❶ 如何通過大數據分析做市場調研
大數據時代新的市場研究方法使「無干擾」真實還原消費過程成為可能,智能化的信息處理技術使低成本、大樣本的定量調研成為現實,這將推動消費行為及消費心理研究達到一個新的高度,幫助快速消費品企業更為精準地捕捉商機。大數據時代的市場研究方法主要體現在以下四個方面。
1.基於互聯網進行市場調研提高了效率,降低了成本
網路調研具有傳統調研方法無可比擬的便捷性和經濟性。快速消費品企業在其門戶網站建立市場調研板塊,再將新產品郵寄給消費者,消費者試用後只要在網站上點擊即可輕松完成問卷填寫,其便利性大大降低了市場調研的人力和物力投入,也使得消費者更樂於參與市場調研。同時,網路調研的互動性使得企業在新產品尚處於概念階段即可利用3D擬真技術進行產品測試,通過與消費者互動,讓消費者直接參與產品研發,從而更好地滿足市場需求。
2. 挖掘網路社交平台信息成為研究消費態度及心理的新手段
qq、微博、微信等社交平台已日漸成為新生代消費群體不可或缺的社交工具,快速消費品的消費者往往有著極高的從眾性,因此針對社交平台的信息挖掘成為研究消費潮流趨勢的新手段。例如,通過微博評論可以統計分析消費者對某種功能型產品的興趣及偏好,這對研究消費態度及心理有非常大的幫助。更重要的是,這類信息屬於消費者主動披露,與訪談形式的被動挖掘相比信息的真實性更高。
3. 移動終端提供了實時、動態的消費者信息
隨著3G網路及智能手機普及,市場研究已滲透到移動終端領域。大量的手機APP應用(例如二維碼掃描等)為實時採集消費信息提供了可能性,移動終端的信息分析在購買時點、產品滲透率及回購率、獎勵促銷效果評估等方面將發揮不可估量的作用。
4. 零售終端信息採集系統幫助企業了解市場
目前,PC-POS系統在零售終端得到了廣泛的應用,只要掃描產品條形碼,消費者購買的產品名稱、規格、購進價、零售價、購買地點等信息就可以輕松採集。通過構建完整的零售終端信息採集系統,快速消費品企業可以掌握商業渠道的動態信息,適時調整營銷策略。
環顧四周,在每個行業中,大數據的增長正在改變我們收集、存儲、分析和應用數據的方式。正如很多公司目前正在收集整理的那樣,大家面臨的共同問題是智能化信息採集、儲存及分析。
l 超大容量的數據倉庫。數據倉庫具有容量大、主題明確、高度集成、相對穩定、反映歷史變化等特點,可以有效地支撐快速消費品企業進行大數據分析與應用。數據倉庫可以更有效地挖掘數據資源,並可以按照日、周、月、季、年等周期提供分析報表,有助於營銷人員更有效地制定營銷戰略。
l 專業、高效的搜索引擎。旅遊搜索、博客搜索、購物搜索、在線黃頁搜索等專業搜索引擎已經得到了廣泛應用,快速消費品企業可以根據自己的特點構建專業化的搜索引擎,對相關的企業信息、產品信息、消費者評價信息、商業服務信息等數據進行智能化檢索、分類及搜集,形成高度專業化、綜合性的商業搜索引擎。
l 基於雲計算的數學分析模型。市場研究的關鍵是洞察消費者需求,基於雲計算的數學分析模型可以將碎片化信息還原為完整的消費過程信息鏈條,更好地幫助營銷人員研究消費行為及消費心理。這些碎片化的信息包括消費者在不同時間、不同地點、不同網路應用上發布的消費價值觀信息、購買信息、產品評論信息等。基於雲計算的智能化分析,一方面可以幫助市場研究人員對消費行為及消費心理進行綜合分析,另一方雲計算成本低、效率高的特點非常適合快速消費品企業數據量龐大的特性。
傳統的市場研究包括定性研究及定量研究,以座談會為主的定性研究受制於主持人的訪談技巧,以街頭攔截訪問為主的定量研究雖然以嚴謹的抽樣理論為基礎,但同樣不能完全代表總體的客觀情況。而大數據時代革命性的調研方法為市場研究人員提供了以「隱形人」身份觀察消費者的可能性,超大樣本量的統計分析使得研究成果更接近市場的真實狀態。
與此同時,大數據時代的新方法、新手段也帶來新的問題,一是如何智能化檢索及分析文本、圖形、視頻等非量化數據,二是如何防止過度採集信息,充分保護消費者隱私。雖然目前仍然有一定的技術障礙,但不可否認的是大數據市場研究有著無限廣闊的應用前景。
❷ 如何在銀行審計領域做好大數據分析
無論是從數據應用投資規模來看,還是從「大數據」應用的潛力來看,金融「大數據」的分析、利用和挖掘都大有可為。「大數據時代」的到來將使金融審計的范圍、時效性、前瞻性等方面得到有效改善,為審計工作提供更廣闊的空間。銀行業已是金融類企業的重要組成部分,佔比41.1%,分別高出證券業和保險業6%和17.3%,銀行審計應該抓住「大數據時代」來臨的機遇,對審計工作進行戰略性規劃,提早布局,進一步充分發揮審計的作用。
❸ 科普文:銀行業9大數據科學應用案例解析!
