A. 大數據在生活中的應用
大數據在生活中的應用有:1、農業互聯網;2、金融業互聯網;3、電子商務;4、醫療器械行業;5、零售業大數據;6、生物科技等等。
B. 大數據的應用場景有哪些
可以利用大數據實現智能交通、環保監測、城市規劃和智能安防。
車輛監控,車輛調度,通過流量分析,進行公交線路調整,通過大數據分析預測路段車輛擁堵時間,制定緩解交通擁堵方案,通過一卡通全國聯網,實施一卡走天下,記錄用戶所有行為軌跡。
大數據可以幫助我們訓練球隊,決定投拍哪種題材的影視作品,以及預測比賽結果。
通過用戶關注的歌曲、視頻等信息做精準推送,包括使用手機過程中被推送到眼前的廣告都是精準投放的結果,每個用戶看到的廣告可能都是不同的。
C. 工業大數據大有可為,淺談製造業7大應用場景
工業大數據應用將帶來工業企業創新和變革的新時代。通過互聯網、移動物聯網等帶來的低成本感知、高速移動連接、分布式計算和高級分析,信息技術和全球工業系統正在深入融合,給全球工業帶來深刻的變革,創新企業的研發、生產、運營、營銷和管理方式。這些創新不同行業的工業企業帶來了更快的速度、更高的效率和更高的洞察力。工業大數據的典型應用包括產品創新、產品故障診斷與預測、工業生產線物聯網分析、工業企業供應鏈優化和產品精準營銷等諸多方面。本文我們講就工業大數據在製造企業的應用場景進行逐一梳理。
一、加速產品創新
客戶與工業企業之間的交互和交易行為將產生大量數據,挖掘和分析這些客戶動態數據,能夠幫助客戶參與到產品的需求分析和產品設計等創新活動中,為產品創新作出貢獻。福特公司是這方面的表率,他們將大數據技術應用到了福特福克斯電動車的產品創新和優化中,這款車成為了一款名副其實的「大數據電動車」。第一代福特福克斯電動車在駕駛和停車時產生大量數據。在行駛中,司機持續地更新車輛的加速度、剎車、電池充電和位置信息。這對於司機很有用,但數據也傳回福特工程師那裡,以了解客戶的駕駛習慣,包括如何、何時以及何處充電。即使車輛處於靜止狀態,它也會持續將車輛胎壓和電池系統的數據傳送給最近的智能電話。
這種以客戶為中心的大數據應用場景具有多方面的好處,因為大數據實現了寶貴的新型產品創新和協作方式。司機獲得有用的最新信息,而位於底特律的工程師匯總關於駕駛行為的信息,以了解客戶,制訂產品改進計劃,並實施新產品創新。而且,電力公司和其他第三方供應商也可以分析數百萬英里的駕駛數據,以決定在何處建立新的充電站,以及如何防止脆弱的電網超負荷運轉。
二、設備故障分析及預測
在製造業生產線上,工業生產設備都會受到持續的振動和沖擊,這導致設備材料和零件的磨損老化,從而導致工業設備容易產生故障,而當人們意識到故障時,可能已經產生了很多不良品,甚至整個工業設備已經奔潰停機,從而造成巨大的損失。
如果能在故障發生之前進行故障預測,提前維修更換即將出現問題的零部件,這樣就可以提高工業設備的壽命以及避免某個設備突然出現故障對整個工業生產帶來嚴重的影響。隨著工業4.0的到來,智能工廠的工業設備都配上了各種感應器,採集其振動、溫度、電流、電壓等數據顯得輕而易舉,通過分析這些實時的感測數據,對工業設備進行故障預測將是一種行之有效的措施。
因此設備故障預測方案成為了製造行業所青睞的解決方案,其具備的核心功能有:
1、故障超前預警,減少設備停機時間;
2、分析結果實時推送,減少人工成本;
3、適用於企業各種類型的設備,通用性強。
三、工業物聯網生產線的大數據應用
