導航:首頁 > 網路數據 > 大數據帶來的安全挑戰

大數據帶來的安全挑戰

發布時間:2023-03-05 11:22:53

『壹』 大數據安全的挑戰是什麼

當前,隨著互聯網+、大數據、雲計算、移動互聯網等新技術興起,特別是大數據技術創新應用,使我們具備了對海量數據的處理和分析能力,數據驅動的時代已經來臨。與此同時,數據匯聚、數據分析等帶來的安全問題也給我們帶來前所未有的挑戰。

基於目前我國大數據安全保護現狀,以及大數據面臨的安全風險挑戰,筆者提出以下幾方面建議對策:

一是進一步加強頂層設計。在《網路安全法》的基礎上,完善數據安全保護的規章制度,明確數據在收集、使用、處理、交易、出境等各環節的安全要求。完善數據安全保護的網路安全國家標准,充分發揮標準的指導和引領作用,提升數據保護能力和水平。

二是加強重要數據基礎設施保護。建立大數據分類分級安全保護機制,結合各行業數據的敏感程度、數據脫敏與否、數據可用性要求等對大數據資產進行分類分級,採取不同級別的安全防護策略。

三是落實網路安全責任制。明確大數據管理者和運營者的法律責任與義務。加強監督管理和風險評估,提升數據保護能力。對掌控大數據資源的單位進行大數據業務上線前安全評估,對重點產品進行在線安全監測,開展定期的檢查和不定期的抽查,發現問題及時督促整改。

四是加強網路安全宣傳。通過國家網路安全宣傳周等活動,普及網路安全知識,加強網路安全教育,提升廣大網民網路安全意識和防護技能,推動形成全社會重視數據安全的良好氛圍。

『貳』 大數據安防應用 三種技術及五大挑戰

大數據安防應用 三種技術及五大挑戰

1大數據安防應用的幾種關鍵技術

在安防行業,隨著前端設備解析度的不斷提高、安防系統建設規模的不斷擴大以及視頻、圖片數據存儲的時間越來越長,安防大數據問題日益凸顯。如何有效對數據進行存儲、共享以及應用變得愈加重要。要應用安防大數據,首先要了解安防大數據有何特點。

安防大數據涉及的類型比較多,主要包含結構化、半結構化和非結構化的數據信息。其中結構化數據主要包括報警記錄、系統日誌、運維數據、摘要分析結構化描述記錄以及各種相關的信息資料庫,如人口庫、六合一系統信息等;半結構化數據如人臉建模數據、指紋記錄等;而非結構化數據主要包括視頻錄像和圖片記錄,如監控、報警、視頻摘要等錄像信息和卡口、人臉等圖片信息。區別於其他行業大數據特點,安防大數據以非結構化的視頻和圖片為主,如何對非結構化的數據進行分析、提取、挖掘及處理,對安防行業提出了更多挑戰。

大數據

對於安防視頻圖像數據,傳統的處理方式主要靠事後人工查閱來完成,效率極低。面對海量的安防數據,如果繼續採用傳統方式,不僅效率低下,而且不能達到實戰應用目的,偏離了安防系統建設目的。為充分利用安防系統價值,提升對安防大數據的應用能力,大華股份從多層次、全方位考慮產品和方案規劃,不斷提升對於安防有效信息的快速挖掘能力。

要提升安防大數據的處理效率,首先要從智能分析做起,快速過濾無效信息。大華智能分析從多維度、多產品形態來實現。如對於事件檢測、行為分析、異常情況報警等,大華前端、存儲以及平台系統產品都能夠快速實現智能檢測,並通知系統對事件進行快速響應,這些產品從某種層面上將安防有效數據的分析分散化,大大加快了整個系統的大數據處理應用速度。此外,大華還推出了基於雲存儲系統的大數據應用系統,如視頻編解碼系統、車輛研判系統、以圖搜圖系統、視頻濃縮摘要系統、人臉識別系統以及車型識別系統等等。

大數據安防應用的幾種關鍵技術

1)大數據融合技術

經過十幾年的發展,國內安防系統建設基本形成了是以平安城市、智能交通系統為主體,其他行業系統有效完善的發展態勢。而「重建設、輕應用」的現況給安防應用提出了更高要求,如何解決這些問題成為當務之急。

為實現數據融合、數據共享,首先要解決存儲「分散」問題,大華雲存儲系統不僅能夠實現數據的有效融合與共享,解決系統在硬體設備故障條件下視頻數據的正常存儲和數據恢復問題,為安防大數據應用分析提供可靠基礎。

