案例提醒:8個不能犯的錯誤
近年來,大數據旋風以「迅雷不及掩耳之勢」席捲全球,不僅是信息領域,經濟、政治、社會等諸多領域都「磨刀霍霍」向大數據,准備在其中逐得一席之地。然而,很多公司在邁入大數據領域後遭遇「滑鐵盧」。在此,本文盤點了一系列大數據失敗項目,深究其原因,具有警示意義。
對數據過於相信2008年,Google第一次開始預測流感就取得了很好的效果,比美國疾病預防控制中心提前兩禮拜預測到了流感的爆發。但是,幾年之後,Google的預測比實際情況(由防控中心根據全美就診數據推算得出)高出了50%。媒體過於渲染了Google的成功,出於好奇目的而搜索相關關鍵詞的人越來越多,從而導致了數據的扭曲。低估大數據復雜程度在美國有幾個互聯網金融公司專做中小企業貸款。但是中小企業貸款涉及的數據更復雜,而且中小企業涉及到整個行業非常特殊的一些數據,比如非標準的財務報表和不同行業、不同範式的合同,他們沒有很專業的知識,是很難理解或者很難有時間把它准確挖掘出來。當時大數據團隊想用一個很完美的模型把所有的問題都解決掉,比如把市場和信貸的解決方案全部用一個模型來解決,但因為數據的復雜程度,最後證明這種方法是失敗的,而且90%的時間都在做數據清理。這就說明,想通過大數據技術一下子解決所有的問題是很難成功的,而是要用抽絲剝繭、循序漸進的方式。管理層的惰性某家旅遊公司系統通過web日誌數據的挖掘來提升客戶洞察。結果證明,用戶在瀏覽網站之後,隨後的消費行為模式與管理層所認為的不一致。當團隊匯報此事時,管理層認為不值一提。但是,該團隊並沒有放棄,並通過嚴密的A/B測試,回擊了管理層的輕視。這個案例的最終結果,不是每個CIO都能期盼的。但是,有一點是可以確定的:做好和管理層打交道的准備,讓他們充分理解大數據是什麼以及相應的價值。應用場景選擇錯誤一家保險公司想了解日常習慣和購買生命保險意願之間的關聯性。由於隨後覺得習慣太過於寬泛,該公司將調查范疇限定到是否吸煙上。但是,工作仍然沒有實質進展。不到半年,他們就終止了整個項目,因為一直未能發現任何有價值的信息。這個項目的失敗是由於問題的復雜性。在抽煙與否之間,該公司沒有注意到還有大片灰色地帶:很多人是先抽煙而後又戒煙了。在將問題簡單化動機的驅動下,這個部分被忽略了。問題梳理不夠全面一家全球性公司的大數據團隊發現了很多深刻的洞察,並且計劃通過雲讓全公司共享。結果這個團隊低估了效率方面的損耗,由於網路擁塞的問題,無法滿足全球各個分支順暢提交數據運行分析的需求。該公司應該仔細思考下如何支撐大數據項目,梳理所需的技能並協調各IT分支的力量進行支持。由於網路、安全或基礎設施的問題,已經有太多的大數據項目栽了跟頭。缺乏大數據分析技能一家零售公司的首席執行官不認同亞馬遜規模化、扁平化的服務模式,因此讓CIO構建一個客戶推薦引擎。項目最初的規劃是半年為期,但是團隊很快認識到諸如協同過濾(collaborativefiltering)之類的概念無法實現。為此,一個團隊成員提出做一個「假的推薦引擎」,把床單作為唯一的推薦產品。這個假引擎的工作邏輯是:買攪拌機的人會買床單,買野營書籍的人會買床單,買書的人會買床單。就是如此,床單是唯一的、默認的推薦品。盡管可笑,這個主意其實並不壞,默認的推薦也能給企業帶來銷售上的提升。但是,由於大數據相關技能的缺失,真正意義上的引擎未能實現。提出了錯誤的問題一家全球領先的汽車製造商決定開展一個情感分析項目,為期6個月,耗資1千萬美元。項目結束之後,該廠商將結果分享給經銷商並試圖改變銷售模式。然後,所得出的結果最終被證明是錯誤的。