現代化工業製造生產線安裝有數以千計的小型感測器,來探測溫度、壓力、熱能、振動和雜訊。因為每隔幾秒就收集一次數據,利用這些數據可以實現很多形式的分析,包括設備診斷、用電量分析、能耗分析、質量事故分析(包括違反生產規定、零部件故障)等。
首先,在生產工藝改進方面,在生產過程中使用這些大數據,就能分析整個生產流程,了解每個環節是如何執行的。一旦有某個流程偏離了標准工藝,就會產生一個報警信號,能更快速地發現錯誤或者瓶頸所在,也就能更容易解決問題。利用大數據技術,還可以對工業產品的生產過程建立虛擬模型,模擬並優化生產流程,當所有流程和績效數據都能在系統中重建時,這種透明度將有助於製造商改進其生產流程。再如,在能耗分析方面,在設備生產過程中利用感測器集中監控所有的生產流程,能夠發現能耗的異常或峰值情形,由此便可在生產過程中優化能源的消耗,對所有流程進行分析將會大大降低能耗。
四、產品銷售預測與需求管理
近年來,保險業加速了數字化進程,大數據與保險營銷深度融合,成為現代化保險營銷的重要武器。慧都大數據助力保險行業精準營銷,並成功幫助中意人壽保險有限公司更好地服務客戶和發揮忠誠客戶,提高銷售效率及客戶復購率。
五、工業供應鏈的分析與優化
當前,大數據分析已經是很多電子商務企業提升供應鏈競爭力的重要手段。例如,電子商務企業京東商城,通過大數據提前分析和預測各地商品需求量,從而提高配送和倉儲的效能,保證了次日貨到的客戶體驗。RFID等產品電子標識技術、物聯網技術以及移動互聯網技術能幫助工業企業獲得完整的產品供應鏈的大數據,利用這些數據進行分析,將帶來倉儲、配送、銷售效率的大幅提升和成本的大幅下降。
六、生產計劃與排程
製造業面對多品種小批量的生產模式,數據的精細化自動及時方便的採集(MES/DCS)及多變性導致數據劇烈增大,再加上十幾年的信息化的 歷史 數據,對於需要快速響應的APS來說,是一個巨大的挑戰。大數據可以給予我們更詳細的數據信息,發現 歷史 預測與實際的偏差概率,考慮產能約束、人員技能約束、物料可用約束、工裝模具約束,通過智能的優化演算法,制定預計劃排產,並監控計劃與現場實際的偏差,動態的調整計劃排產。幫我們規避「畫像」的缺陷,直接將群體特徵直接強加給個體(工作中心數據直接改變為具體一個設備、人員、模具等數據)。通過數據的關聯分析並監控它,我們就能計劃未來。
七、生產質量分析與預測
在工業生產中,設備失效、人員疏忽、參數異常、原材料差異、環境波動等因素而導致質量偏離,引起質量等級的缺陷和損失非常巨大。工藝流程復雜的大型製造業,如鋼鐵、 汽車 、電子、服裝等行業,信息數據孤島凸顯,導致質量問題頻發,尤其需要「及時發現和預測異常,迅速控制和分析質量異常的原因,進行生產過程改進,穩定生產過程,減少產品質量波動」。
生產質量分析,從工廠訂單下單-訂單生產-流入市場, 針對整個生產鏈進行全面的質量分析。其中,打通質量和人、機、料、法、環等數據,各生產數據環環相扣,聚焦質量管理的全量數據分析,幫助企業快速 探索 缺陷根本原因。
1、打通質量和人、機、料、法、環,對影響質量的全量數據進行交互分析, 探索 相互關系,挖掘數據背後的真實原因,獲取結果「是什麼」,回答「為什麼」。
2、將傳統的靜態匯報模式,改為互動式動態會議,隨時隨地可以組織生產、質量相關專題會議。通過對維度展示生產和質量KPI,實時預警、掌握產線運營狀況。
3、簡單易上手的質量分析工具,員工只需對數據進行選取、拖曳,自助靈活地達成期望的數據結果。