2)大數據處理技術

安防大數據以半結構化和非結構化數據居多,要實現對安防大數據的分析和信息挖掘,首先要解決數據結構化問題。所謂的數據結構化就是通過某種方式將半結構化和非結構化數據轉換為結構化數據。大華通過採用先進的雲計算系統對安防非結構化數據進行結構化處理,為大數據的進一步分析和應用提供進一步支持。

3)大數據分析和挖掘技術

國內平安城市歷經十幾年的建設,在解決了穩定性、規模化之後,當下面臨的問題是如何深化應用的問題,即如何實現公安部的要求,建為用、用為戰的目標,實現對安防系統的深層次應用。

對安防大數據而言,要實現業務的深層次應用,首先需要對安防數據進行分析和挖掘,以雲存儲和雲計算系統為基礎,通過雲計算系統實現對「大數據」的快速分析,如基於雲的車牌識別,可通過對海量視頻的分析,快速提取海量車牌信息,並通過應用系統對相關數據進行深一步挖掘、關聯,形成有效「檔案」。最後利用這些分析和挖掘的數據實現對事件的預測預防、報警,最終實現安防系統建設的實戰應用目的。

2大數據成熟行業應用

大數據成熟行業應用

安防視頻監控行業是伴隨著平安城市、智能交通而發展起來了,新一輪的智慧城市建設也為安防行業的再次發展注入了「**」。隨著各地安防系統建設規模不斷增大,安防數據迅速膨脹。由於缺乏適當的手段去利用這些海量數據,導致了「重建設、輕應用」現象,下面就安防大數據在公安和交通行業的應用進行簡單介紹。

1)公安執法

在公安行業,大數據應用無處不存,下面簡單介紹一下大數據應用在公安行業幾個業務體現。

第一是稽查布控業務。當案件發生後,需要對嫌疑車輛進行稽查布控,一般採用布控車牌號,通過系統比對卡口車輛信息進行識別,但這種方式存在問題。當布控車輛從某個卡口經過時,攔截人員通常不在現場,等到攔截人員趕到現場時,嫌疑車輛早已逃之夭夭,從而失去布控的意義。對於這種情況,可實現移動警務、GIS系統有效關聯,通過在GIS系統中繪制嫌疑車輛逃跑路線和防控識別圈,可大大提高攔截效率;

第二是車輛落腳點分析業務。隨著城市的快速發展,城市越來越大,路網也越來越復雜,為迅速逃脫公安機關的抓捕,很多犯罪分子避開城區主幹道(一般來說,城區主幹道都裝有電子卡口),逃竄到人員比較多的小區或偏僻區域。大華股份通過建設雲卡口,通過視頻實現卡口相機功能,對海量數據進行雲卡口識別,結合GIS系統,將嫌疑車輛軌跡描繪出來,大大提高公安辦案效率。

第三是伴隨車輛分析。由於公眾安全防範意識的不斷提高,犯罪分子獨立實施犯罪行為的成功率大大降低,因此,新時期的犯罪行為,開始表現為團伙作案。在踩點和作案時,犯罪團伙通常會使用多輛汽車,以提高成功率。從卡口系統的角度看,團伙作案具體表現為多輛車同時出沒於特定卡口覆蓋范圍,利用該特徵,我們可以從海量的卡口車輛數據中,提取滿足特定條件(如車輛行進路線、車輛通行間隔時間、跟車數量以及分析起止時間范圍等)的車輛,提高案件偵破效率。此外,在公安行業還有基於人臉識別的人臉卡口、視頻摘要等安防大數據應用。

2)智能交通

第一是旅行時間計算。由於電子狗的大量使用,不少駕駛員在通過卡口時,會主動降低速度,一旦離開卡口覆蓋范圍,又會迅速提高速度,超速行駛。傳統的單點測度無法發現這種超速行為,利用區間測速便可快速檢測違章行為,且可減少區域卡口數量,節省建設成本。而當發現相同車牌在相距較遠卡口同時出現時,還可檢測出套牌車輛,並可通知相關人員進行攔截追捕。

第二是交通流量分析。對於交通流量的檢測,傳統方式是通過地磁、微波檢測完成的,但這種檢測只能檢測車輛數量,卻無法檢測相關車牌號,這就限制了傳統流量分析的應用場景,智能對單一路段進行分析,無法形成全局的流量分析。而卡口系統記錄了車輛號碼、車身顏色、車型等更多詳細信息,基於卡口系統的流量分析,不僅可計算出城市各小區機動車數量分布,指導出行目的地分析、出行路線分析等應用,而且能夠根據車輛流量信息找出城市熱點區域,為交管部門提供參考,更好地優化路網機制,規劃更為合理的路網參數。

