導航:首頁 > 網路數據 > 大數據大機遇大挑戰

大數據大機遇大挑戰

發布時間:2023-03-04 20:56:28

1. 當代大學生應該如何應對「大數據」帶來的機遇與挑戰

大數據,或稱巨量資料,是指所涉及的資料量規模巨大,以致無法通過目前主流軟體工具在合理時間內擷取、管理、處理並整理成為幫助企業達致經營決策目的的資訊。大數據技術不僅能夠提高人們利用數據的效率,而且能夠實現數據的再利用和重復利用,進而大大降低交易成本,提升人們開發自我潛能的空間。人們可以低成本或零成本進行事物信息全息式的縱向歷史比對和橫向現實比對。大數據技術自身不僅能夠迅速衍生為新興信息產業,還可以同雲計算、物聯網和智慧工程技術聯動,支撐一個信息技術的新時代。

雲計算、物聯網、大數據、智慧工程都是新一代信息技術。雲計算技術是一種按使用量付費的模式,這種模式可以提供可用的、便捷的、按需的網路訪問,進入可配置的計算資源共享池(資源包括網路、伺服器、存儲、應用軟體、服務),這些資源能夠被快速提供,只需投入很少的管理工作,或與服務供應商進行很少的交互。雲計算技術可以使人們及時利用各類大數據。物聯網技術的實質就是物物相連的互聯網,物聯網的核心和基礎仍然是互聯網,其用戶端延伸和擴展到了任何物品與物品之間,進行信息交換和通信。物聯網技術可以溯源大數據和保證信息的真實性。智慧工程就是把感應器嵌入和裝備到電網、鐵路、橋梁、隧道、公路、建築、供水系統、大壩、油氣管道等各種物體中,並且進行普遍連接,與現有的互聯網整合起來,實現人類社會與物理系統的整合。智慧工程可以激活沉寂的大數據。