在銀行業中使用數據科學不僅僅是一種趨勢,它已成為保持競爭的必要條件。 銀行必須認識到,大數據技術可以幫助他們有效地集中資源,做出更明智的決策並提高績效。
以下我們羅列銀行業使用的數據科學用例清單,讓您了解如何處理大量數據以及如何有效使用數據。
(1)欺詐識別
(2)管理客戶數據
(3)投資銀行的風險建模
(4)個性化營銷
(5)終身價值預測
(6)實時和預測分析
(7)客戶細分
(8)推薦引擎
(9)客戶支持
(10)結論
1、欺詐識別
機器學習對於有效檢測和防範涉及信用卡,會計,保險等的欺詐行為至關重要。 銀行業務中的主動欺詐檢測對於為客戶和員工提供安全性至關重要。 銀行越早檢測到欺詐行為,其越快可以限制帳戶活動以減少損失。 通過實施一系列的欺詐檢測方案,銀行可以實現必要的保護並避免重大損失。
欺詐檢測的關鍵步驟包括:
獲取數據樣本進行模型估計和初步測試 模型估計 測試階段和部署。
由於每個數據集都不同,每個數據集都需要由數據科學家進行個別訓練和微調。 將深厚的理論知識轉化為實際應用需要數據挖掘技術方面的專業知識,如關聯,聚類,預測和分類。
高效欺詐檢測的一個例子是,當一些異常高的交易發生時,銀行的欺詐預防系統被設置為暫停,直到賬戶持有人確認交易。對於新帳戶,欺詐檢測演算法可以調查非常高的熱門項目購買量,或者在短時間內使用類似數據打開多個帳戶。
2、管理客戶數據
銀行有義務收集,分析和存儲大量數據。但是,機器學習和數據科學工具不是將其視為合規性練習,而是將其轉化為更多地了解其客戶以推動新的收入機會的可能性。
如今,數字銀行越來越受歡迎並被廣泛使用。這創建了TB級的客戶數據,因此數據科學家團隊的第一步是分離真正相關的數據。之後,通過准確的機器學習模型幫助數據專家掌握有關客戶行為,交互和偏好的信息,可以通過隔離和處理這些最相關的客戶信息來改善商業決策,從而為銀行創造新的收入機會。
3、投資銀行的風險建模
風險建模對投資銀行來說是一個高度優先考慮的問題,因為它有助於規範金融活動,並在定價金融工具時發揮最重要的作用。投資銀行評估公司在企業融資中創造資本,促進兼並和收購,進行公司重組或重組以及用於投資目的的價值。
這就是為什麼風險模型對於銀行來說顯得非常重要,最好是通過掌握更多信息和儲備數據科學工具來評估。現在,通過大數據的力量,行業內的創新者正在利用新技術進行有效的風險建模,從而實現更好的數據驅動型決策。
4、個性化營銷
市場營銷成功的關鍵在於制定適合特定客戶需求和偏好的定製化報價。數據分析使我們能夠創建個性化營銷,在適當的時間在正確的設備上為合適的人員提供合適的產品。數據挖掘廣泛用於目標選擇,以識別新產品的潛在客戶。
數據科學家利用行為,人口統計和歷史購買數據建立一個模型,預測客戶對促銷或優惠的反應概率。因此,銀行可以進行高效,個性化的宣傳並改善與客戶的關系。
5、終身價值預測
客戶生命周期價值(CLV)預測了企業從與客戶的整個關系中獲得的所有價值。 這項措施的重要性正在快速增長,因為它有助於創建和維持與特定客戶的有利關系,從而創造更高的盈利能力和業務增長。
獲得和維系有利可圖的客戶對銀行來說是一個不斷增長的挑戰。 隨著競爭越來越激烈,銀行現在需要360度全方位了解每位客戶,以便有效地集中資源。 這就是數據科學進入的地方。首先,必須考慮大量數據:如客戶獲得和流失的概念,各種銀行產品和服務的使用,數量和盈利能力以及其他客戶的特點 如地理,人口和市場數據。
這些數據通常需要大量清洗和操作才能變得可用和有意義。 銀行客戶的概況,產品或服務差異很大,他們的行為和期望也不盡相同。 數據科學家的工具中有許多工具和方法來開發CLV模型,如廣義線性模型(GLM),逐步回歸,分類和回歸樹(CART)。 建立一個預測模型,以確定基於CLV的未來營銷策略,這對於在每個客戶的一生中與該公司保持良好的客戶關系,實現更高的盈利能力和增長是具有非常有價值的過程。
6、實時和預測分析
分析在銀行業中的重要性不可低估。機器學習演算法和數據科學技術可以顯著改善銀行的分析策略,因為銀行業務的每個使用案例都與分析密切相關。隨著信息的可用性和多樣性迅速增加,分析變得更加復雜和准確。
可用信息的潛在價值非常驚人:指示實際信號的有意義的數據量(不僅僅是雜訊)在過去幾年呈指數級增長,而數據處理器的成本和規模一直在下降。區分真正相關的數據和噪音有助於有效解決問題和制定更明智的戰略決策。實時分析有助於了解阻礙業務的問題,而預測分析有助於選擇正確的技術來解決問題。通過將分析整合到銀行工作流程中,可以實現更好的結果,以提前避免潛在的問題。
7、客戶細分
客戶細分意味著根據他們的行為(對於行為分割)或特定特徵(例如區域,年齡,對於人口統計學分割的收入)挑選出一組客戶。數據科學家的一系列技術如聚類,決策樹,邏輯回歸等等,因此它們有助於了解每個客戶群的CLV並發現高價值和低價值的細分市場。
沒有必要證明客戶的這種細分允許有效地分配營銷資源,並且為每個客戶群提供基於點的方法的最大化以及銷售機會。不要忘記,客戶細分旨在改善客戶服務,並幫助客戶忠誠和留住客戶,這對銀行業是非常必要的。
8、推薦引擎
數據科學和機器學習工具可以創建簡單的演算法,分析和過濾用戶的活動,以便向他建議最相關和准確的項目。這種推薦引擎即使在他自己搜索它之前也會顯示可能感興趣的項目。要構建推薦引擎,數據專家需要分析和處理大量信息,識別客戶配置文件,並捕獲顯示其交互的數據以避免重復提供。
推薦引擎的類型取決於演算法的過濾方法。協同過濾方法既可以是基於用戶的,也可以是基於項目的,並且可以與用戶行為一起分析其他用戶的偏好,然後向新用戶提出建議。
協同過濾方法面臨的主要挑戰是使用大量數據,導致計算問題和價格上漲。基於內容的過濾與更簡單的演算法一起工作,其推薦與用戶參考先前活動的項目相似的項目。如果行為復雜或連接不清,這些方法可能會失敗。還有一種混合類型的引擎,結合了協作和基於內容的過濾。
沒有任何方法是普適的,它們每個都有一些優點和缺點,正確的選擇取決於你的目標和情況。
9、客戶支持
傑出的客戶支持服務是保持與客戶長期有效關系的關鍵。作為客戶服務的一部分,客戶支持是銀行業中一個重要但廣泛的概念。實質上,所有銀行都是基於服務的業務,因此他們的大部分活動都涉及服務元素。它包括全面及時地回應客戶的問題和投訴,並與客戶互動。
數據科學使這一過程更好地實現了自動化,更准確,個性化,直接和高效,並且降低了員工時間成本。