此外,還可通過智能分析系統,對卡口數據進行深層次分析與挖掘,不僅識別車輛車牌號,而且實現對車輛品牌、車輛型號、是否粘貼年檢標識、駕駛員是否系安全帶、是否駕駛時撥打電話等一些行為狀態識別,從而進一步規范車輛達標和安全駕駛行為。

3大數據安防面臨的挑戰

大數據安防面臨的挑戰

(1)海量非結構化數據存儲

相較於其他行業,安防非結構化的數據存儲壓力不斷增大,一方面源於視頻、圖片等非結構化數據本身容量,另一方面源於安防數據規模的不斷擴大,安防大數據存儲對系統設備提出了更高挑戰,如何在滿足需求的前提下,刪除重復數據、降低存儲硬體成本投資成為海量數據存儲的一個難題

(2)數據共享

大數據需要通過快速的採集、發現和分析,從大量化、多類別的數據中提取價值。安防大數據時代最顯著的特徵就是海量和非結構化數據共享,用以提高數據處理能力。而海量數據存儲在不同系統、不同區域、不同節點、不同設備中,這給數據的傳輸和共享帶來極大的挑戰:

(3)數據安全

視頻監控數據具有私密性高、保密性強等特點,不僅是事後追查的依據,而且更是後續數據分析挖掘的基礎。因此,數據安全一方面體現在數據不受外界入侵或非法獲取,另一方面體現在龐大數據系統的魯棒性、體系容錯機制,確保硬體在發生故障時數據可以恢復,可以繼續保存。面對海量數據的存儲、共享、硬體和軟體設備承載的極大風險,如何構建大型、海量視頻監控存儲系統、數據分析系統以及容錯冗餘機制是安防行業面臨的重大考驗;

(4)數據利用

安防監控雖然數據量很大,但真正有用的信息並不多。安防數據的有效性分為兩個方面,一方面有效信息可能只分布在一個較短的時間段內,根據統計學原理,信息呈現冪率分布,往往越高密度的信息對客戶價值越大;另一方面,數據的有效性體現在深層次挖掘龐大的海量數據,關聯得出有效信息。視頻監控業務網路化、大聯網後,網內的設備越來越多,利用網內的閑置資源,實現資源的最大化利用,關乎運算的效率。在視頻監控領域,往往視頻分析的效率決定價值,更低的延遲、更准確的分析往往是客戶的普遍需求。如何對海量的視頻數據進行分析檢索業對行業提出更大的挑戰。

(5)缺乏統一標准

國內安防行業經歷十幾年的快速發展,在此發展過程中,平安城市建設表現卓越,在安防應用中也一直走在前列,國內平安城市系統的建設也不斷推動著國內安防技術和安防廠商的發展。在平安城市項目的建設過程中,由於參與的安防廠家眾多,不同項目、不同系統甚至同一系統採用的設備廠商也不盡相同,為了更好的兼容各廠商產品,整個安防行業和政府也制定了一些標准,如ONVIF協議、GB28181協議以及各個地方省市發布的一些標准。

新一輪的智慧城市正在緊鑼密鼓地進行著,相對平安城市相對「簡單」的治安監控,智慧城市要求數據共享,跨區域視頻聯網監控、監控資源整合與共享以及政府各部門之間的視頻監控資源共享等等。但是不同的地方城市,不同的行業類別,不同的管理方式都會有不同的監控系統方案,數據融合或者共享兼容性問題更多,對整個系統建設是重大考驗。

平安城市系統面向的是安防行業設備與系統的兼容問題,隨著各種行標、地標的制定,各種問題基本得以解決;而智慧城市系統不僅僅是安防系統的整合,而是多個行業系統的集成應用,因缺乏統一標准帶來的復雜性可想而知。慶幸的是國家目前已經開始起草智慧城市建設的各種標准,而相關企業也在不斷規范自身系統的兼容性和開放性。