2. 在當前大數據的新環境下it企業面臨哪些機會與挑戰

  1. 挑戰一:數據來源錯綜復雜,豐富的數據源是大數據產業發展的前提。而我國數字化的數據資源總量遠遠低於美歐。

  2. 挑戰二:數據挖掘分析模型建立,關於大數據分析,人們鼓吹其神奇價值的喧囂聲浪很高,卻鮮見其實際運用得法的模式和方法。

  3. 挑戰三:數據開放與隱私的權衡,目前我國一些部門和機構擁有大量數據但寧願自己不用也不願提供給有關部門共享,導致信息不完整或重復投資。

  4. 挑戰四:大數據管理與決策,在今時今日的商業世界中,高管的決策仍然更多地依賴個人經驗和直覺,而不是基於數據。

  5. 挑戰五:大數據人才缺口,精通大數據技術的相關人才也成為一個大缺口。

3. 大數據:大變革、大機遇

大數據:大變革、大機遇

從來沒有哪一次技術變革能像大數據革命一樣,在短短的數年之內,從少數科學家的主張,轉變為全球領軍公司的戰略實踐,繼而上升為大國的競爭戰略,形成一股無法忽視、無法迴避的歷史潮流。互聯網、物聯網、雲計算、智慧城市、智慧地球正在使數據沿著「摩爾定律」飛速增長,一個與物理空間平行的數字空間正在形成。在新的數字世界當中,數據成為最寶貴的生產要素,順應趨勢、積極謀變的國家和企業將乘勢崛起,成為新的領軍者;無動於衷、墨守成規的組織將逐漸被邊緣化,失去競爭的活力和動力。毫無疑問,大數據正在開啟一個嶄新時代。
大數據時代有什麼本質特徵?大數據的來源是什麼?大數據又將流向哪裡?大數據在提升政府治理、改善經濟治理、再造公共服務模式、激發商業創新方面有哪些卓越案例?中國需要怎麼樣的戰略反應才能抓住大數據帶來的寶貴機遇?一系列問題亟待研究者給出深入解析。
「數據驅動發展」成為時代主題
如今,大數據已經被賦予多重戰略含義。從資源的角度,數據被視為「未來的石油」,作為戰略性資產進行管理;從國家治理角度,大數據被用來提升治理效率、重構治理模式、破解治理難題,它將掀起一場國家治理革命;從經濟增長角度,大數據是全球經濟低迷環境下的產業亮點,是戰略新興產業的最活躍部分;從國家安全形度,全球數據空間沒有國界邊疆,大數據能力成為大國之間博弈和較量的利器。總之,國家競爭焦點將從資本、土地、人口、資源轉向數據空間,全球競爭版圖將分成新的兩大陣營:數據強國與數據弱國。
宏觀上看,由於大數據革命的系統性影響和深遠意義,主要大國快速做出戰略響應,將大數據置於非常核心的位置,推出國家級創新戰略計劃。美國2012年發布《大數據研究和發展計劃》,並成立「大數據高級指導小組」,2013年又推出「數據—知識—行動」計劃,2014年進一步發布《大數據:把握機遇,維護價值》政策報告,啟動「公開數據行動」,陸續公開50個門類的政府數據,鼓勵商業部門進行開發和創新。歐盟正在力推《數據價值鏈戰略計劃》,英國發布《英國數據能力發展戰略規劃》,日本發布《創建最尖端IT國家宣言》,韓國提出「大數據中心戰略」。中國多個省市發布了大數據發展戰略,國家層面的《關於促進大數據發展的行動綱要》也於2015年8月19日正式通過。
微觀上看,大數據重塑了企業的發展戰略和轉型方向。美國的企業以GE提出的「工業互聯網」為代表,提出智能機器、智能生產系統、智能決策系統,將逐漸取代原有的生產體系,構成一個「以數據為核心」智能化產業生態系統。德國企業以「工業4.0」為代表,要通過信息物理系統(CPS——cyber physical system),把一切機器、物品、人、服務、建築統統連接起來,形成一個高度整合的生產系統。中國的企業以阿里巴巴董事局主席馬雲提出的「DT時代」(data technology)為代表,認為未來驅動發展的不再是石油、鋼鐵,而是數據。這三種新的發展理念可謂異曲同工、如出一轍,共同宣告了「數據驅動發展」成為時代主題。
與此同時,大數據也是促進國家治理變革的基礎性力量。正如《大數據時代》作者舍恩伯格在定義中所強調的,「大數據是人們在大規模數據的基礎上可以做到的事情,而這些事情在小規模數據的基礎上是無法完成的」。在國家治理領域,陽光政府、責任政府、智慧政府建設,大數據為解決以往的「頑疾」和「痛點」提供了強大支撐;精準醫療、個性化教育、社會監管、輿情監測預警,大數據使以往無法實現的環節變得簡單、可操作;大數據也使一些新的主題成為國家治理的重點,比如維護數據主權、開放數據資產、保持在數字空間的國家競爭力等。
從哲學意義上來看,大數據不僅僅是一場技術革命,也不僅僅是一場管理革命或者治理革命,它給人類的認知能力帶來深刻變化,可謂是認識論的一次升華。具體而言,大數據可以為決策者解決「四個問題」,提升「兩種能力」。一是解決「坐井觀天」的問題,以往人們決策只能基於視野之內極為有限的局部信息,和井底之蛙無異,大數據則可以實現整個蒼穹盡收眼底;二是解決「一葉障目」的問題,以往不具備全樣本數據分析能力,只能用小樣本分析近似推理,猶如從「泰山」中取來「一葉」,而真理可能存在於全樣本的海量數據之中,藉助大數據則可完全克服;三是解決「瞎子摸象」的問題,七個瞎子根本無法根據各自的認識加總出完整的大象,因為他們的信息是相互離散的,無法有效關聯起來,而大數據的基本優點是在深入關聯中還原事物的原貌;四是解決「城門失火,殃及池魚」的問題,人們習慣於因果分析,遇到這種「稀奇古怪」的因果鏈則很難前瞻和推理,但大數據注重相關關系,可以准確地發掘出規律。提升兩種能力,一個是「一葉知秋」的能力,體現大數據敏銳的洞察能力,另一個是「運籌帷幄,決勝千里」的能力;體現大數據對時空約束的突破。這些足以說明,大數據是人類認識世界和改造世界能力的一次升華。
中國成為數據強國的優勢、挑戰與路徑
值得振奮的是,中國具備成為數據強國的優勢條件。從2013年至2020年,全球數據規模將增長十倍,每年產生的數據量由當前的4.4萬億GB,增長至44萬億GB,每兩年翻一番。從全球佔比來看,中國成為數據強國的潛力極為突出,2010年中國數據佔全球比例為10%,2013年佔比為13%,2020年佔比將達到18%,屆時,中國的數據規模將超過美國的數據規模,位居世界第一。中國成為數據大國並不奇怪,因為我們是人口大國、製造業大國、互聯網大國、物聯網大國,這都是最活躍的數據生產主體,未來幾年成為數據大國也是邏輯上必然的結果。
盡管存在成為數據強國的潛力,但在目前的政策環境之下,我國推進大數據戰略仍存在以下幾個清晰的挑戰。第一,頂層設計方面,全球大國之間圍繞大數據的競爭頗為激烈,中國作為一個後發國家,想要實現彎道超車,後來居上並非易事。如何能夠緊扣創新前沿,把准未來趨勢,超前戰略部署,對政策設計來說是一個非常現實的挑戰。第二,數據開放方面,「數據孤島」廣泛存在,雖然政府掌握著80%的數據,但現實中卻相互割裂,自成體系,「部門牆」「行業牆」「地區牆」阻礙了數據的流動共享,數據被視為部門的利益和隱私,這與大數據時代的基本理念准則相悖。第三,大數據相關的法律、法規、標准缺位,導致能夠開放的數據不開放,需要保護的隱私不保護,企業由於標准模糊而無法大膽創新。第四,「數據主權」容易受到侵蝕,由於數據空間是國家新的戰略維度,尚沒有完備的安全保障體系,再加上電腦、手機、晶元、伺服器、搜索引擎、操作系統、軟體等核心的數據「基礎設施」大量依賴進口,數據資產極易流失,數據主權極易受到侵蝕。
把握優勢,克服挑戰,抓住大數據革命帶來的「機會窗口」,建設數據強國,是實現中華民族偉大復興的一個有力支撐。然而,我們需要怎樣做才能更好地擁抱大數據時代,確保在數字化趨勢中立於不敗之地呢?首先,需要在國家頂層設計上有一個清晰的行動框架,包括由什麼部門主導、哪些部門參與、什麼樣的協作機制、沿著什麼優先次序、克服哪些既有的障礙、達到什麼戰略目標,只有這樣,各部門、各地區、企業界、學術界才能形成合力,在一個共同的路線圖上協作推進。其次,盤活數據資產,在數據開放上取得實質性突破。一些基本的建議包括:加快G2G(政府與政府之間)、G2B(政府與企業之間)、G2C(政府與公民之間)大數據開放與共享;推動基礎性、戰略性大數據資源庫整合;加強大數據基礎設施建設,編制國家大數據檔案。最後,把強大的「國家企業」和活躍的「萬眾創新」結合起來。一方面,要培育可以和國際「八大金剛」並駕齊驅的巨型企業作為大數據環境中競爭的中堅力量,同時,鼓勵和引導大眾創業、萬眾創新成為數據生態系統中的活躍力量。