4、摒棄以往靜態的數據報表,整合多個業務系統數據,多場景數據大屏,自適應多屏,進行綜合展示分析,讓決策更清晰。
————————————————
D. 大數據應用在哪些領域
大數據應用於各個行業,包括金融、汽車、餐飲、電信、能源、娛樂等在內的社會各行各業都已經融入了大數據的痕跡。
1、製造業:利用工業大數據提升製造業水平,包括產品故障診斷與預測、分析工藝流程、改進生產工藝,優化生產過程能耗、工業供應鏈分析與優化、生產計劃與排程。
2、金融業:大數據在高頻交易、社交情緒分析和信貸風險分析三大金融創新領域發揮重大作用。
3、汽車行業:利用大數據和物聯網技術的無人駕駛汽車,在不遠的未來將走入我們的日常生活。
4、互聯網行業:藉助於大數據技術分析用戶行為,進行商品推薦和針對性廣告投放。
5、餐飲行業:利用大數據實現餐飲O2O模式,徹底改變傳統餐飲經營方式。
6、電信行業:利用大數據技術實現客戶離網分析,及時掌握客戶離網傾向,出台客戶挽留措施。
7、能源行業:隨著智能電網的發展,電力公司可以掌握海量的用戶用電信息,利用大數據技術分析用戶用電模式,可以改進電網運行,合理設計電力需求響應系統,確保電網運行安全。
8、物流行業:利用大數據優化物流網路,提高物流效率,降低物流成本。
9、城市管理:利用大數據實現智能交通、環保監測、城市規劃和智能安防。
10、生物醫學:大數據可以幫助我們實現流行病預測、智慧醫療、健康管理,同時還可以幫助我們解讀DNA,了解更多的生命奧秘。
11、公共安全領域:政府利用大數據技術構建強大的國家安全保障體系,公共安全領域的大數據分析應用,反恐維穩與各類案件分析的信息化手段,藉助大數據預防犯罪。
12、個人生活:大數據還可以應用於個人生活,利用與每個人相關聯的「個人大數據」,分析個人生活行為軌跡,為其提供更加周到的個性化服務。
大數據的價值遠不止於此,大數據對各行各業的滲透,是推動社會生產和生活的核心要素。
(4)大數據典型應用場景擴展閱讀
七個典型的大數據應用案例
1、梅西百貨的實時定價機制。根據需求和庫存的情況,該公司基於SAS的系統對多達7300萬種貨品進行實時調價。
2、Tipp24AG針對歐洲博彩業構建的下注和預測平台。該公司用KXEN軟體來分析數十億計的交易以及客戶的特性,然後通過預測模型對特定用戶進行動態的營銷活動。這項舉措減少了90%的預測模型構建時間。SAP公司正在試圖收購KXEN。
3、沃爾瑪的搜索。這家零售業寡頭為其網站Walmart.com自行設計了最新的搜索引擎Polaris,利用語義數據進行文本分析、機器學習和同義詞挖掘等。根據沃爾瑪的說法,語義搜索技術的運用使得在線購物的完成率提升了10%到15%。「對沃爾瑪來說,這就意味著數十億美元的金額。」Laney說。
4、快餐業的視頻分析。該公司通過視頻分析等候隊列的長度,然後自動變化電子菜單顯示的內容。如果隊列較長,則顯示可以快速供給的食物;如果隊列較短,則顯示那些利潤較高但准備時間相對長的食品。
5、Morton牛排店的品牌認知。當一位顧客開玩笑地通過推特向這家位於芝加哥的牛排連鎖店訂餐送到紐約Newark機場(他將在一天工作之後抵達該處)時,Morton就開始了自己的社交秀。首先,分析推特數據,發現該顧客是本店的常客,也是推特的常用者。根據客戶以往的訂單,推測出其所乘的航班,然後派出一位身著燕尾服的侍者為客戶提供晚餐。