結論
為了獲得競爭優勢,銀行必須承認數據科學的重要性,將其融入決策過程,並根據客戶數據中獲得可操作的見解制定戰略。 從小型可管理的步驟開始,將大數據分析整合到您的運營模式中,並領先於競爭對手。
由於這種快速發展的數據科學領域以及將機器學習模型應用於實際數據的能力,因此可以每天擴展此用例列表,從而獲得更多更准確的結果。
❹ 銀行如何通過大數據預測並防止用戶流
銀行如何通過大數據預測並防止用戶流
用戶流失已經成為產品運營的一項重要KPI「全球有50%的用戶已經更換或者正准備更換他們使用的銀行。在美國和加拿大,消費者變更自己銀行的比例正在上升。」—— Global Consumer Banking Survey 2012, Ernst& Young.用戶流失以及用戶參與度已經成為大多數銀行的一項最重要的議題有研究表明:「發展一個新客戶的成本是維護一個老客戶的3-8倍,一個老客戶貢獻的利潤是新客戶的10倍以上。」用戶參與度每下降5%,則企業的利潤將下降25%。獲得新用戶的代價要遠高於保留住現有用戶,而重新獲得已經流失的用戶代價更高。事實上,經過一系列的測試以及研究證實,用戶流失是對公司利潤的最大破壞。近期,福布斯雜志上刊登了一篇由各公司領導層關於缺乏對客戶理解的文章,「缺少積極的、持續的來自企業或品牌關懷相關的用戶體驗,會導致企業丟失掉驚人的20%的年收入。這就是銀行類企業每年會有一筆數額巨大到上億元損失的原因!本質上,理解用戶的需求、偏好、情緒、動作以及更換銀行的傾向已經成為銀行最為重要的事。社交化本地化移動化是如何影響到用戶情緒以及流失的?在現今這個萬物互聯的時代,在爆炸式的社交媒體中,壞消息的傳播速度驚人。經調查,調查顯示,有接近63%的用戶使用在線個人網路以及社交網站作為獲取可靠銀行產品信息的來源。並且,有45%的用戶會在社交媒體中對他們獲得的服務作出評價。因此通過數據,跟蹤到用戶的想法並及時的作出相應的決策為客戶提供更好的服務及合理的定價策略。但是,不同渠道的用戶情感和用戶體驗信息存在於各種結構化和非結構化的數據中,這些數據可能會說謊;更不幸是,各種數據之間沒有貫通,存在著信息孤島;這些現實情況使得銀行對客戶進行全面整體的了解,銀行想較早獲得客戶流失預警信號並啟動挽留措施變得異常困難。最重要的是了解客戶以及預測流失為了能夠盡早的鑒別潛在的用戶流失傾向,首先需要對你用戶的行為進行分析並有一個全面的了解。需要了解銀行的客戶是怎樣使用銀行服務的,撥打客服電話、在網站上或移動銀行上的交易、又或者是在社交媒體上的互動?這些歷史數據能夠讓銀行較早的了解到一些預警信號,比如交易量減少了,自動支付中止了,或者其他什麼對於用戶的負面體驗,根據這些預警採取具體的措施進行補救來減少流失的發生。但是,我們前面也提到,客戶的信息沒有貫通,這讓第一時間監測到預警信號並採取措施變得很困難;結果就是,銀行最終從不同的碎片化的不完整信息進行策略擬定與實施,導致客戶容易流失,損失慘重。大數據是如何幫助預測潛在流失的?用戶數據生成的數量、種類以及速度的快速增長,使得利用傳統的數據管理技術幾乎無法存儲更無法實時的進行分析並提出有價值的信息。現在大數據可以幫助我們解決這些困難,並平衡結構化和非結構化的數據。例如銀行訪問,客戶來電日誌,網頁交互日誌,信用卡記錄的交易數據,以及客戶在社交媒體上的交互數據。大數據技術解決了數據管理問題,通過解決存儲、分析、檢索大量多樣化的結構化非結構化的數據,並且隨著數據的增加可以彈性的擴展,這就讓銀行可以接觸到用戶的實時行為,能更好的提供流失預警。此外,精湛的數據匹配能力能鏈接客戶在各個渠道上的交互數據,建立起一個全面的360度畫像,全面了解客戶,將它轉化為可執行的數據決策。建立預測流失模型360度的客戶畫像,對於銀行預測潛在流失的客戶是否足夠呢?要想全面利用好用戶的信息,需要建立一個可行的預測流失的模型。有效的客戶流失模型的高預測值幫助識別具有高流失風險的客戶且能夠過濾「羊毛黨」,並且對每個流失模型能夠構造出效果提升曲線,可視化的展示出相比於不使用模型,使用流失模型所起到的提升作用。另外,如果銀行業不能針對單個客戶給出有針對性的營銷方案,那麼即使能夠准確的預測流失客戶也是不夠的。那些通用的基於大范圍客戶分類的營銷方案會導致挽回率下降。我們需要更加精細化、有明確目的、並且有針對性的制定不同的營銷方案,來挽回高流失風險用戶,降低流失率。西橋科技是一家國內領先的大數據產品與服務提供商,致力於為企業提供完整的基於大數據用戶行為分析的一站式解決方案。已在民生銀行、興業銀行、江蘇銀行等落地應用,它可以助力企業有效的提供個性化的解決方案。簡單來說,基於業務流程的用戶智能管理,結合大數據技術和成熟的機器學習技術,會讓銀行在預測以及阻止用戶流失,推行個性化推薦和提高用戶忠誠度上取得一個全新的、更有競爭力的進步。
❺ 商業銀行應用大數據之策
商業銀行應用大數據之策
隨著以社交網路為代表的web2.0 的興起、智能手機的普及、各種監控系統及感測器的大量分布,人類正在進入一個數據大爆炸的時代,「大數據」的概念應運而生。大數據被譽為繼雲計算、物聯網之後IT產業又一次顛覆性的技術變革,已經引起各方面的高度關注。大數據的意義在於從海量數據中及時識別和獲取信息價值,金融業在IT基礎設施、數據掌控力和人才富集度方面較之其他產業更具優勢,具備了深度「掘金」的潛力。但是,大數據也給金融業帶來劇烈的挑戰與沖擊,我國商業銀行需要樹立「數據治行」理念,明確大數據戰略的頂層設計,加強大數據基礎設施建設,實施穩妥的大數據安全策略,方能從容迎接大數據時代。
大數據帶來的沖擊與挑戰
(一)傳統發展戰略面臨沖擊。傳統銀行發展戰略,是在預計未來金融政策、經濟環境的前提下,根據現有銀行人員、網點、客戶、資本、存貸款規模等資源佔有狀況,以及競爭對手、客戶需求狀況,來確定其戰略目標及發展路徑和方式的。步入大數據時代後, 對數據資源的佔有及其整合應用能力是決定一家銀行成功與否的關鍵因素,而傳統的網點、人員、資本等因素則趨於淡化,未來商業銀行的客戶營銷,將主要依靠對不同類型客戶需求數據的掌握,並開發設計出安全、便捷、個性化的金融產品。因此,這就要求各商業銀行在評判競爭對手實力與自身優勢時,要注重考量IT能力與大數據實力;在制定戰略目標時,必須兼顧財務承受能力來決定對大數據的投入,從而確保戰略規劃與大數據支撐相適應;在確定戰略目標的實施路徑時,必須將互聯網金融、電子渠道、數據的收集與挖掘作為向客戶提供服務的重要方式和手段。