以上是小編為大家分享的關於大數據:大變革、大機遇的相關內容,更多信息可以關注環球青藤分享更多干貨

4. 為什麼要考慮大數據環境下企業競爭情報研究的機遇和挑戰

市場競爭大要考慮大數據環境下企業競爭情報研究的機遇和挑戰。在解析失數據的基本內涵和多元價值基礎上,從數據的屬性角度剖析大數據給企業競爭情報工作帶來的機遇。

5. 淺談基於大數據時代的機遇與挑戰論文

淺談基於大數據時代的機遇與挑戰論文推薦

在學習和工作中,大家總少不了接觸論文吧,論文的類型很多,包括學年論文、畢業論文、學位論文、科技論文、成果論文等。為了讓您在寫論文時更加簡單方便,以下是我精心整理的淺談基於大數據時代的機遇與挑戰論文,僅供參考,希望能夠幫助到大家。

淺談基於大數據時代的機遇與挑戰論文

1、大數據的基本概況

大數據(Big Data)是指那些超過傳統資料庫系統處理能力的數據,其具有以下四個基本特性,即海量性、多樣性、易變性、高速性。同時數據類型繁多、數據價值密度相對較低、處理速度快、時效性要求高等也是其主要特徵。

2、大數據的時代影響

大數據,對經濟、政治、文化等方面都具有較為深遠的影響,其可幫助人們進行量化管理,更具科學性和針對性,得數據者得天下。大數據對於時代的影響主要包括以下幾個方面:

(1)「大數據決策」更加科學有效。如果人們以大數據分析作為基礎進行決策,可全面獲取相關決策信息,讓數據主導決策,這種方法必將促進決策方式的創新和改變,徹底改變傳統的決策方式,提高決策的科學性,並推動信息管理准則的重新定位。2009 年爆發的甲型H1N1 流感就是利用大數據的一個成功範例,谷歌公司通過分析網上搜索的大量記錄,判斷流感的傳播源地,公共衛生機構官員通過這些有價值的數據信息採取了有針對性的行動決策。

(2)「大數據應用」促進行業融合。雖然大數據源於通信產業,但其影響絕不局限於通信產業,勢必也將對其他產生較為深遠的影響。目前,大數據正逐漸廣泛應用於各個行業和領域,越來越多的企業開始以數據分析為輔助手段加強公司的日常管理和運營管理,如麥當勞、肯德基、蘋果公司等旗艦專賣店的位置都是基於大數據分析完成選址的,另外數據分析技術在零售業也應用越來越廣泛。

(3)「大數據開發」推動技術變革。大數據的應用需求,是大數據新技術開發的源泉。相信隨著時代的不斷發展,計算機系統的數據分析和數據挖掘功能將逐漸取代以往單純依靠人們自身判斷力的領域應用。藉助這些創新型的大數據應用,數據的能量將會層層被放大。

另外,需要注意的是,大數據在個人隱私的方面,容易造成一些隱私泄漏。我們需要認真嚴肅的對待這個問題,綜合運用法律、宣傳、道德等手段,為保護個人隱私,做出更積極的努力。

3、大數據的應對策略

3.1 布局關鍵技術研發創新。

目前而言,大數據的技術門檻較高,在這一領域有競爭力的多為一些在數據存儲和分析等方面有優勢的信息技術企業。為促進產業升級,我們必須加強研究,重視研發和應用數據分析關鍵技術和新興技術,具體可從以下幾個方面入手:第一,夯實發展基礎,以大數據核心技術為著手點,加強人工智慧、機器學習、商業智能等領域的理論研究和技術研發,為大數據的應用奠定理論基礎。二是加快基礎技術(非結構化數據處理技術、可視化技術、非關系型資料庫管理技術等)的研發,並使其與物聯網、移動互聯網、雲計算等技術有機融合,為解決方案的制定打下堅實基礎。三是基於大數據應用,著重對知識計算( 搜索) 技術、知識庫技術、網頁搜索技術等核心技術進行研發,加強單項技術產品研發,並保證質量的提升,同時促使其與數據處理技術的有機結合,建立科學技術體系。