項目團隊沒有花足夠的時間去了解經銷商所面臨的問題或業務建議,從而導致相關的分析毫無價值。應用了錯誤的模型。某銀行為判斷電信行業的客戶流失情況,從電信業聘請了一位專家,後者也很快構建了評估用戶是否即將流失的模型。當時已進入評測驗證的最後階段,模型很快就將上線,而銀行也開始准備給那些被認為即將流失的客戶發出信件加以挽留。但是,為了保險起見,一位內部專家被要求對模型進行評估。這位銀行業專家很快發現了令人驚奇的事情:不錯,那些客戶的確即將流失,但並不是因為對銀行的服務不滿意。他們之所以轉移財產(有時是悄無聲息的),是因為感情問題——正在為離婚做准備。可見,了解模型的適用性、數據抽象的級別以及模型中隱含的細微差別,這些都是非常具有挑戰性的。管理層阻力盡管數據當中包含大量重要信息,但Fortune Knowledge公司發現有62%的企業領導者仍然傾向於相信自己的直覺,更有61%的受訪者認為領導者的實際洞察力在決策過程中擁有高於數據分析結論的優先參考價值。選擇錯誤的使用方法企業往往會犯下兩種錯誤,要麼構建起一套過分激進、自己根本無法駕馭的大數據項目,要麼嘗試利用傳統數據技術處理大數據問題。無論是哪種情況,都很有可能導致項目陷入困境。提出錯誤的問題數據科學非常復雜,其中包含專業知識門類(需要深入了解銀行、零售或者其它行業的實際業務狀況);數學與統計學經驗以及編程技能等等。很多企業所僱用的數據科學家只了解數學與編程方面的知識,卻欠缺最重要的技能組成部分——對相關行業的了解,因此最好能從企業內部出發尋找數據科學家。缺乏必要的技能組合這項理由與「提出錯誤的問題」緊密相關。很多大數據項目之所以陷入困境甚至最終失敗,正是因為不具備必要的相關技能。通常負責此類項目的都是IT技術人員——而他們往往無法向數據提出足以指導決策的正確問題。與企業戰略存在沖突要讓大數據項目獲得成功,大家必須擺脫將其作為單一「項目」的思路、真正把它當成企業使用數據的核心方式。問題在於,其它部門的價值或者戰略目標有可能在優先順序方面高於大數據,這種沖突往往會令我們有力無處使。大數據孤島大數據供應商總愛談論「數據湖」或者「數據中樞」,但事實上很多企業建立起來的只能算是「數據水坑兒」,各個水坑兒之間存在著明顯的邊界——例如市場營銷數據水坑兒與製造數據水坑兒等等。需要強調的是,只有盡量緩和不同部門之間的隔閡並將各方的數據流匯總起來,大數據才能真正發揮自身價值。在大數據技術之外遇到了其它意外狀況。數據分析僅僅是大數據項目當中的組成部分之一,訪問並處理數據的能力同樣重要。除此之外,常常被忽略的因素還有網路傳輸能力限制與人員培訓等等。迴避問題有時候我們可以肯定或者懷疑數據會迫使自身做出一些原本希望盡量避免的運營舉措,例如制葯行業之所以如此排斥情感分析機制、是因為他們不希望將不良副作用報告給美國食品葯品管理局並承擔隨之而來的法律責任。在這份理由清單中,大家可能已經發現了一個共同的主題:無論我們如何高度關注數據本身,都會有人為因素介入進來。即使我們努力希望獲取對數據的全面控制權,大數據處理流程最終還是由人來打理的,其中包括眾多初始決策——例如選擇哪些數據進行收集與分析、向分析結論提出哪些問題等等。為防止大數據項目遭遇失敗,引入迭代機制是非常必要的。使用靈活而開放的數據基礎設施,保證其允許企業員工不斷調整實際方案、直到他們的努力獲得理想的回饋,最終以迭代為武器順利邁向大數據有效使用的勝利彼岸。
D. 什麼是大數據反欺詐
大數據反欺詐是基於海量數,通過機器學習架構的一套反欺詐系統,可以對包含