以上是小編為大家分享的關於大數據安防應用 三種技術及五大挑戰的相關內容,更多信息可以關注環球青藤分享更多干貨

『叄』 大數據時代給信息安全帶來的挑戰

大數據時代給信息安全帶來的挑戰
在大數據時代,商業生態環境在不經意間發生了巨大變化:無處不在的智能終端、隨時在線的網路傳輸、互動頻繁的社交網路,讓以往只是網頁瀏覽者的網民的面孔從模糊變得清晰,企業也有機會進行大規模的精準化的消費者行為研究。大數據藍海將成為未來競爭的制高點。
大數據在成為競爭新焦點的同時,不僅帶來了更多安全風險,同時也帶來了新機遇。
一、大數據成為網路攻擊的顯著目標。
在網路空間,大數據是更容易被「發現」的大目標。一方面,大數據意味著海量的數據,也意味著更復雜、更敏感的數據,這些數據會吸引更多的潛在攻擊者。另一方面,數據的大量匯集,使得黑客成功攻擊一次就能獲得更多數據,無形中降低了黑客的進攻成本,增加了「收益率」。
二、大數據加大隱私泄露風險。
大量數據的匯集不可避免地加大了用戶隱私泄露的風險。一方面,數據集中存儲增加了泄露風險,而這些數據不被濫用,也成為人身安全的一部分。另一方面,一些敏感數據的所有權和使用權並沒有明確界定,很多基於大數據的分析都未考慮到其中涉及的個體隱私問題。
三、大數據威脅現有的存儲和安防措施。
大數據存儲帶來新的安全問題。數據大集中的後果是復雜多樣的數據存儲在一起,很可能會出現將某些生產數據放在經營數據存儲位置的情況,致使企業安全管理不合規。大數據的大小也影響到安全控制措施能否正確運行。安全防護手段的更新升級速度無法跟上數據量非線性增長的步伐,就會暴露大數據安全防護的漏洞。
四、大數據技術成為黑客的攻擊手段。
在企業用數據挖掘和數據分析等大數據技術獲取商業價值的同時,黑客也在利用這些大數據技術向企業發起攻擊。黑客會最大限度地收集更多有用信息,比如社交網路、郵件、微博、電子商務、電話和家庭住址等信息,大數據分析使黑客的攻擊更加精準。此外,大數據也為黑客發起攻擊提供了更多機會。黑客利用大數據發起僵屍網路攻擊,可能會同時控制上百萬台傀儡機並發起攻擊。
五、大數據成為高級可持續攻擊的載體。
傳統的檢測是基於單個時間點進行的基於威脅特徵的實時匹配檢測,而高級可持續攻擊(APT)是一個實施過程,無法被實時檢測。此外,由於大數據的價值低密度特性,使得安全分析工具很難聚焦在價值點上,黑客可以將攻擊隱藏在大數據中,給安全服務提供商的分析製造很大困難。黑客設置的任何一個會誤導安全廠商目標信息提取和檢索的攻擊,都會導致安全監測偏離應有方向。
六、大數據技術為信息安全提供新支撐。
當然,大數據也為信息安全的發展提供了新機遇。大數據正在為安全分析提供新的可能性,對於海量數據的分析有助於信息安全服務提供商更好地刻畫網路異常行為,從而找出數據中的風險點。對實時安全和商務數據結合在一起的數據進行預防性分析,可識別釣魚攻擊,防止詐騙和阻止黑客入侵。網路攻擊行為總會留下蛛絲馬跡,這些痕跡都以數據的形式隱藏在大數據中,利用大數據技術整合計算和處理資源有助於更有針對性地應對信息安全威脅,有助於找到攻擊的源頭。

『肆』 大數據帶來哪些安全的挑戰

挑戰來一:大數據的巨大自體量使得信息管理成本顯著增加
挑戰二:大數據的繁多類型使得信息有效性驗證工作大大增加
挑戰二:大數據的繁多類型使得信息有效性驗證工作大大增加
挑戰四:大數據的快速處理要求使得獨立決策的比例顯著降低
挑戰六:大數據網路的相對開放性使得安全加固策略的復雜性有所降低
挑戰六:大數據網路的相對開放性使得安全加固策略的復雜性有所降低

『伍』 大數據需留意的六個安全問題

1、使數據易受攻擊


如今,所有數據都是數字化的,並且數量巨大,黑客始終可以在惡意內部人員的幫助下找到進入入侵的方式。如果他們以某種方式可以訪問你的關鍵數據,他們可以根據自己的目的進行修改,甚至刪除其中的一些數據。這就是為什麼完全依賴物聯網、大數據和實時數據分析的公司限制訪問並採取某些步驟來檢測假數據形成的原因。這是其數據保護協議的關鍵部分。


2、使訪問變得困難


使大數據生態系統有效的另一個重要因素是粒度訪問控制。根據等級、許可權可以授予不同人員不同級別的主數據訪問許可權。名義上,訪問控制使大數據更加安全。但是,隨著組織使用大量數據,增加復雜的控制面板可能變得更加微妙,並可能為更多潛在漏洞打開門戶。