3.2 提高軟體產品發展水平。

一是促進以企業為主導的產學研合作,提高軟體發展水平。二是運用雲計算技術促進信息技術服務業的轉型和發展,促進中文知識庫、資料庫與規則庫的建設。三是採取鼓勵政策引導軟硬體企業和服務企業應用新型技術開展數據信息服務,提供具有行業特色的系統集成解決方案。四是以大型互聯網公司牽頭,並聚集中小互聯網信息服務提供商,對優勢資源進行系統整合,開拓與整合本土化信息服務。五是以數據處理軟體商牽頭,這些軟體商必須具備一定的基礎優勢,其可充分發揮各自的數據優勢和技術優勢,優勢互補,提高數據軟體開發水平,提高服務內容的精確性和科學性。同時提高大數據解決方案提供商的市場能力和集成水平,以保障其大數據為各行業領域提供較為成熟的解決方案。

3.3 加速推進大數據示範應用。

大數據時代,我們應積極推進大數據的示範應用,可從以下幾個方面進行實踐:第一,對於一些數據量大的領域(如金融、能源、流通、電信、醫療等領域),應引導行業廠商積極參與,大力發展數據監測和分析、橫向擴展存儲、商業決策等軟硬體一體化的行業應用解決方案。第二,將大數據逐漸應用於智慧城市建設及個人生活和服務領域,促進數字內容加工處理軟體等服務發展水平的提高。第三,促進行業資料庫(特別是高科技領域)的深度開發,建議針對不同的行業領域建立不同的專題資料庫,以提供相應的內容增值服務,形成有特色化的服務。第四,以重點領域或重點企業為突破口,對企業數據進行相應分析、整理和清洗,逐漸減少和去除重復數據和噪音數據。

3.4 優化完善大數據發展環境。

信息安全問題是大數據應用面臨的主要問題,因此,我們應加強對基於大數據的情報收集分析工作信息保密問題的研究,制定有效的防範對策,加強信息安全管理。同時,為優化完善大數據發展環境,應採取各種鼓勵政策(如將具備一定能力企業的數據加工處理業務列入營業稅優惠政策享受范圍)支持數據加工處理企業的發展,促使其提高數據分析處理服務的水平和質量。三是夯實大數據的應用基礎,完善相關體制機制,以政府為切入點,推動信息資源的集中共享。

做到上面的幾點,當大數據時代來臨的時候,面臨大量數據將不是束手無策,而是成竹在胸,而從數據中得到的好處也將促進國家和企業的快速發展。

大數據為經營的橫向跨界、產業的越界混融、生產與消費的合一提供了有利條件,大數據必將在社會經濟、政治、文化等方面對人們生活產生巨大的影響,同時大數據時代對人類的數據駕馭能力也提出了新的挑戰與機遇。面對新的挑戰與發展機遇,我們應積極應對,以掌握未來大數據發展主動權。

結構

論文一般由名稱、作者、摘要、關鍵詞、正文、參考文獻和附錄等部分組成,其中部分組成(例如附錄)可有可無。

1、論文題目

要求准確、簡練、醒目、新穎。

2、目錄

目錄是論文中主要段落的'簡表。(短篇論文不必列目錄)

3、內容提要

是文章主要內容的摘錄,要求短、精、完整。

4、關鍵詞定義

關鍵詞是從論文的題名、提要和正文中選取出來的,是對表述論文的中心內容有實質意義的詞彙。關鍵詞是用作計算機系統標引論文內容特徵的詞語,便於信息系統匯集,以供讀者檢索。每篇論文一般選取3-8個詞彙作為關鍵詞,另起一行,排在「提要」的左下方。

主題詞是經過規范化的詞,在確定主題詞時,要對論文進行主題分析,依照標引和組配規則轉換成主題詞表中的規范詞語。(參見《漢語主題詞表》和《世界漢語主題詞表》)。

5、論文正文

(1)引言:引言又稱前言、序言和導言,用在論文的開頭。引言一般要概括地寫出作者意圖,說明選題的目的和意義, 並指出論文寫作的范圍。引言要短小精悍、緊扣主題。

(2)論文正文:正文是論文的主體,正文應包括論點、論據、論證過程和結論。主體部分包括以下內容:

a.提出問題-論點;

b.分析問題-論據和論證;

c.解決問題-論證方法與步驟;

d.結論。

6、參考文獻

一篇論文的參考文獻是將論文在研究和寫作中可參考或引證的主要文獻資料,列於論文的末尾。參考文獻應另起一頁,標注方式按進行。

7、論文裝訂

論文的有關部分全部抄清完了,經過檢查,再沒有什麼問題,把它裝成冊,再加上封面。論文的封面要樸素大方,要寫出論文的題目、學校、科系、指導教師姓名、作者姓名、完成年月日。論文的題目的作者姓名一定要寫在表皮上,不要寫裡面的補頁上。

;