交易專詐騙屬,網路詐騙,電話詐騙,盜卡,盜號等欺詐行為進行實時在線識別的一項服務。是互聯網金融必不可少的一部分,是由用戶行為風險識別引擎,徵信系統,黑名單系統等組成。
大數據反欺詐主要是為金融行業或者電商行業的企業提供數據分析的業務以及服務,在進行支付或者信貸的過程中對於行業或者對個人提供一個信用評估的服務,通過大量的數據結合,可以很快的得到貸款方信用的評估結果,在欺詐者可能發生欺騙行為之前就將他們可能實施的行為扼殺在搖籃里,減少金融行業企業的風險。例如奇點數聚是通過大數據的分析結果,將欺詐者的畫像以及行為分析展現給金融企業,從而預防欺詐的發生。
E. 大數據需留意的六個安全問題
1、使數據易受攻擊
如今,所有數據都是數字化的,並且數量巨大,黑客始終可以在惡意內部人員的幫助下找到進入入侵的方式。如果他們以某種方式可以訪問你的關鍵數據,他們可以根據自己的目的進行修改,甚至刪除其中的一些數據。這就是為什麼完全依賴物聯網、大數據和實時數據分析的公司限制訪問並採取某些步驟來檢測假數據形成的原因。這是其數據保護協議的關鍵部分。
2、使訪問變得困難
使大數據生態系統有效的另一個重要因素是粒度訪問控制。根據等級、許可權可以授予不同人員不同級別的主數據訪問許可權。名義上,訪問控制使大數據更加安全。但是,隨著組織使用大量數據,增加復雜的控制面板可能變得更加微妙,並可能為更多潛在漏洞打開門戶。
3、需要某些安全審核
在每個系統開發中,幾乎都是需要安全審核的地方,特別是在大數據不安全的地方。但是,考慮到使用大數據已經帶來了廣泛的挑戰,這些安全審核通常被忽略,這些審核只是添加到列表中的另一件事。這種態度與以下事實結合在一起:許多公司仍需要能夠設計和實施此類安全審核的合格人員。
4、分散的框架
使用大數據的公司可能需要在不同系統之間分布數據分析。例如,Hadoop是一種開放源代碼軟體,旨在在大數據生態系統中進行靈活和分散的計算。但是,該軟體初根本沒有安全性,因此在分散的框架中有效的安全性仍然是要實現的挑戰。
5、數據來源
找到我們的數據來源確實有助於確定違規的來源。你可以使用元數據來跟蹤數據流。無論如何,即使對於大型公司,元數據管理也是一個自我戰略問題。如果沒有正確的框架,實時跟蹤此類非結構化數據將是一個挑戰。盡管這是一個持續存在的問題,但它並不是大數據問題。
6、實時合規
實時大數據分析在公司的競爭中越來越受歡迎。但是,實時實施這種工具更加復雜,並且還會產生大量的數據。
此類工具的開發方式應使它們在現實中不存在威脅時能夠規避對違規行為的錯誤警告。因此,發現此類錯誤警告可能很耗時。他們分散了白帽黑客的注意力,使其免受真正的故障和攻擊並浪費資源。
關於大數據需留意的六個安全問題,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
F. 大數據的內容和基本含義
「大數據」是近年來IT行業的熱詞,大數據在各個行業的應用逐漸變得廣泛起來,如2014年的兩會,我們聽得最多的也是大數據分析,那麼,什麼是大數據呢,什麼是大數據概念呢,大數據概念怎麼理解呢,一起來看看吧。
1、大數據的定義。大數據,又稱巨量資料,指的是所涉及的數據資料量規模巨大到無法通過人腦甚至主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。
2、大數據的採集。科學技術及互聯網的發展,推動著大數據時代的來臨,各行各業每天都在產生數量巨大的數據碎片,數據計量單位已從從Byte、KB、MB、GB、TB發展到PB、EB、ZB、YB甚至BB、NB、DB來衡量。大數據時代數據的採集也不再是技術問題,只是面對如此眾多的數據,我們怎樣才能找到其內在規律。