(二)傳統經營方式面臨重大轉變。在大數據時代, 金融業務與互聯網深度融合, 商業銀行的經營方式將會發生徹底改變。在產品開發、營銷方面,通過對海量交易、行為數據的收集、分析和挖掘,科學構建數據模型, 分層客戶的不同金融需求可以得到充分展示,進而針對客戶需要、市場需求研發產品、開展營銷,真正做到以客戶為中心開發設計產品,並實現精準營銷,而不是以銀行為中心製造、推銷產品。在風險防控方面,許多商業銀行在風險分析和評估中,雖然已經引入了數量分析方式,但是因歷史數據的積累不足,經驗判斷依然在風險管理、決策中起主導作用。依託大數據,對客戶實施多維度評價,其風險模型將會更加貼近市場實際,對客戶違約率的取值變得更加精準,長期以來銀行憑經驗辦業務的經營範式將會得到根本改善。在績效管理方面,可以通過對大數據的有效利用,並藉助通訊、視頻、移動終端等技術手段,對商業銀行員工的工作方式、頻率、業績等做出更加准確的評價,有助於充分發揮績效考核的正向激勵作用。
(三)數據基礎設施建設面臨嚴峻考驗。進入大數據時代,數據來源的多元化主要體現在兩個層面:一是在金融業務鏈條之外。移動網路設備和網路社交媒體產生了極其豐富的實時化的客戶行為數據,在這種環境下,客戶行為偏好數據往往隱藏在社交網路之中。如果要實施「大數據工程」,商業銀行必須搜集開放的網路數據,但現有的銀行IT系統、技術手段還無力搜集、分析、利用大數據。二是在金融業務鏈條內部。隨著專業細分與金融外包的趨勢愈加明朗,由一家或少數幾家銀行掌控關鍵業務數據的時代已經走向終結,業務數據產生、流轉於金融業務鏈條的各個結點,業務數據、客戶行為數據不可能自動集成至某個機構,這對「大數據工程」的實施提出了嚴峻挑戰。
商業銀行的應對與謀變
(一)優先搞好大數據戰略的頂層設計。大數據戰略必須超越電子銀行部或IT部門的狹隘視角,面向全局、面向未來,以客戶需求、市場需求為導向,建立自身的大數據架構。完整的客戶數據必須是多維度的,至少包含以下幾個方面:一是客戶的基本信息,譬如信用信息、社交關系信息等;二是客戶的偏好信息,譬如金融產品偏好、金融服務偏好等;三是客戶的行為信息,譬如銀行范圍內的行為數據、外部行為數據等;四是客戶的分析數據,譬如客戶風險度、客戶價值度等。要想使這些不同維度的數據信息具有分析價值,首先必須具有合理的數據結構。但現實情況卻不盡如人意,各銀行的數據結構基本上是條塊分割的。為此,各銀行必須優先搞好頂層機制的設計與改革,逐步打破業務界限,重組業務流程,確保數據靈活性。
在總行層面上,需要抓緊制定大數據工作規劃,建立大數據工作推進機制。主管數據部門負責組織協調,對大數據工作進行統籌規劃、集中管理;業務部門負責大數據的搜集、整理、存儲、分析和應用,全面採集、多方式整合商業銀行內外部各類數據,形成數據管理、數據使用、數據推廣的有效工作機制。
(二)科學謀劃和打造大數據平台。一方面各銀行要積極與社交網路、電商、電信等大數據平台開展戰略合作,建立數據信息交流、共享機制,全面梳理、整合客戶各類信息,將金融服務與社交網路、電子商務、移動網路等深度融合。另一方面各銀行也可考慮自行打造大數據平台,以便牢牢掌握核心話語權。
(三)積極建設大數據倉庫。著眼於大數據挖掘和分析,對海量數據的持續實時處理,建設數據倉庫項目,為服務質量改善、經營效率提升、服務模式創新提供支撐,全面提升運營管理水平。在項目建設中,通過梳理整合經營管理關鍵數據,建立數據管控體系,搭建基礎數據平台。通過數據倉庫建設,運用數據挖掘和分析,全方位調整管理模式、產品結構、營銷模式、信息戰略,從根本上提高風險管理、成本績效管理、資產負債管理和客戶關系管理水平,實現多系統數據的業務邏輯整合,形成全行級客戶、產品等主題數據。
(四)以大數據思維推進金融互聯網化戰略。進入大數據時代,金融產業與信息技術將實現深度融合, 金融電子化的深度、廣度將日漸強化。各銀行必須順勢而為, 緊緊追隨迅猛發展的互聯網、移動互聯網浪潮, 積極實施金融互聯化戰略, 嘗試構建電子化金融商業模式, 著力發展直銷銀行、社區智能銀行、互聯網金融、電子商務等業務。這就要求各銀行應當從發展戰略的高度,將金融互聯網作為未來提供金融服務、提升核心競爭力的主渠道。
(五)依託大數據技術實現風險管理的精細化。大數據時代,商業銀行可以消除信息孤島,全面整合客戶的多渠道交易數據,通過經營者個人金融、消費、行為等信息進行授信,有效破解傳統信貸風險管理中的信息不對稱難題,降低信貸風險。為此,各銀行必須深化風險管理體制改革,運用大數據理念來構建以客戶為中心的全面風險管理體系,理順部門間的職責,淡化部門色彩,徹底打破以往小數據模式下形成的部門、機構、區域、產品間數據信息分隔管理以及由分支機構各自分散識別風險的做法,形成按客戶集中統一管理數據信息和高效協調機制。
要積極推行把現場調查與非現場數據信息挖掘分析相結合、模型篩查與經驗判斷相結合,以定性信息與定量財務、經營等多重數據信息的勾稽核驗等為重點內容的風險管理創新。總行要通過大量數據信息的挖掘分析,勾畫出客戶的全景視圖,更加全面地評估客戶風險狀況,有效提升貸前風險判斷和貸後風險預警能力。
要進一步完善基於大數據信息平台的集中式風險審查審批體制,採用大數據方式來驗證借款人的數據信息,校正申報機構或部門對借款人的風險判斷。運用合理的參數和模型,計量出可接受的最大風險敞口,精準識別和動態審查借款人的每一筆融資業務。再利用習慣性數據信息和常識性、邏輯性分析,作出更專業的判斷,使風險識別、防範、決策更加可靠、更加貼近實際。
以上是小編為大家分享的關於商業銀行應用大數據之策的相關內容,更多信息可以關注環球青藤分享更多干貨
❻ 大數據時代來臨,銀行怎麼辦