3、需要某些安全審核


在每個系統開發中,幾乎都是需要安全審核的地方,特別是在大數據不安全的地方。但是,考慮到使用大數據已經帶來了廣泛的挑戰,這些安全審核通常被忽略,這些審核只是添加到列表中的另一件事。這種態度與以下事實結合在一起:許多公司仍需要能夠設計和實施此類安全審核的合格人員。


4、分散的框架


使用大數據的公司可能需要在不同系統之間分布數據分析。例如,Hadoop是一種開放源代碼軟體,旨在在大數據生態系統中進行靈活和分散的計算。但是,該軟體初根本沒有安全性,因此在分散的框架中有效的安全性仍然是要實現的挑戰。


5、數據來源


找到我們的數據來源確實有助於確定違規的來源。你可以使用元數據來跟蹤數據流。無論如何,即使對於大型公司,元數據管理也是一個自我戰略問題。如果沒有正確的框架,實時跟蹤此類非結構化數據將是一個挑戰。盡管這是一個持續存在的問題,但它並不是大數據問題。


6、實時合規


實時大數據分析在公司的競爭中越來越受歡迎。但是,實時實施這種工具更加復雜,並且還會產生大量的數據。


此類工具的開發方式應使它們在現實中不存在威脅時能夠規避對違規行為的錯誤警告。因此,發現此類錯誤警告可能很耗時。他們分散了白帽黑客的注意力,使其免受真正的故障和攻擊並浪費資源。


關於大數據需留意的六個安全問題,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。

『陸』 大數據的發展所面臨的挑戰有哪些

挑戰一:業務來部門沒有清晰的大自數據需求。

挑戰二:企業內部數據孤島嚴重。

挑戰三:數據可用性低,數據質量差。

挑戰四:數據相關管理技術和架構。

挑戰五:數據安全。

『柒』 大數據安全的六大挑戰

大數據安全的六大挑戰_數據分析師考試

大數據的價值為大家公認。業界通常以4個「V」來概括大數據的基本特徵——Volume(數據體量巨大)、Variety(數據類型繁多)、Value(價值密度低)、Velocity(處理速度快)。當你准備對大數據所帶來的各種光鮮機遇大加利用的同時,請別忘記大數據也會引入新的安全威脅,存在於大數據時代「潘多拉魔盒」中的魔鬼可能會隨時出現。

挑戰一:大數據的巨大體量使得信息管理成本顯著增加

4個「V」中的第一個「V」(Volume),描述了大數據之大,這些巨大、海量數據的管理問題是對每一個大數據運營者的最大挑戰。在網路空間,大數據是更容易被「發現」的顯著目標,大數據成為網路攻擊的第一演兵場所。一方面,大量數據的集中存儲增加了泄露風險,黑客的一次成功攻擊能獲得比以往更多的數據量,無形中降低了黑客的進攻成本,增加了「攻擊收益」;另一方面,大數據意味著海量數據的匯集,這裡面蘊藏著更復雜、更敏感、價值巨大的數據,這些數據會引來更多的潛在攻擊者。

在大數據的消費者方面,公司在未來幾年將處理更多的內部生成的數據。然而在許多組織中,不同的部門像財務、工程、生產、市場、IT等之間的信息仍然是孤立的,各部門之間相互設防,造成信息無法共享。那些能夠在不破壞壁壘和部門現實優勢的前提下更透明地溝通的公司將更具競爭優勢。

【解決方案】 首先要找到有安全管理經驗並受過大數據管理所需要技能培訓的人員,尤其是在今天人力成本和培訓成本不斷上升的節奏中,這一定足以讓許多CEO肝顫,但這些針對大數據管理人員的巨額教育和培訓成本,是一種非常必要的開銷。

與此同時,在流程的設計上,一定要將數據分散存儲,任何一個存儲單元被「黑客」攻破,都不可能拿到全集,同時對於不同安全域要進行准確的評估,像關鍵信息索引的保護一定要加強,「好鋼用在刀刃上」,作為數據保全,能夠應對部分設施的災難性損毀。

挑戰二:大數據的繁多類型使得信息有效性驗證工作大大增加

4個「V」中的第二個「V」(Variety),描述了數據類型之多,大數據時代,由於不再拘泥於特定的數據收集模式,使得數據來自於多維空間,各種非結構化的數據與結構化的數據混雜在一起。