6. 互聯網大數據對我們職業生涯有什麼機遇和挑戰嗎

這個大數據對我們的職業生涯機遇大於挑戰,是非常有指導意義的

7. 大數據發展時代的7個挑戰和8大趨勢

大數據發展時代的7個挑戰和8大趨勢

大數據挑戰和機遇並存,大數據在未來幾年的發展將從前幾年的預期膨脹階段、炒作階段轉入理性發展階段、落地應用階段,大數據在未來幾年將逐漸步入理性發展期。未來的大數據發展依然存在諸多挑戰,但前景依然非常樂觀。
大數據發展的挑戰
目前大數據的發展依然存在諸多挑戰,包括七大方面的挑戰:業務部門沒有清晰的大數據需求導致數據資產逐漸流失;企業內部數據孤島嚴重,導致數據價值不能充分挖掘;數據可用性低,數據質量差,導致數據無法利用;數據相關管理技術和架構落後,導致不具備大數據處理能力;數據安全能力和防範意識差,導致數據泄露;大數據人才缺乏導致大數據工作難以開展;大數據越開放越有價值,但缺乏大數據相關的政策法規,導致數據開放和隱私之間難以平衡,也難以更好的開放。
>>>>挑戰一:業務部門沒有清晰的大數據需求
很多企業業務部門不了解大數據,也不了解大數據的應用場景和價值,因此難以提出大數據的准確需求。由於業務部門需求不清晰,大數據部門又是非盈利部門,企業決策層擔心投入比較多的成本,導致了很多企業在搭建大數據部門時猶豫不決,或者很多企業都處於觀望嘗試的態度,從根本上影響了企業在大數據方向的發展,也阻礙了企業積累和挖掘自身的數據資產,甚至由於數據沒有應用場景,刪除很多有價值歷史數據,導致企業數據資產流失。因此,這方面需要大數據從業者和專家一起,推動和分享大數據應用場景,讓更多的業務人員了解大數據的價值。
>>>>挑戰二:企業內部數據孤島嚴重
企業啟動大數據最重要的挑戰是數據的碎片化。在很多企業中尤其是大型的企業,數據常常散落在不同部門,而且這些數據存在不同的數據倉庫中,不同部門的數據技術也有可能不一樣,這導致企業內部自己的數據都沒法打通。如果不打通這些數據,大數據的價值則非常難挖掘。大數據需要不同數據的關聯和整合才能更好的發揮理解客戶和理解業務的優勢。如何將不同部門的數據打通,並且實現技術和工具共享,才能更好的發揮企業大數據的價值。
>>>>挑戰三:數據可用性低,數據質量差
很多中型以及大型企業,每時每刻也都在產生大量的數據,但很多企業在大數據的預處理階段很不重視,導致數據處理很不規范。大數據預處理階段需要抽取數據把數據轉化為方便處理的數據類型,對數據進行清洗和去噪,以提取有效的數據等操作。甚至很多企業在數據的上報就出現很多不規范不合理的情況。以上種種原因,導致企業的數據的可用性差,數據質量差,數據不準確。而大數據的意義不僅僅是要收集規模龐大的數據信息,還有對收集到的數據進行很好的預處理處理,才有可能讓數據分析和數據挖掘人員從可用性高的大數據中提取有價值的信息。Sybase的數據表明,高質量的數據的數據應用可以顯著提升企業的商業表現,數據可用性提高10%,企業的業績至少提升在10%以上。
>>>>挑戰四:數據相關管理技術和架構
技術架構的挑戰包含以下幾方面:(1)傳統的資料庫部署不能處理TB級別的數據,快速增長的數據量超越了傳統資料庫的管理能力。如何構建分布式的數據倉庫,並可以方便擴展大量的伺服器成為很多傳統企業的挑戰;(2)很多企業採用傳統的資料庫技術,在設計的開始就沒有考慮數據類別的多樣性,尤其是對結構化數據、半結構化和非結構化數據的兼容;(3)傳統企業的資料庫,對數據處理時間要求不高,這些數據的統計結果往往滯後一天或兩天才能統計出來。但大數據需要實時處理數據,進行分鍾級甚至是秒級計算。傳統的資料庫架構師缺乏實時數據處理的能力;(4)海量的數據需要很好的網路架構,需要強大的數據中心來支撐,數據中心的運維工作也將成為挑戰。如何在保證數據穩定、支持高並發的同時,減少伺服器的低負載情況,成為海量數據中心運維的一個重點工作。
>>>>挑戰五:數據安全
網路化生活使得犯罪分子更容易獲得關於人的信息,也有了更多不易被追蹤和防範的犯罪手段,可能會出現更高明的騙局。如何保證用戶的信息安全成為大數據時代非常重要的課題。在線數據越來越多,黑客犯罪的動機比以往都來的強烈,一些知名網站密碼泄露、系統漏洞導致用戶資料被盜等個人敏感信息泄露事件已經警醒我們,要加強大數據網路安全的建設。另外,大數據的不斷增加,對數據存儲的物理安全性要求會越來越高,從而對數據的多副本與容災機制也提出更高的要求。目前很多傳統企業的數據安全令人擔憂。