大數據概念的興起似乎還是昨天的事,但托這個高速發展時代的福,我們已經可以看到很多成熟的大數據應用工具了。在很短的時間內,我們就能在茫茫的數據海洋中精確定位、分析,並拿到自己想要的結果。當然,這些技術的進步並非由銀行推動,大型零售商、網上商城和各種門類的技術公司才是大數據的主導者,只不過,經過他們的探索之後,大數據也為銀行打開了一扇精確營銷的大門。從長遠來看,銀行如能充分利用大數據的優勢,可以在市場細分、客戶服務、客戶研究、產品研發、產品測試等等方面取得重大進步,並在某種程度上徹底改變銀行服務客戶、銷售產品的方式和渠道。 當然,這一切的前提是銀行能找對切入大數據時代的方法和工具。對於銀行來說,以正確的數量模型和分析方式來契合銀行目前的業務需求,是合理利用大數據,達成更多經濟回報的關鍵。其他行業的經驗已經證明,大數據固然好,但如果不能對數據進行有效篩選和正確利用,最後只會賠了夫人又折兵。尤其銀行是一個比較特殊且敏感的行業,在全局層面徹底進行所謂大數據革命是不實際的,正確的做法是從小的具體業務和關鍵節點入手,以能被銀行現有管理架構和外部監管機制接受的方式,逐步將大數據納入銀行的經營體系中來。 舉例來說,當前銀行業普遍在為兩件事頭疼:留住客戶、滿足客戶的期待。對於這兩個難題,大數據機制下的情緒分析和行為預測可以發揮意想不到的作用。 分析客戶情緒 傳統的客戶意見收集及調查方式往往以一個組別為單位,通過對於部分群體客戶的調查和研究,銀行可以得到客戶方方面面的情況。隨著時代的進步,這樣的方式在獲得客戶金融消費的最新趨勢、挖掘客戶隱藏的需求等方面已不太管用。最為致命的一點是,這樣的客戶信息、數據收集方式往往耗時較長,花費更多,但最終得出的結果又往往無法應對客戶實時產生的需求變化。 所謂情緒分析,是指收集客戶在包括社交網路在內的網路平台上的言論和活動,不僅包括他自己的部分,還包括他最近關聯到的其他好友,由此得到的數據,經過一套科學設計過的計算、分析系統,得出某個具體客戶近期的情緒走向,為預測客戶行動、幫助銀行指定具體的應對措施提供幫助。 在這里,「情緒」並不簡單代表客戶的情感變化,還包括客戶的態度立場、情感傾向等等。這在以往的調查分析工具中,是極難把握的東西,但在這個自媒體時代,這樣的信息散布在網路上,極易獲取、分析。而且抓取、分析這些數據的方法已經相當成熟,從宅在家裡的技術男,到正經嚴肅的學院派,大家都在推出這樣的工具。銀行只需要選擇一個比較穩定的技術供應商,並將結果實時反饋、整合到自己的系統中來,就能在第一時間確定客戶對於銀行的產品、服務、定價或政策調整的反應,並採取合適的方式應對。如果客戶的反應對銀行有利,銀行可以及時介入,對客戶的情緒加以引導,以實現更好的服務和銷售;如果客戶對銀行表露出不太好的情感,銀行也能及時發覺並積極處理,進一步提升客戶的服務體驗。 下面舉出幾個銀行必須及時關注的客戶表態例子: 「XXX銀行在小微業務上的確很好用,但缺乏合適的當天到賬服務就太那啥了!」 「XX銀行的網上查閱賬戶余額功能的確設計得不錯,但客戶服務的一些細節真的有待改善。」 以普通人的角度,這不過是兩句簡單的客戶意見表達而已。但在情緒分析工具的幫助下,通過對於「好用」、「缺乏」、「改善」等關鍵詞彙的識別與統計,以及對於上下文意思的了解,就可以形成一張完整的客戶情緒變化表,將更多的客戶情緒變化匯集到一起,就可以形成一份頗具價值的報告(所謂輿情監控就是這類報告的簡單形態)。通過這些報告,銀行可以知道自己在客戶心中真實的反饋,並知道客戶最需要銀行在哪些方面做出改變。也就是說,銀行可以得知客戶的「心願單」,並將此納入自己的產品、服務革新計劃當中,逐一予以滿足。 對於銀行來說,客戶情緒分析最有用的一點是幫助銀行更有效率地回饋客戶。我們都組織過各種客戶回饋活動,但又不知究竟應當挑選哪些客戶進行回饋、哪些客戶經過我們的維護可以促成更多的交易——大部分時候,銀行只是完成既定的任務,將禮品派送出去就完事,以為這樣就能在激烈的競爭中留住自己的目標客戶。而現在,銀行可以在客戶情緒分析工具的幫助下更有選擇的進行類似的活動。例如,近期要做一個針對產品的活動,就以產品為關鍵詞,對當前的客戶情緒進行研判,得出主流客戶群體對於我們產品的態度,再依照態度的不同來選擇不同的活動策略和活動力度。這樣不僅能幫銀行節約成本、提高效率,最為重要的是,這也是維持現有客戶忠誠度,並盡可能多地吸收目標客戶的有效方式。 當然,批評者會說,目前雖然有大量的客戶情緒分析工具,但這些工具的可行性與分析結果的真實性一直都存在疑問。已經有一些銀行依照這些工具的幫助進行了一些實驗,效果並未如想像中理想。那麼,銀行應當怎麼應對這種尚處在完善過程當中的新興事物呢?我們的態度很明確:雖然這還是一個有待完善的工具,但大數據的整體趨勢是不容置疑的。當銀行等到一切都齊備完善到不會出錯時,其實就已經落後於時代的腳步了。要想成為行業的領軍者,就必須承受創新可能帶來的負面效應。 預測客戶行為 比分析客戶情緒更大的挑戰是預測客戶行為。關於大數據如何應用於預測客戶行為最早最著名的例子,來自美國第二大超市塔吉特百貨。明尼蘇達州一家塔吉特門店曾被客戶投訴,一位中年男子指控塔吉特將嬰兒產品優惠券寄給他的女兒——一個高中生。但沒多久他卻來電道歉,因為女兒經他逼問後坦承自己真的懷孕了。塔吉特百貨就是靠著分析用戶所有的購物數據,然後通過相關關系分析得出事情的真實狀況。 對於銀行來說,正確地預計消費者的需求,並及時組織好可匹配的產品與服務響應客戶的需求還是一件比較難完成的任務。這需要大量歷史數據的儲存與分析,還需要有應對各種行為可能的預測機制(不同的行為意味著不同的演算法),才能實現塔吉特百貨那樣「料事如神」的效果。令人頭疼的是,零售銀行所需的數據關聯性與零售商業的數據存在著一定的差異,因此需要針對銀行產品和服務的特點進行重新設計。只要銀行能解決這樣的問題,並把分析的結果實時、具象的體現在前端營銷人員的電腦、手機里,就能幫銀行解決很多眼下頭疼的問題。在全局層面上,這樣的預測機制也能幫銀行少走很多彎路,避免不必要的資源浪費。 銀行可以根據客戶以往的消費記錄,尤其是與金融產品直接相關的消費記錄,以及目前所持有的銀行產品的使用情況建立數據收集模型,通過一定時間的數據收集和分析之後,便能為銀行下一步的產品策劃與營銷提供翔實的數據參考。在此基礎上,諸如交叉銷售、深度挖潛、提升單個客戶貢獻度、保持客戶忠誠度等等業績或營銷目標都能更輕松的完成。當你知道客戶的情緒變化,還知道客戶可能的購買需求,只要你能以合適的方式將客戶所需要的東西及時遞上,客戶自然會樂意接受。 以合適的方式來發揮大數據的效用非常重要。大數據可能帶來的一個負面效應就是客戶隱私的被侵犯,前面提到的塔吉特百貨就是一個例子。在這個事件之後,塔吉特百貨調整了自己寄送優惠廣告的方式:當發現某位客戶可能懷孕之後,塔吉特百貨還是會寄送一份包含孕婦所需產品的小冊子到她手上,只不過通過視覺排版、其他品類產品交叉排列等等方式,在不引發客戶那種「被窺視」的反感的前提下,實現了產品的精準推薦。最終,在大數據的幫助下,2002年到2010年間,塔吉特百貨的銷售額從440億美元增長到了670億美元。 值得一提的是,大數據應用還能幫助銀行實現有效的風控。國外已經有一些金融機構利用大數據來幫助金融產品交易、信用卡消費等方面的風控。尤其是在信用卡、無抵押貸款等產品上,通過大數據建立的模型,銀行能准確的知曉某個客戶的生活和消費情況,從而選擇是不是要發放卡片/貸款給他,或者要不要給他提升額度、延遲還款期。一旦某個客戶出現異常行為,銀行也能在最短的時間內知曉,並採取相應的措施防止風險案件的發生。 總之,雖然還不夠完善,但大數據擁有無可限量的未來。