未來面臨的挑戰將會是從數據中提取需要的數據,很多組織將不得不接受的現實是,太多無用的信息造成的信息不足或信息不匹配。我們可以考慮這樣的邏輯:依託於大數據進行演算法處理得出預測,但是如果這些收集上來的數據本身有問題又該如何呢?也許大數據的數據規模可以使得我們無視一些偶然非人為的錯誤,但是如果有個敵手故意放出干擾數據呢?現在非常需要研究相關的演算法來確保數據來源的有效性,尤其是比較強調數據有效性的大數據領域。

正是因為這個原因,對於正在收集和儲存大量客戶數據的公司來說,最顯而易見的威脅就是在過去的幾年裡,存放於企業資料庫中數以TB計,不斷增加的客戶數據是否真實可靠,依然有效。

眾所周知,海量數據本身就蘊藏著價值,但是如何將有用的數據與沒有價值的數據進行區分看起來是一個棘手的問題,甚至引發越來越多的安全問題。

【解決方案】 嘗試盡可能使數據類型具體化,增加對數據更細粒度的了解,使數據本身更加細化,縮小數據的聚焦范圍,定義數據的相關參數,數據的篩選要做得更加精緻。與此同時,進一步健全特徵庫,加強數據的交叉驗證,通過邏輯沖突去偽存真。

挑戰三:大數據的低密度價值分布使得安全防禦邊界有所擴展

4個「V」中的第三個「V」(Value),描述了大數據單位數據的低價值。這種廣種薄收似的價值量度,使得信息效能被攤薄了,大數據的安全預防與攻擊事件的分析過程更加復雜,相當於安全管理范圍被放大了。

大數據時代的安全與傳統信息安全相比,變得更加復雜,具體體現在三個方面:一方面,大量的數據匯集,包括大量的企業運營數據、客戶信息、個人的隱私和各種行為的細節記錄,這些數據的集中存儲增加了數據泄露風險;另一方面,因為一些敏感數據的所有權和使用權並沒有被明確界定,很多基於大數據的分析都未考慮到其中涉及的個體隱私問題;再一方面,大數據對數據完整性、可用性和秘密性帶來挑戰,在防止數據丟失、被盜取、被濫用和被破壞上存在一定的技術難度,傳統的安全工具不再像以前那麼有用。

【解決方案】 確立有限管理邊界,依據保護要求,加強重點保護,構建一體化的數據安全管理體系,遵循網路防護和數據自主預防並重的原則,並不是實施了全面的網路安全護理就能徹底解決大數據的安全問題,數據不丟失只是傳統的邊界網路安全的一個必要補充,我們還需要對大數據安全管理的盲區進行監控,只有將二者結合在一起,才是一個全面的一體化安全管理的解決方案

挑戰四:大數據的快速處理要求使得獨立決策的比例顯著降低

「4個「V」中最後一個「V」(Velocity),決定了利用海量數據快速得出有用信息的屬性。

大數據時代,對事物因果關系的關注,轉變為對事物相關關系的關注。如果大數據系統只是一種輔助決策系統,這還不是最可怕的。事實上,今天大數據分析日益成為一項重要的業務決策流程,越來越多的決策結果來自於大數據的分析建議,對於領導者最艱難的事情之一,是讓我的邏輯思考來做決定,還是由機器的數據分析做決定,可怕的是,今天看來,機器往往是正確的,這不得不讓我們產生依賴。試想一下,如果收集的數據已經被修正過,或是系統邏輯已經被控制了呢!但是面對海量的數據收集、存儲、管理、分析和共享,傳統意義上的對錯分析和奇偶較驗已失去作用。

【解決方案】 在依靠大數據進行分析、決策的同時,還應輔助其他的傳統決策支持系統,盡可能明智地使用數據所告訴我們的結果,讓大數據為我們所用。但絕對不要片面地依賴於大數據系統。

挑戰五:大數據獨特的導入方式使得攻防雙方地位的不對等性大大降低

在大數據時代,數據加工和存儲鏈條上的時空先後順序已被模糊,可擴展的數據聯系使得隱私的保護更加困難。過去傳統的安全防護工作,是先紮好籬笆、築好牆,等待「黑客」的攻擊,我們雖然不知道下一個「黑客」是誰,但我們一定知道,它是通過尋求新的漏洞,從前面逐層進入。守方在明處,但相比攻方有明顯的壓倒性優勢。而在大數據時代,任何人都可以是信息的提供者和維護者,這種由先天的結構性導入設計所帶來的變化,你很難知道「它」從哪裡進來,「哪裡」才是前沿。這種變化,使得攻、防雙方的力量對比的不對等性大大下降。