6、PredPolInc.。PredPol公司通過與洛杉磯和聖克魯斯的警方以及一群研究人員合作,基於地震預測演算法的變體和犯罪數據來預測犯罪發生的幾率,可以精確到500平方英尺的范圍內。在洛杉磯運用該演算法的地區,盜竊罪和暴力犯罪分布下降了33%和21%。
7、TescoPLC(特易購)和運營效率。這家超市連鎖在其數據倉庫中收集了700萬部冰箱的數據。通過對這些數據的分析,進行更全面的監控並進行主動的維修以降低整體能耗。
E. 大數據的應用領域有哪些
近年來,大數據不斷向世界的各行各業滲透,影響著我們的衣食住行。例如,網上購物時,經常會發現電子商務門戶網站向我們推薦商品,往往這類商品都是我們最近需要的。這是因為用戶上網行為軌跡的相關數據都會被搜集記錄,並通過大數據分析,使用推薦系統將用戶可能需要的物品進行推薦,從而達到精準營銷的目的。下面簡單介紹幾種大數據的應用場景。
大數據讓就醫看病更簡單。過去,對於患者的治療方案,大多數都是通過醫師的經驗來進行,優秀的醫師固然能夠為患者提供好的治療方案,但由於醫師的水平不相同,所以很難保證患者都能夠接受最佳的治療方案。
而隨著大數據在醫療行業的深度融合,大數據平台積累了海量的病例、病例報告、治癒方案、葯物報告等信息資源.所有常見的病例、既往病例等都記錄在案,醫生通過有效、連續的診療記錄,能夠給病人優質、合理的診療方案。這樣不僅提高醫生的看病效率,而且能夠降低誤診率,從而讓患者在最短的時間接受最好的治療。下面列舉大數據在醫療行業的應用,具體如下。
(1) 優化醫療方案,提供最佳治療方法。
面對數目及種類眾多的病菌、病毒,以及腫瘤細胞時,疾病的確診和治療方案的確定也是很困難的。藉助於大數據平台,可以搜集不同病人的疾病特徵、病例和治療方案,從而建立醫療行業的病人分類資料庫。如果未來基因技術發展成熟,可以根據病人的基因序列特點進行分類,建立醫療行業的病人分類資料庫。在醫生診斷病人時可以參考病人的疾病特徵、化驗報告和檢測報告,參考疾病資料庫來快速幫助病人確診,明確地定位疾病。在制訂治療方案時,醫生可以依據病人的基因特點,調取相似基因、年齡、人種、身體情況相同的有效治療方案,制訂出適合病人的治療方案,幫助更多人及時進行治療。同時這些數據也有利於醫葯行業研發出更加有效的葯物和醫療器械。
(2)有效預防預測疾病。
解決患者的疾病,最為簡單的方式就是防患於未然。通過大數據對於群眾的人體數據監控,將各自的健康數據、生命體征指標都集合在資料庫和健康檔案中。通過大數據分析應用,推動覆蓋全生命周期的預防、治療、康復和健康管理的一體化健康服務,這是未來健康服務管理的新趨勢。當然,這一點不僅需 要醫療機構加快大數據的建設,還需要群眾定期去做檢查,及時更新數據,以便通過大數據來預防和預測疾病的發生,做到早治療、早康復。當然,隨著大數據的不斷發展,以及在各個領域的應用,一些大規模的流感也能夠通過大數據實現預測。
隨著大數據技術的應用,越來越多的金融企業也開始投身到大數據應用實踐中。麥肯錫的一份研究顯示,金融業在大數據價值潛力指數中排名第一。下面列舉若干大數據在金融行業的典型應用,具體如下。
(1) 精準營銷。
銀行在互聯網的沖擊下,迫切需要掌握更多用戶信息,繼而構建用戶360立體畫像,即可對細分的客戶進行精準營銷、實時營銷等個性化智慧營銷。
(2) 風險管控。
應用大數據平台,可以統一管理金融企業內部多源異構數據和外部徵信數據,更好地完善風控體系。內部可保證數據的完整性與安全性,外部可控制用戶風險。
(3) 決策支持。