❼ 交通銀行如何應對大數據
交通銀行要學會「走出去」以應對大數據。
拓展資料:
在「大數據時代」,銀行所面臨的競爭不僅僅來自於同行業內部,外部的挑戰也日益嚴峻。互聯網、電子商務等新興企業在產品創新能力、市場敏感度和「大數據」處理經驗等方面都擁有明顯的優勢,一旦涉足金融領域,將對銀行形成較大的威脅。日前,互聯網公司阿里巴巴已開始在利用大數據技術提供金融服務,通過其掌握的電商平台阿里巴巴、淘寶網和支付寶等的各種信息數據,藉助大數據分析技術自動判定是否給予企業貸款,全程幾乎不用出現人工干預。這種基於「大數據」分析能力的競爭優勢已明鮮顯示了這種威脅的現實性和急迫性。
數據將是未來銀行的核心競爭力之一,這已成為銀行業界的共識。應該說,銀行對於傳統的結構化數據的挖掘和分析是處於領先水平的,但一方面銀行傳統的資料庫信息量並不豐富和完整,如客戶信息,銀行擁有客戶的基本身份信息,但客戶其他的信息,如性格特徵、興趣愛好、生活習慣、行業領域、家庭狀況等卻是銀行難以准確掌握的;另一方面對於多種異構數據的分析是難以處理的,如銀行有客戶的資金往來的信息、網頁瀏覽的行為信息、服務通話的語音信息、營業廳、ATM的錄像信息,但除了結構化數據外,其他數據無法進行分析,更談不上對多種信息進行綜合分析,無法打破「信息孤島」的格局。也就是說,在「大數據時代」,銀行的數據挖掘和分析能力嚴重不足。
❽ 大數據在銀行業的應用與實踐
大數據在銀行業的應用
一、輿情分析
對於銀行來說,輿情分析包括:銀行的聲譽分析、品牌分析和客戶質量分析。它主要是通過分析網路社交媒體的評論,對於客戶的流失情況進行預警,還可以通過對新聞熱點的跟蹤以及政府報道的分析,為銀行提供個性化的分析場所。
二、客戶信用評級
銀行可以通過手機客戶申請信用卡的數據,分析客戶的信用程度,從而幫助業務人員做出相應的決策。
三、客戶與市場洞察
銀行可以通過跟蹤社交媒體的評論信息,利用各種非結構化數據,對客戶進行細分,改進客戶的流失情況。這是銀行對於市場的趨勢分析。
四、運營優化
銀行通過大數據平台對各種歷史數據進行保存和管理,同時可以對系統日誌進行維護、預測系統故障,從而提升系統的運營效率。
五、風險與欺詐分析
主要包括財務風險分析、貸款風險分析、各種反洗錢和欺詐調查和實時欺詐分析等內容。所謂財務風險分析是分析信用風險和市場風險產生的數據;貸款風險分析是從媒體或者社會公眾信息中提取企業客戶和潛在客戶的信息。提高對於風險的預測能力和預警能力;反洗錢與欺詐調查是提取犯罪記錄的信息;實時欺詐分析則是對大量的欺詐數據進行分析。
銀行數據架構規劃
隨著銀行業務的擴展,可以對數據進行架構規劃。大數據的數據架構規劃可以採用Hadoop技術,即通過與節後或數據進行關聯,進一步拓展對非結構化數據的處理。其數據源包括結構化數據、半結構化數據和非結構化數據。半結構化數據和非結構化數據通過網路爬蟲的方式來搜集,再經過內容管理處理,將數據進行結構化處理,然後可以將內容管理處理得出的數據信息存放到基礎數據存儲中。這是基於HDFS存放的非結構化數據。
大數據為銀行創造的價值
當銀行客戶與銀行產生交易,會產生大量的數據,這些數據具有大量的業務價值,為銀行進行有針對性的營銷創造了機會。
在大部分的應用中,隨著數據量指數級的增長,特別是一些非結構化數據的快速增長,大量的數據導致分析時間增長,傳統的商業智能已經無法滿足需求,阻礙了業務的發展,以FineBI為代表的新型BI的涌現,無論在數據處理量和速度上都相比傳統BI有突破性的進步。
在很長的一段時間內,銀行的大部分業務是建立在客戶和銀行的交易過程中的,但是為了能更好地為客戶服務,光靠依賴這些數據是不夠的。隨著技術的進步,銀行可以通過很多途徑來搜集客戶的資料。從而進行有針對性的營銷。
隨著互聯網技術的發展,客戶可以通過電子渠道對銀行業務發表看法或者購買銀行產品。這些操作都是為增強對於客戶的了解,降低信息的不對稱性。
目前來說,在利率市場化的趨勢下,存款的穩定性降低,存貸款的利差收窄,數據分析已經逐漸成為銀行實現核心業務價值的重要手段。金融脫媒會導致大量客戶的流失和客戶忠誠度的降低。銀行作為「支付中介」的地位開始動搖,客戶對於銀行服務的要求越來越高。
在這種情況下,銀行需要通過大數據深入全名了解客戶的基本信息,提升業務運行的效率,逐步提高客戶的體驗。通過對大數據的加工以及挖掘,可能為銀行帶來極大的效益,特別是商業銀行。
對於銀行來說,風險管控和用戶營銷是未來最重要的兩個方向。而對客戶的信用評分是實現這兩個方向的重要條件之一。信用評分是根據申請人的申請信息和證明材料,幫助業務員作出決策,降低壞賬率。
比如:我們可以根據大數據的分析和查詢,有針對性地為客戶提供理財產品建議和提醒,同時通過對大數據的分析和挖掘,來評估客戶的信用風險和資金償還能力,降低了銀行的各種風險。
❾ [恆豐銀行]基於大數據的精準營銷模型應用
【案例】恆豐銀行——基於大數據的精準營銷模型應用 https://mp.weixin.qq.com/s?src=3×tamp=1500159788&ver=1&signature=-86itFcexY XKcX3Vb1ypwGo8v0IU6fkNgcs *=
本篇案例為數據猿推出的大型 「金融大數據主題策劃」 活動 (查看詳情) 第一部分的系列案例/徵文;感謝** 恆豐銀行** 的投遞
作為整體活動的第二部分,2017年6月29日,由數據猿主辦,上海金融信息行業協會、互聯網普惠金融研究院合辦,中國信息通信研究院、大數據發展促進委員會、上海大數據聯盟、首席數據官聯盟、中國大數據技術與應用聯盟協辦的 《「數據猿·超聲波」之金融科技·商業價值探索高峰論壇》 還將在上海隆重舉辦 【論壇詳情】 【上屆回顧(點擊閱讀原文查看)】