>>>>挑戰六:大數據人才缺乏
大數據建設的每個環節都需要依靠專業人員完成,因此,必須培養和造就一支掌握大數據技術、懂管理、有大數據應用經驗的大數據建設專業隊伍。目前大數據相關人才的欠缺將阻礙大數據市場發展。據Gartner預測,到2015年,全球將新增440萬個與大數據相關的工作崗位,且會有25%的組織設立首席數據官職位。大數據的相關職位需要的是復合型人才,能夠對數學、統計學、數據分析、機器學習和自然語言處理等多方面知識綜合掌控。未來,大數據將會出現約100萬的人才缺口,在各個行業大數據中高端人才都會成為最炙手可熱的人才,涵蓋了大數據的數據開發工程師、大數據分析師、數據架構師、大數據後台開發工程師、演算法工程師等多個方向。因此需要高校和企業共同努力去培養和挖掘。目前最大的問題是很多高校缺乏大數據,所以擁有大數據的企業應該與學校聯合培養人才。
>>>>挑戰七:數據開放與隱私的權衡
在大數據應用日益重要的今天,數據資源的開放共享已經成為在數據大戰中保持優勢的關鍵。商業數據和個人數據的共享應用,不僅能促進相關產業的發展,也能給我們的生活帶來巨大的便利。由於政府、企業和行業信息化系統建設往往缺少統一規劃,系統之間缺乏統一的標准,形成了眾多「信息孤島」,而且受行政壟斷和商業利益所限,數據開放程度較低,這給數據利用造成極大障礙。另外一個制約我國數據資源開放和共享的一個重要因素是政策法規不完善,大數據挖掘缺乏相應的立法。無法既保證共享又防止濫用。因此,建立一個良性發展的數據共享生態系統,是我國大數據發展需要邁過去的一道砍。同時,開放與隱私如何平衡,也是大數據開放過程中面臨的最大難題。如何在推動數據全面開放、應用和共享的同時有效地保護公民、企業隱私,逐步加強隱私立法,將是大數據時代的一個重大挑戰。
大數據發展趨勢
雖然大數據仍在起步階段,存在諸多挑戰,但未來的發展依然非常樂觀。大數據的發展呈現八大趨勢:數據資源化,將成為最有價值的資產;大數據在更多的傳統行業的企業管理落地;大數據和傳統商業智能融合,行業定製化解決方案將涌現;數據將越來越開放,數據共享聯盟將出現;大數據安全越來越受重視,大數據安全市場將愈發重要;大數據促進智慧城市發展,為智慧城市的引擎;大數據將催生一批新的工作崗位和相應的專業;大數據在多方位改善我們的生活。
>>>>趨勢一:數據資源化,將成為最有價值的資產
隨著大數據應用的發展,大數據價值得以充分的體現,大數據在企業和社會層面成為重要的戰略資源,數據成為新的戰略制高點,是大家搶奪的新焦點。《華爾街日報》在一份題為《大數據,大影響》的報告宣傳,數據已經成為一種新的資產類別,就像貨幣或黃金一樣。Google、Facebook、亞馬遜、騰訊、網路、阿里巴巴和360等企業正在運用大數據力量獲得商業上更大的成功,並且金融和電信企業也在運用大數據來提升自己的競爭力。我們有理由相信大數據將不斷成為機構和企業的資產,成為提升機構和企業競爭力的有力武器。
>>>>趨勢二:大數據在更多的傳統行業的企業管理落地
一種新的技術往往在少數行業應用取得了好的效果,對其他行業就有強烈的示範效應。目前大數據在大型互聯網企業已經得到較好的應用,其他行業的大數據尤其是電信和金融也逐漸在多種應用場景取得效果。因此,我們有理由相信,大數據作為一種從數據中創造新價值的工具,將會在許多行業的企業得到應用,帶來廣泛的社會價值。大數據將在幫助企業更好的理解和滿足客戶需求和潛在需求,更好的應用在業務運營智能監控、精細化企業運營、客戶生命周期管理、精細化營銷、經營分析和戰略分析等方面。企業管理既有藝術也有科學,相信大數據在科學管理企業方面有更顯著的促進,讓更多擁抱大數據的企業實現智慧企業管理。
>>>>趨勢三:大數據和傳統商業智能融合,行業定製化解決方案將涌現
來自傳統商業智能領域者將大數據當成一個新增的數據源,而大數據從業者則認為傳統商業智能只是其領域中處理少量數據時的一種方法。大數據用戶更希望能獲得一種整體的解決方案,即不僅要能收集、處理和分析企業內部的業務數據,還希望能引入互聯網上的網路瀏覽、微博、微信等非結構化數據。除此之外,還希望能結合移動設備的位置信息,這樣企業就可以形成一個全面、完整的數據價值發展平台。畢竟,無論是大數據還是商業智能,目的都是為分析服務的,數據全面整合起來,更有利於發現新的商業機會,這就是大數據商業智能。同時,由於行業的差異性,很難研發出一套適用於各行業的大數據商業智能分析系統,因此,在一些規模較大的行業市場,大數據服務提供商將會以更加定製化的商業智能解決方案提供大數據服務。我們相信更多的大數據商業智能定製化解決方案將在電信、金融、零售等行業出現。