3、大數據的特點。數據量大、數據種類多、 要求實時性強、數據所蘊藏的價值大。在各行各業均存在大數據,但是眾多的信息和咨詢是紛繁復雜的,我們需要搜索、處理、分析、歸納、總結其深層次的規律。
4、大數據的挖掘和處理。大數據必然無法用人腦來推算、估測,或者用單台的計算機進行處理,必須採用分布式計算架構,依託雲計算的分布式處理、分布式資料庫、雲存儲和虛擬化技術,因此,大數據的挖掘和處理必須用到雲技術。
5、大數據的應用。大數據可應用於各行各業,將人們收集到的龐大數據進行分析整理,實現資訊的有效利用。舉個本專業的例子,比如在奶牛基因層面尋找與產奶量相關的主效基因,我們可以首先對奶牛全基因組進行掃描,盡管我們獲得了所有表型信息和基因信息,但是由於數據量龐大,這就需要採用大數據技術,進行分析比對,挖掘主效基因。例子還有很多。
6、大數據的意義和前景。總的來說,大數據是對大量、動態、能持續的數據,通過運用新系統、新工具、新模型的挖掘,從而獲得具有洞察力和新價值的東西。以前,面對龐大的數據,我們可能會一葉障目、可見一斑,因此不能了解到事物的真正本質,從而在科學工作中得到錯誤的推斷,而大數據時代的來臨,一切真相將會展現在我么面前。
G. 大數據不適合處理的10件事情
大數據不適合處理的10件事情
許多企業領導人開始接納大數據處理並期待神奇和奇跡,但卻發現大數據帶來新的復雜性--且從中獲益所需要付出的努力要預計中的多得多。
1:解決你的業務問題
大數據不會處理業務問題。人們可以做的,就是要坐下來,在開始使用大數據之前,討論決定放棄大數據,就使用商業智能取得共識。
2:幫助你管理數據
IBM公司宣稱:每一天都會產生 250萬位元組的數據,其中大部分屬於大數據。不出預料,世界范圍內企業所需要管理的數據量呈現指數級增長,由於缺乏清晰有效地數據存儲和使用策略,數據將不斷堆積,每個企業都陷於數據管理的工作。
3:緩解減輕你的安全憂慮
對於許多公司來說,確保大數據的安全訪問仍然是一個開放式的課題。這是因為對於大數據安全實踐的定義遠沒有系統數據和記錄保護這樣明確。我們正處在這樣的一個時間點上,也就是IT與最終用戶一起來??確定:誰可以訪問哪些級別的大數據,並可以進行相應地分析。
4:關鍵IT技能缺乏
大數據處理資料庫管理、伺服器管理、軟體開發、業務分析技能短缺,許多IT部門關鍵IT技能的缺失會不斷成為企業的負擔。
5:減少遺留系統的價值
如果有的話,遺留系統記錄會較之任何大數據更具有價值。通常情況下,正是這些遺留系統可以為大數據分析提供重要線索,用於回答重要的業務問題。
6:簡化數據中心
大數據分析需要並行處理計算機集群和傳統IT事務處理和數據倉庫系統等不同風格的系統管理,這就意味著能量、冷卻、軟體硬體消耗,運轉這些系統所需要的技巧也不盡相同
7:提高數據質量
傳統事務處理系統美妙之處在於其擁有固定長度的數據欄位以及全面的數據編輯和驗證發方式,這有助於得到一個相對干凈的表格呈現。大數據不是這樣,他們是非結構化的數據,可以表現為幾乎任何形式。這讓大數據的質量成為一個令人頭痛的難題。數據質量至關重要,如果你沒有它,就不能信任數據查詢的結果。
8:驗證當前的投資回報率(ROI)
衡量系統投資回報率最常用的方法是監測交易速度,然後推斷其獲利能力(例如酒店每分鍾有多少新的預訂)。對於大數據處理來說,交易速度不是好的衡量指標,大數據緩存和運行分析可能需要數小時甚至數天才可以殺青。衡量大數據處理有效性的一個最好的指標應該是利用率,它應該保持在90%以上(相比於交易系統,其利用率可能只有20%)。對於大數據來說,確定新的ROI指標尤為重要,因為你還有說服CFO以及其他業務部門的領導。