在論壇現場,也將頒發 「技術創新獎」、「應用創新獎」、「最佳實踐獎」、「優秀案例獎」 四大類案例獎
本文長度為 6000 字,建議閱讀 12 分鍾
如今,商業銀行信息化的迅速發展,產生了大量的業務數據、中間數據和非結構化數據,大數據隨之興起。要從這些海量數據中提取出有價值的信息,為商業銀行的各類決策提供參考和服務,需要結合大數據和人工智慧技術。國外的匯豐、花旗和瑞士銀行是數據挖掘技術應用的先行者。在國內的商業銀行中,大數據的思想和技術逐步開始在業務中獲得實踐和嘗試。
面對日趨激烈的行業內部競爭及互聯網金融帶來的沖擊,傳統的上門營銷、電話營銷,甚至是掃街營銷等方式跟不上時代的節奏。利用精準營銷可節約大量的人力物力、提高營銷精準程度,並減少業務環節,無形中為商業銀行節約了大量的營銷成本。
雖然恆豐銀行內部擁有客戶的基本信息和交易等大量數據,但是傳統的營銷系統並沒有挖掘出行內大量數據的價值,仍然停留在傳統的規則模型。當下,恆豐銀行接入了大量的外部數據,有著更多的維度,如果將內部數據與外部數據進行交叉,則能產生更大的價值。客戶信息收集越全面、完整,數據分析得到的結論就越趨向於合理和客觀。利用人工智慧技術,建立精準營銷系統變得可能且必要。
恆豐銀行基於大數據的精準營銷方案是利用大數據平台上的機器學習模型深入洞察客戶行為、客戶需求,客戶偏好,挖掘潛出在客戶,實現可持續的營銷計劃。
周期/節奏
2016.4-2016.5 完成需求梳理和業務調研,並在此基礎上進行總體方案設計。
2016.5-2016.8 整理銀行內、外部數據,根據營銷需求制定客戶標簽和設計文檔,實施用戶畫像。
2016.8-2016.10 在用戶畫像的基礎上,構建理財產品個性化推薦系統。其中包括個性化推薦演算法調研,模型對比等一系列工作。
2016.10-2017.1 客戶需求預測並對客戶價值進行建模,並完善整合精準營銷應用模型。
2017.1-2017.3 用戶畫像、個性化推薦、客戶價值預測等精準營銷模型上線。
客戶名稱/所屬分類
恆豐銀行/客戶管理
任務/目標
根據零售業務營銷要求,運用多種數據源分析客戶行為洞察客戶需求,實現精準營銷與服務,提高銀行客戶滿意度和忠誠度。
針對不同的客戶特徵、產品特徵和渠道特徵,制定不同市場推廣策略。為了完成以上任務,主要從以下幾個方面構建精準營銷系統:
1.用戶畫像: 結合用戶的歷史行為和基本屬性給用戶打標簽。
2.精準推薦系統: 給用戶推薦個性化理財產品, 例如在微信銀行中給每個客戶推薦他喜歡的產品,幫客戶找到其最適合的產品,增加產品的購買率。
3.需求預測和客戶價值: 新產品發售的時候,找到最有可能購買該產品的客戶,進行簡訊營銷,進而提高產品響應率。客戶價值精準定位,根據客戶價值水平制定不同的推薦策略。銀行通過計算客戶使用其產品與服務後所形成的實際業務收益,充分了解每一個客戶的貢獻度,為管理層提供決策支撐。
挑戰
項目實施過程由用戶畫像,精準推薦系統,需求預測和客戶價值建模三部分組成,採用TDH機器學習平台Discover所提供的演算法和模型庫進行開發和驗證。
(一)用戶畫像的建立
客戶標簽主要包含客戶基本屬性,客戶等級標簽,客戶偏好標簽,客戶交易特徵,客戶流失特徵,客戶信用特徵,客戶終身價值標簽,客戶潛在需求標簽。
(二)精準推薦系統的建立
由於系統復雜,且篇幅有限,僅對其中最重要的理財推薦系統做詳細闡述。精準推薦系統架構圖如下。
2.1業務問題轉化為機器學習問題
業務問題
銀行理財產品個性化推薦給客戶。 例如在微信銀行中給每個客戶推薦此客戶喜歡的產品,幫客戶找到其最適合的產品,增加產品的購買率。
將業務問題轉化為機器學習問題
理財產品種類繁多,產品迭代速度很快,客戶在繁多的產品中不能快速找到適合自己的產品,因此有必要建立一個自動化推薦模型,建立客戶理財偏好,給客戶推薦最適合的產品。
將銀行理財產品推薦業務問題轉化為機器學習問題,進而利用人工智慧技術提高推薦產品的點擊率和購買率。例如在恰當的時間,通過用戶偏好的渠道給用戶推薦產品,推薦的結果為用戶購買或者未購買。這個問題可以看作一個典型機器學習二分類問題:基於歷史營銷數據來訓練模型,讓模型自動學到客戶購買的產品偏好,並預測客戶下次購買理財產品的概率。對模型預測出所有客戶對所有產品的響應概率進行排序,可選擇客戶購買概率最高的topN個產品推薦給客戶。
下面將敘述如何構建該推薦預測模型。
2.2數據源准備
在建立的一個理財推薦模型之前,可以預見到相似的客戶可能會喜好相似的產品(需要表徵客戶和產品的數據),同一個人的喜好可能具有連續性(購買歷史交易數據,包括基金國債等),他的存款、貸款資金可能決定了他能購買什麼檔次的理財等等。因此,我們需要准備以下數據。
客戶基本屬性:客戶性別,年齡,開戶時間,評估的風險等級等等。
產品基本屬性:產品的逾期收益率,產品周期,保本非保本,風險等級等。
客戶購買理財產品的歷史:在什麼時候購買什麼產品以及購買的金額。
客戶的存款歷史: 客戶歷史存款日均余額等。
客戶的貸款歷史: 客戶歷史貸款信息等。
客戶工資:客戶工資的多少也決定了客戶購買理財的額度和偏好。
用戶畫像提取的特徵:用戶的AUM等級,貢獻度,之前購買基金,國債的金額等。
2.3特徵轉換和抽取
有了這么多數據,但是有一部分特徵是演算法不能直接處理的,還有一部分數據是演算法不能直接利用的。
特徵轉換
把不能處理的特徵做一些轉換,處理成演算法容易處理的干凈特徵。舉例如下:
開戶日期。就時間屬性本身來說,對模型來說不具有任何意義,需要把開戶日期轉變成到購買理財時的時間間隔。
產品特徵。從理財產品信息表裡面可以得到風險等級,起點金額等。但是並沒有標志這款產品是否是新手專屬,是否是忠誠客戶專屬。這就需要我們從產品名字抽取這款產品的上述特徵。
客戶交易的時間信息。同客戶的開戶日期,孤立時間點的交易信息不具有任何意義,我們可以把交易時間轉變為距離上次購買的時間間隔。
特徵抽取
還有一部分數據演算法不能直接利用,例如客戶存款信息,客戶交易信息。我們需用從理財交易和存款表中抽取可能有用的信息。
用戶存款信息:根據我們的經驗,客戶購買理財之前的存款變動信息更能表明客戶購買理財的真實想法,因此我們需要從客戶歷史存款數據抽取客戶近三個月,近一個月,近一周的日均余額,以體現客戶存款變化。
客戶交易信息:客戶最近一次購買的產品、購買的金額、及其相關屬性,最近一個月購買的產品、購買的金額及其相關屬性等等。