通過大數據分析方法改善經營決策,為管理層提供可靠的數據支撐,從而使經營決策更高效、敏捷、精準。
(4) 服務創新。
通過對大數據的應用,改善與客戶之間的交互、增加用戶黏性,為個人與政府提供增值服務,不斷增強金融企業業務核心競爭力。
(5) 產品創新。
通過高端數據分析和綜合化數據分享,有效對接銀行、保險、信託、基金等各類金融產品,使金融企業能夠從其他領域借鑒並創造出新的金融產品。
美國零售業曾經有這樣一個傳奇故事,某家商店將紙尿褲和啤酒並排放在一起銷售,結果紙尿褲和啤酒的銷量雙雙增長!為什麼看起來風馬牛不相及的兩種商品搭配在一起,能取到如此驚人的效果呢?後來經過分析發現,這些購買者多數是已婚男士,這些男士在為小孩購買尿不濕的同時,會同時為自己購買一些啤酒。發現這個秘密後,沃爾瑪超市就大膽地將啤酒擺放在尿不濕旁邊,這樣顧客購買的時候更方便,銷量自然也會大幅上升。
之所以講「啤酒-尿布」這個例子,其實是想告訴大家,挖掘大數據潛在的價值,是零售業競爭的核心競爭力,下面列舉若干大數據在零售業的創新應用,具體如下。
(1) 精準定位零售行業市場。
企業想進人或開拓某一區域零售行業市場,首先要進行項目評估和可行性分析,只有通過項目評估和可行性分析才能最終決定是否適合進人或者開拓這塊市場。通常需要分析這個區域流動人口是多少?消費水平怎麼樣?客戶的消費習慣是什麼?市場對產品的認知度怎麼樣?當前的市場供需情況怎麼樣等等,這些問題背後包含的海量信息構成了零售行業市場調研的大數據,對這些大數據的分析就是市場定位過程。
(2) 支撐行業收益管理。
大數據時代的來臨,為企業收益管理工作的開展提供了更加廣闊的空間。需求預測、細分市場和敏感度分析對數據需求量很大,而傳統的數據分析大多採集的是企業自身的歷史數據來進行預測和分析,容易忽視整個零售行業信息數據,因此難免使預測結果存在偏差。企業在實施收益管理過程中如果能在自有數據的基礎上,依靠一些自動化信息採集軟體來收集更多的零售行業數據,了解更多的零售行業市場信息,這將會對制訂准確的收益策略,贏得更高的收益起到推進作用。
(3) 挖掘零售行業新需求。
作為零售行業企業,如果能對網上零售行業的評論數據進行收集,建立網評大資料庫,然後再利用分詞、聚類、情感分析了解消費者的消費行為、價值取向、評論中體現的新消費需求和企業產品質量問題,以此來改進和創新產品,量化產品價值,制定合理的價格及提高服務質量,從中獲取更大的收益。
F. 數據分析常見的應用場景有哪些
1、醫療保健
醫療保健系統內生成的數據水平並非無關緊要。傳統上,由於標准化和整合數據的能力有限,醫療保健行業滯後於使用大數據分析。
但是現在,大數據分析通過提供個性化的醫學和處方分析而改善了醫療保健。研究人員正在挖掘數據,以查看對於特定情況更有效的治療方法,確定與葯物副作用有關的模式,並獲得其他可幫助患者並降低成本的重要信息。
2、製造業
預測性製造提供了幾乎零的停機時間和透明度。它需要大量的數據和高級的預測工具,才能系統地將數據轉化為有用的信息。
在製造業中使用大數據分析應用程序的主要好處是:產品質量和缺陷跟蹤、供應計劃、製造過程缺陷跟蹤。
G. 大數據的應用場景都有啥
大數據應用場景有城市管理,電信,金融
電視
數字化醫療,石油化工,農林水務,工業自動化,公共安全,偵查,定位,監控,評估,電子支付,風險控制,交易,訂單,跟蹤,識別,消防,定位,調度,設備,安全,節能。
物流行業 生物醫學 體育 娛樂 城市管理 安全領域 智能家居 金融行業