>>>>趨勢四:數據將越來越開放,數據共享聯盟將出現
大數據越關聯越有價值,越開放越有價值。尤其是公共事業和互聯網企業的數據開放數據將越來越多。我們看到,美國、英國、澳大利亞等國家的政府都在政府和公共事業上的數據做出努力。而國內的一些城市和部門也在逐漸開展數據開放的工作。比如北京市在2012年就開始試運行政務數據資源網,在2013年年底正式開放;上海在2012年啟動了政府數據資源開放試點工作,數據涉及地理位置、交通、經濟統計和資格資質等數據;2014年,貴州省也加入數據開放之列,10月份雲上貴州正式上線。對於不同的行業,數據越共享也是越有價值。如果每一個醫院想獲得更多病情特徵庫以及葯效信息,那麼就需要全國,甚至全世界的醫療信息共享,從而可以通過平台進行分析,獲取更大的價值。我們相信數據會呈現一種共享的趨勢,不同領域的數據聯盟將出現。
>>>>趨勢五:大數據安全越來越受重視,大數據安全市場將愈發重要
隨著數據的價值的越來越重要,大數據的安全穩定也將會逐漸被重視。網路和數字化生活也使得犯罪的分子更容易獲取關於他人的信息,也有更多的騙術和犯罪手段出現,所以,在大數據時代,無論對於數據本身的保護,還是對於由數據而演變的一些信息的安全,對大數據分析有較高要求的企業將至關重要。大數據安全是跟大數據業務相對應的,與傳統安全相比,大數據安全的最大區別是安全廠商在思考安全問題的時候首先要進行業務分析,並且找出針對大數據的業務的威脅,然後提出有針對性的解決方案。比如,對於數據存儲這個場景,目前很多企業採用開源軟體如Hadoop技術來解決大數據問題,由於其開源性,但是其安全問題也是突出的。因此,市場需要更多專業的安全廠商針對不同的大數據安全問題來提供專業的服務。
>>>>趨勢六:大數據促進智慧城市發展,為智慧城市的引擎
隨著大數據的發展,大數據在智慧城市將發揮著越來越重要的作用。由於人口聚集給城市帶來了交通、醫療、建築等各方面的壓力,需要城市能夠更合理地進行資源布局和調配,而智慧城市正是城市治理轉型的最優解決方案。智慧城市是通過物與物、物與人、人與人的互聯互通能力、全面感知能力和信息利用能力,通過物聯網、移動互聯網、雲計算等新一代信息技術,實現城市高效的政府管理、便捷的民生服務、可持續的產業發展。智慧城市相對於之前數字城市概念,最大的區別在於對感知層獲取的信息進行了智慧的處理。由城市數字化到城市智慧化,關鍵是要實現對數字信息的智慧處理,其核心是引入了大數據處理技術。大數據是智慧城市的核心智慧引擎。智慧安防、智慧交通、智慧醫療、智慧城管等,都是以大數據為基礎的的智慧城市應用領域。
>>>>趨勢七:大數據將催生一批新的工作崗位和相應的專業
一個新行業的出現,必將在工作職位方面有新的需求,大數據的出現也將推出一批新的就業崗位,例如,大數據分析師、數據管理專家、大數據演算法工程師、數據產品經理等等。具有有豐富經驗的數據分析人才將成為稀缺的資源,數據驅動型工作將呈現爆炸式的增長。而由於有強烈的市場需求,高校也將逐步開設大數據相關的專業,以培養相應的專業人才。企業也將和高校緊密合作,協助高校聯合培養大數據人才。如2014年,IBM 全面推進與高校在大數據領域的合作,引入強大的研發團隊和業務夥伴,推動「大數據平台」和「大數據分析」的面向行業產學研創新合作以及系統化知識體系建設和高價值人才培養,建設符合中國教學特色及人才需求的大數據相關學分課程,為未來建設特色專業方向做准備。
>>>>趨勢八:大數據在多方位改善我們的生活
大數據不僅用於企業和政府,也應用於我們的生活。在健康方面:我們可以利用智能手環監測,對我們的睡眠模式來進行追蹤,了解睡眠質量;我們可以利用智能血壓計、智能心率儀遠程的監控身在異地的家裡老人的健康情況,讓遠在他方的外出工作者更加放心;在出行方面:我們可以利用智能導航出行GPS數據了解交通狀況,並根據擁堵情況進行路線實時調優。在居家生活方面:大數據將成為智能家居的核心,智能家電實現了擬人智能,產品通過感測器和控制晶元來捕捉和處理信息,可以根據住宅空間環境和用戶需求自動設置控制,甚至提出優化生活質量的建議,如我們的冰箱可能會在每天一大早建議我們當天的菜譜。