同時,由於這種不對等性的降低,在我們用數據挖掘和數據分析等大數據技術獲取有價值信息的同時,「黑客」也可以利用這些大數據技術發起新的攻擊。「黑客」會最大限度地收集更多有用信息,比如社交網路、郵件、微博、電子商務、電話和家庭住址等信息,大數據分析使「黑客」的攻擊更加精準。此外,「黑客」可能會同時控制上百萬台傀儡機,利用大數據發起僵屍網路攻擊。

【解決方案】 面對大數據所帶來新的安全問題,有針對性地更新安全防護手段,增加新型防護手段,混合生產數據和經營數據,多種業務流並行,增加特徵標識建設內容,增強對數據資源的管理和控制。

挑戰六:大數據網路的相對開放性使得安全加固策略的復雜性有所降低

在大數據環境下,數據的使用者同時也是數據的創造者和供給者,數據間的聯系是可持續擴展的,數據集是可以無限延伸的,上述原因就決定了關於大數據的應用策略要有新的變化,並要求大數據網路更加開放。大數據要對復雜多樣的數據存儲內容做出快速處理,這就要求很多時候,安全管理的敏感度和復雜度不能定得太高。此外,大數據強調廣泛的參與性,這將倒逼系統管理者調低許多策略的安全級別。

當然,大數據的大小也影響到安全控制措施能否正確地執行,升級速度無法跟上數據量非線性增長的步伐,就會暴露大數據安全防護的漏洞。

【解決方案】 使用更加開放的分布式部署方式,採用更加靈活、更易於擴充的信息基礎設施,基於威脅特徵建立實時匹配檢測,基於統一的時間源消除高級可持續攻擊(APT)的可能性,精確控制大數據設計規模,削弱「黑客」可以利用的空間。

大數據時代已經到來,大數據已經產生出巨大影響力,並對我們的社會經濟活動帶來深刻影響。充分利用大數據技術來挖掘信息的巨大價值,從而實現並形成強有力的競爭優勢,必將是一種趨勢。面對大數據時代的六種安全挑戰,如果我們能夠予以足夠重視,採取相應措施,將可以起到未雨綢繆的作用。

以上是小編為大家分享的關於大數據安全的六大挑戰的相關內容,更多信息可以關注環球青藤分享更多干貨

『捌』 大數據面臨哪些安全與隱私問題

(一)大數據遭受異常流量攻擊
大數據所存儲的數據非常巨大,往往採用分布式的方式進行存儲,而正是由於這種存儲方式,存儲的路徑視圖相對清晰,而數據量過大,導致數據保護,相對簡單,黑客較為輕易利用相關漏洞,實施不法操作,造成安全問題。由於大數據環境下終端用戶非常多,且受眾類型較多,對客戶身份的認證環節需要耗費大量處理能力。由於APT攻擊具有很強的針對性,且攻擊時間長,一旦攻擊成功,大數據分析平台輸出的最終數據均會被獲取,容易造成的較大的信息安全隱患。
(二)大數據信息泄露風險
大數據平台的信息泄露風險在對大數據進行數據採集和信息挖掘的時候,要注重用戶隱私數據的安全問題,在不泄露用戶隱私數據的前提下進行數據挖掘。需要考慮的是在分布計算的信息傳輸和數據交換時保證各個存儲點內的用戶隱私數據不被非法泄露和使用是當前大數據背景下信息安全的主要問題。同時,當前的大數據數據量並不是固定的,而是在應用過程中動態增加的,但是,傳統的數據隱私保護技術大多是針對靜態數據的,所以,如何有效地應對大數據動態數據屬性和表現形式的數據隱私保護也是要注重的安全問題。最後,大數據的數據遠比傳統數據復雜,現有的敏感數據的隱私保護是否能夠滿足大數據復雜的數據信息也是應該考慮的安全問題。
(三)大數據傳輸過程中的安全隱患
數據生命周期安全問題。伴隨著大數據傳輸技術和應用的快速發展,在大數據傳輸生命周期的各個階段、各個環節,越來越多的安全隱患逐漸暴露出來。比如,大數據傳輸環節,除了存在泄漏、篡改等風險外,還可能被數據流攻擊者利用,數據在傳播中可能出現逐步失真等。又如,大數據傳輸處理環節,除數據非授權使用和被破壞的風險外,由於大數據傳輸的異構、多源、關聯等特點,即使多個數據集各自脫敏處理,數據集仍然存在因關聯分析而造成個人信息泄漏的風險。
基礎設施安全問題。作為大數據傳輸匯集的主要載體和基礎設施,雲計算為大數據傳輸提供了存儲場所、訪問通道、虛擬化的數據處理空間。因此,雲平台中存儲數據的安全問題也成為阻礙大數據傳輸發展的主要因素。
個人隱私安全問題。在現有隱私保護法規不健全、隱私保護技術不完善的條件下,互聯網上的個人隱私泄露失去管控,微信、微博、QQ等社交軟體掌握著用戶的社會關系,監控系統記錄著人們的聊天、上網、出行記錄,網上支付、購物網站記錄著人們的消費行為。但在大數據傳輸時代,人們面臨的威脅不僅限於個人隱私泄露,還在於基於大數據傳輸對人的狀態和行為的預測。近年來,國內多省社保系統個人信息泄露、12306賬號信息泄露等大數據傳輸安全事件表明,大數據傳輸未被妥善處理會對用戶隱私造成極大的侵害。因此,在大數據傳輸環境下,如何管理好數據,在保證數據使用效益的同時保護個人隱私,是大數據傳輸時代面臨的巨大挑戰之一。
(四)大數據的存儲管理風險
大數據的數據類型和數據結構是傳統數據不能比擬的,在大數據的存儲平台上,數據量是非線性甚至是指數級的速度增長的,各種類型和各種結構的數據進行數據存儲,勢必會引發多種應用進程的並發且頻繁無序的運行,極易造成數據存儲錯位和數據管理混亂,為大數據存儲和後期的處理帶來安全隱患。當前的數據存儲管理系統,能否滿足大數據背景下的海量數據的數據存儲需求,還有待考驗。不過,如果數據管理系統沒有相應的安全機制升級,出現問題後則為時已晚。