以上例舉的只是部分特徵。
2.4構造、劃分訓練和測試集
構造
以上說明了如何抽取客戶購買理財的相關特徵,只是針對正樣本的,即客戶購買某種理財時候的特徵。隱藏著的信息是,此客戶當時沒有購買其他在發售的產品。假設把客戶購買了產品的標簽設為1,沒有購買的產品樣本設為0,我們大致有如下訓練樣本(只列舉部分特徵)。
其中客戶是否購買產品是我們在有監督訓練的標簽,也就是我們建立的是一個預測客戶是否會購買產的模型。
劃分訓練集和測試集
考慮到最終模型會預測將來的某時間客戶購買某種產品的概率,為了更真實的測試模型效果,以時間來切分訓練集和測試集。具體做法如下。假設我們有2016-09-01 ~ 2017-03-20 的理財購買相關數據。以2016-09-01 ~ 2017-03-19的理財交易數據作為訓練,2017-03-20這一天的客戶對每個產品是否購買的數據作為測試。以2016-09-01 ~ 2017-03-18的理財交易數據作為訓練,2017-03-19這一天的客戶對每個產品是否購買的數據作為測試,以此類推。
2.5模型訓練
根據提取的特徵,組成樣本寬表,輸入到分類模型,這里選擇了TDH平台機器學習組件Discover所提供的近百個分布式演算法進行建模和訓練,同時我們還使用了特徵的高階交叉特性進行推薦的預測和分析。
2.6模型評估
評價推薦好壞的指標很多,比較常用的有
1.ROC曲線下面積(AUC)
2.logloss
3.推薦產品第一次命中rank的倒數(MRR)
4.TopN
針對銀行的理財推薦實際業務,客戶當天絕大多數是只購買了某一款理財,MRR(Mean Average Precision 的特殊情況)能反應這種情況下推薦的好壞。另一種直觀的評價指標是TopN,假定我們只推薦N個模型認為客戶最有可能購買的產品,並和真實情況比較,就能得到當天推薦的結果的混淆矩陣,TN,TP,FN,FP,recall,precision等。
我們在生產上驗證了最近十天的推薦效果,即測試了2017-03-20, 2017-03-19,…… , 2017-03-11等十天的推薦效果,以下是這些結果的評價。
AUC
Logloss
MRR
0.89
0.45
0.78
也可以把新客戶(之前沒有購買理財)和老客戶(至少購買過一次)分開評估效果。 新客戶的購買佔了整個理財購買的1/3 以上。
測試新客戶的預測效果,可以看出模型對冷啟動問題解決的好壞。
對新客戶的預測效果
AUC
Logloss
MRR
0.80
0.73
0.32
對老客戶的預測效果
AUC
Logloss
MRR
0.92
0.38
0.88
2.7模型優化
1.上線之前的優化:特徵提取,樣本抽樣,參數調參
2.上線之後的迭代,根據實際的A/B testing和業務人員的建議改進模型
(三)需求預測和客戶價值
「顧客終生價值」(Customer Lifetime Value)指的是每個購買者在未來可能為企業帶來的收益總和。研究表明,如同某種產品一樣,顧客對於企業利潤的貢獻也可以分為導入期、快速增長期、成熟期和衰退期。
經典的客戶終身價值建模的模型基於客戶RFM模型。模型簡單的把客戶劃分為幾個狀態,有一定意義但不一定準確,畢竟RFM模型用到的特徵不全面,不能很好的表徵客戶的價值以及客戶銀行關系管理。
為了方便的對客戶終身價值建模,有幾個假定條件。其一把客戶的購買價值近似為客戶為企業帶來的總收益,其二把未來時間定義在未來一個季度、半年或者一年。也就是我們通過預測客戶在下一個時間段內的購買價值來定義客戶的終身價值。因此,我們將預測的問題分為兩個步驟:第一步預測這個客戶在下一個階段是否會發生購買(需求預測)。第二步對預測有購買行為的客戶繼續建模預測會購買多大產品價值。
3.1需求預測
提取客戶定活期存款、pos機刷卡、渠道端查詢歷史等特徵,以這些特徵作為輸入預測用戶在當前時間節點是否有購買需求,訓練和測試樣本構造如下:
1.歷史用戶購買記錄作為正樣本。
2.抽樣一部分從未購買的理財產品的用戶作為負樣本集合Un,對於每一個正樣本Un中隨機選取一個用戶構造負樣本。
3.選取2016.04-201610 的購買數據作為訓練樣本,2016.11的數據作為測試樣本。
使用機器學習演算法進行分類訓練和預測,重復上述實驗,得到下列結果:
AUC: 0.930451274
precision: 0.8993963783
recall: 0.8357507082
fmeasure: 0.8664062729
進一步對客戶分群之後,可以更好的對新客戶進行建模,對於老客戶我們可以進一步提取他們的歷史購買特徵,預測他們在下一段時間內購買的產品價值(數量,金額等),對於新客戶,可以進根據他的存款量預測其第一次購買的產品價值,把存款客戶變成理財客戶。通過分析客戶存款變動於客戶購買理財的關系,我們發現客戶購買理財的前一段時間內定活期的增加的有不同的模式,如下圖。
根據需求預測模型,我們給出新客戶最有可能購買的top N 列表,然後由業務人員進行市場推廣。
3.2客戶價值預測
進一步預測有購買需求的客戶的購買價值高低。這是個回歸問題,但是預測變數從二分類變數變為預測連續的金額值。訓練的時候預測值取訓練周期內(一個月或者季度)客戶所購買的總金額。
算出客戶的當前價值(即當前階段購買的產品價值)和未來價值(預測的下一個階段的客戶價值)可以幫助我們鑒定客戶處於流失階段,或者上升階段,或者是穩定階段。當前價值取的是當前時間前三個月的交易量。對流失階段高價值客戶可以適當給予營銷優惠,對於有購買意向的客戶適當引導。如下圖所示。
結果/效果
一是提高銀行營銷准確性。隨著客戶不斷增加,理財產品也在不斷推陳出新,在實時精準營銷平台的幫助下,銀行從以前盲目撒網式的營銷方式轉變到對不同客戶精準觸達,提高了理財產品的營銷成功率,降低銷售和運作成本。理財產品推薦的上線以來,產品推薦成功率比專家經驗排序模型最高提升10倍。
二是增加銀行獲客數量。精準營銷系統洞察客戶潛在需求和偏好,提高了銀行獲取目標客戶群的准確率。從數百萬客戶中,通過機器學習模型,找到最有可能購買產品的客戶群,通過渠道營銷,實現響應率提升。相比傳統盲發模式,發送原38%的簡訊即可覆蓋80%的客戶。
通過構建基於大數據的精準營銷方案,恆豐銀行深入洞察客戶行為、需求、偏好,幫助銀行深入了解客戶,並打造個性化推薦系統和建立客戶價值預測模型,實現可持續的營銷計劃。