8. 抓住大數據的歷史機遇

抓住大數據的歷史機遇

大數據正在創造新理論、新技術、新價值,帶來大機遇、大挑戰、大發展,在國家治理、社會發展、經濟科技創新中的引領作用日益凸顯,成為推進時代變革發展的重要切入點和增長點。加速大數據軍民深度融合發展,發揮大數據在後勤建設發展中的引領作用,是推進現代後勤「三大建設任務」面臨的重大時代課題。

互連——

加速構建後勤物聯網

互連是物理世界通往網路空間的第一步。有專家預測,隨著互連程度不斷加深,許多現在單純依靠人類判斷力的領域都會被計算機系統所改變甚至取代,各類決策行為將越來越取決於數據和分析,而不再是經驗和直覺。

近年來,軍人保障標識牌等後勤信息化工程得到快速推進,但由於互連范圍和層次還比較低,各類人員、物資和設施設備數據「感知不實時、採集不完整、上傳不連續」的問題較為普遍。應以軍人保障標識牌為核心,加大可穿戴智能設備研發力度,實現對官兵生理、心理等數據的實時採集。要依託北斗衛星定位、導航和通信技術,完善官兵個人終端通訊和指控功能,全面實現基於位置服務的官兵態勢的實時採集和接入。特別要加速推進物的互連,以嵌入式微系統運用為核心,構建軍民融合、軍地兼容的集物資識別、感知和數據上傳於一體的後勤物聯網,真正將大數據的理論技術和方法運用到後勤信息化建設中。

讓數據開放流動起來

互連解決了連接手段問題,在線卻能夠實現實時訪問。今年,國務院《關於積極推進「互聯網+」行動的指導意見》中,「在線」共出現19次,覆蓋面之廣、頻率之高十分罕見,這說明在線已經成為國家發展戰略,成為時代的鮮明特徵和總體趨勢。通過在線,數據被網路上的有權用戶和計算機訪問,數據規模和種類隨之增長,奠定了大數據的形成基礎。

後勤大數據建設過程中,在線意味著物理世界的人或物資、環境等與網路空間的「自我」是一一對應、實時互動的。而一般來講,後勤數據隨軍需、物資、油料等勤務活動的展開而產生,數據行業壁壘分明,這使得大數據的理念、技術和方法難以得到運用。筆者以為,破解在線難題的出路,一方面要以數據運用需求為牽引,將傳統「條」數據轉變為跨界的「塊」數據,讓數據開放流動起來,逐步建立願意在線、主動在線的後勤數據建設新思維,為後勤大數據技術運用創造條件;另一方面,要加快數據開放與在線技術瓶頸難題攻關,推進「碎片化」安全保密技術,豐富戰術互聯網路方式方法,為官兵在線、物資在線和環境在線創造良好的技術手段和條件。

使大數據價值倍增

數據從產生伊始便有明確的從屬性和清晰的「界」。如果說互連和實時在線催生壯大了大數據,那麼大數據身上天然的跨界基因則使各行各業的數據得以匯聚,使大數據的價值得以發現和倍增。

然而,後勤數據建設受傳統觀念、現實利益和技術羈絆的影響,目前尚難以實現跨界。軍事後勤大數據建設唯有打破利益之界、觀念之界,才有可能創造出全新的後勤保障模式。一方面要系統規劃數據應用服務體系,以作戰需求為牽引,堅持頂層設計,以指揮信息系統、軍事物流信息系統等綜合型系統部署運用為契機,體系化建構數據應用服務,在軍需、物資、油料、營房、衛勤等專業之間搭建數據流動橋梁,明確數據開放的責任與義務,強勢推進後勤數據共享開放,突破後勤各個勤務專業領域的行業之界、利益之界;另一方面要加速軍地兼容物聯網基礎設施建設,通過國民經濟動員、軍地物聯網等軍地深度融合的信息系統,在軍地關鍵基礎設施、主要保障物資和設備之間實現數據連通。

互連、在線和跨界,是大數據產生、發展到引發變革過程中由淺入深、依次遞進的3個成長階段,唯有實現互連、在線和跨界,後勤小數據才能匯成大數據、變成活數據,實現數字世界對物理、精神和觀念的全面映射和變革引領,從而抓住大數據帶來的機遇,推進軍事後勤信息化建設實現跨越式發展。

以上是小編為大家分享的關於抓住大數據的歷史機遇的相關內容,更多信息可以關注環球青藤分享更多干貨

閱讀全文

與大數據大機遇大挑戰相關的資料

熱點內容
ps文件里哪一個是卸載 瀏覽:312
linux怎麼知道被黑 瀏覽:161
diy需要什麼工具 瀏覽:941
java比較器的工作原理 瀏覽:490
文件上傳伺服器工具哪個好用 瀏覽:170
yy怎麼升級更快 瀏覽:846
人際溝通的工具是什麼 瀏覽:817
HTC手機s510可安裝微信嗎 瀏覽:650
聯想win10無法更新 瀏覽:825
在編程中驗證結果的目的是什麼 瀏覽:774
中興隱藏文件在哪裡 瀏覽:330
網路推廣簡歷個人獲獎情況怎麼寫 瀏覽:800
win10易升失敗 瀏覽:941
網路無法接收到伺服器怎麼辦 瀏覽:617
pic編程中tmp什麼意思 瀏覽:460
農業種植微信號 瀏覽:322
js如何插入數據 瀏覽:145
java訪問網站地址 瀏覽:680
微鯨電視文件在哪裡 瀏覽:558
qq紅包群拉人騙局揭秘 瀏覽:121

友情鏈接