9:減小「噪音」
95%以上的大數據屬於「噪音」,對於商業智能的貢獻很小或幾乎沒有。通過數據篩選來進行企業掘金,幫助企業業務進步,這是一個非常艱巨的任務。
10:每天工作時間
多年來,大學和研究中心一直運用大數據實驗,試圖解答基因組、葯物研究以及是否有其他星球生命等令人難以捉摸問題的答案。雖然其中一些演算法和查詢產生結果更多還是不確定的,大學和研究對於環境的研究也尚無定論,但這不是企業可以接受的,因此,IT和企業關鍵決策者需要對預期進行調整和管理。
以上是小編為大家分享的關於大數據不適合處理的10件事情的相關內容,更多信息可以關注環球青藤分享更多干貨
H. 大數據可否被神化
大數據可否被神化
大數據的發展速度讓人瞠目結舌,大數據應用的快速深入也引起業界廣泛關注,如今,大數據總量的增長主要歸功於非結構化數據的增長。
廣義的非結構化數據也包括了半結構化和多結構化數據,目前普遍被認為佔到總量的85%以上,而且增速比結構化數據快得多。低信息密度的非結構化數據是大數據的一大挑戰,而挑戰才是機會,業界巨擘們創造了很多新的概念來迎接非結構化數據,NoSQL資料庫就是其中最亮麗的一個。
對此,資料庫行業的老法師Mike Stonebraker對此耿耿於懷,不惜力推「血統」更純正的NewSQL資料庫;Sybase公司的CTO Irfan Khan甚至說大數據(這個新概念)根本就是個大謊言,聲稱他們的數據倉庫工具早就能分析包括非結構化數據在內的大數據。
實際上,這類總量數據的預測,對於存儲和網路企業的投資者來說,無疑能提升信心,但對其他人來說,沒有太大意義。他們更關心的是個體行業、企業甚至個人數據的狀況。
由此,毋庸置疑,必須要對大數據有清醒的認識。大數據是一種新的數據形態和實踐,它不是取代當前主流的數據應用,而是與之並存。並且,在今後相當長的時間內,它仍然是個新鮮事物。即使年復合增長率高達32%,到2016年全球大數據技術和服務市場總額也就是240億美金左右(IDC在2012年底的預測)。不切實際、一窩蜂地上大數據項目不應鼓勵。明明不算大數據,卻偏要喬裝打扮,削足適履上馬Hadoop和NoSQL更不足取。
大數據也是一種戰略、世界觀和習慣。即使今天沒有大體量的數據,還是可以盡可能自覺、客觀、全面地測量世界,為未來的大數據實踐做准備。對於一個企業或系統來說,真正的挑戰在數據採集而非存儲。
微信在設計之初就把數據監控精細化,並納入基礎框架,這是意識和實力的體現。有多少公司像彭博社那樣「如飢似渴」地採集數據?它能夠僱傭一個衛星每周對位於俄克拉何馬的美國最大原油儲備庫拍照,根據油罐浮動頂的陰影長度來判斷原油儲備量的變化。所以,成功者有成功的必然性。
其實「數據即價值」的價值觀早已存在,Value不是大數據專享的屬性,小數據照樣有大價值。大數據的功勞在於喚醒大家的意識和覺悟。同樣,從數據中發現價值的實踐由來已久,橫跨資料庫、統計學和機器學習交叉學科的數據分析是大數據分析的基礎,但傳統的數據分析實踐是無法適應大數據的發展的。
大數據雖然價值巨大,但是不能盲目神化大數據,有些人認為大數據是能夠包治百病的靈丹妙葯,也有些人認為大數據是包裝舊觀念而已,將大數據矮化,這兩種觀點都是不可取的,對部分人來說,大數據已經是個客觀存在和競爭優勢;對絕大多數人來說,大數據可以是一種「從現在做起」的世界觀,是一種未雨綢繆、決戰未來的戰略,這樣才是正確對待大數據的態度。