『玖』 大數據存在的安全問題有哪些

一、分布式系統


大數據解決方案將數據和操作分布在許多系統中,以實現更快的處理和分析。這種分布式系統可以平衡負載,避免單點故障。但是這樣的系統容易受到安全威脅,黑客只要攻擊一個點就可以滲透整個網路。


二.數據存取


大數據系統需要訪問控制來限制對敏感數據的訪問,否則,任何用戶都可以訪問機密數據,有些用戶可能會出於惡意使用。此外,網路犯罪分子可以入侵與大數據系統相連的系統,竊取敏感數據。因此,使用大數據的公司需要檢查和驗證每個用戶的身份。


三.數據不正確


網路犯罪分子可以通過操縱存儲的數據來影響大數據系統的准確性。因此,網路犯罪分子可以創建虛假數據,並將這些數據提供給大數據系統。比如醫療機構可以利用大數據系統研究患者的病歷,而黑客可以修改這些數據,產生不正確的診斷結果。


四.侵犯隱私


大數據系統通常包含機密數據,這是很多人非常關心的問題。這樣的大數據隱私威脅已經被全世界的專家討論過了。此外,網路犯罪分子經常攻擊大數據系統以破壞敏感數據。這種數據泄露已經成為頭條新聞,導致數百萬人的敏感數據被盜。


五、雲安全性不足


大數據系統收集的數據通常存儲在雲中,這可能是一個潛在的安全威脅。網路犯罪分子破壞了許多知名公司的雲數據。如果存儲的數據沒有加密,並且沒有適當的數據安全性,就會出現這些問題。


關於大數據存在的安全問題有哪些,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。

閱讀全文

與大數據帶來的安全挑戰相關的資料

熱點內容
ps文件里哪一個是卸載 瀏覽:312
linux怎麼知道被黑 瀏覽:161
diy需要什麼工具 瀏覽:941
java比較器的工作原理 瀏覽:490
文件上傳伺服器工具哪個好用 瀏覽:170
yy怎麼升級更快 瀏覽:846
人際溝通的工具是什麼 瀏覽:817
HTC手機s510可安裝微信嗎 瀏覽:650
聯想win10無法更新 瀏覽:825
在編程中驗證結果的目的是什麼 瀏覽:774
中興隱藏文件在哪裡 瀏覽:330
網路推廣簡歷個人獲獎情況怎麼寫 瀏覽:800
win10易升失敗 瀏覽:941
網路無法接收到伺服器怎麼辦 瀏覽:617
pic編程中tmp什麼意思 瀏覽:460
農業種植微信號 瀏覽:322
js如何插入數據 瀏覽:145
java訪問網站地址 瀏覽:680
微鯨電視文件在哪裡 瀏覽:558
qq紅包群拉人騙局揭秘 瀏覽:121

友情鏈接