導航:首頁 > 網路數據 > 金融大數據在銀行的應用實例

金融大數據在銀行的應用實例

發布時間:2023-03-03 22:58:00

『壹』 大數據和人工智慧在互聯網金融領域有哪些應用


數據從四個方面改變了金融機構傳統的數據運作方式,從而實現了巨大的商業價值。這四個方面(「四個C」)包括:數據質量的兼容性
(Compatibility)、數據運用的關聯性(Connectedness)、數據分析的成本(Cost)以及數據價值的轉化
(Capitalization)。


大數據在金融業的應用場景正在逐步拓展。在海外,大數據已經在金融行業的風險控制、運營管理、銷售支持和商業模式創新等領域得到了全面嘗試。在國內,金
融機構對大數據的應用還基本處於起步階段。數據整合和部門協調等關鍵環節的挑戰仍是阻礙金融機構將數據轉化為價值的主要瓶頸。


數據技術與數據經濟的發展是持續實現大數據價值的支撐。深度應用正在將傳統IT從「後端」不斷推向「前台」,而存量架構與創新模塊的有效整合是傳統金融
機構在技術層面所面臨的主要挑戰。此外,數據生態的發展演進有其顯著的社會特徵。作為其中的一員,金融機構在促進數據經濟的發展上任重道遠。

為了駕馭大數據,國內金融機構要在技術的基礎上著重引入以價值為導向的管理視角,最終形成自上而下的內嵌式變革。其中的三個關鍵點(「TMT」)包括:團隊(Team)、機制(Mechanism)和思維(Thinking)。

1.價值導向與內嵌式變革—BCG對大數據的理解

「讓數據發聲!」—隨著大數據時代的來臨,這個聲音正在變得日益響亮。為了在喧囂背後探尋本質,我們的討論將從大數據的定義開始。

1.1成就大數據的「第四個V」

大數據是什麼?在這個問題上,國內目前常用的是「3V」定義,即數量(Volume)、速度(Velocity)和種類(Variety)。


雖然有著這樣的定義,但人們從未停止討論什麼才是成就大數據的「關鍵節點」。人們熱議的焦點之一是「到底多大才算是大數據?」其實這個問題在「量」的層
面上並沒有絕對的標准,因為「量」的大小是相對於特定時期的技術處理和分析能力而言的。在上個世紀90年代,10GB的數據需要當時計算能力一流的計算機
處理幾個小時,而這個量現在只是一台普通智能手機存儲量的一半而已。在這個層面上頗具影響力的說法是,當「全量數據」取代了「樣本數據」時,人們就擁有了
大數據。


另外一個成為討論焦點的問題是,今天的海量數據都來源於何處。在商業環境中,企業過去最關注的是ERP(Enterprise Resource
Planning)和CRM(Customer Relationship
Management)系統中的數據。這些數據的共性在於,它們都是由一個機構有意識、有目的地收集到的數據,而且基本上都是結構化數據。隨著互聯網的深
入普及,特別是移動互聯網的爆發式增長,人機互動所產生的數據已經成為了另一個重要的數據來源,比如人們在互聯網世界中留下的各種「數據足跡」。但所有這
些都還不是構成「大量數據」的主體。機器之間交互處理時沉澱下來的數據才是使數據量級實現跨越式增長的主要原因。「物聯網」是當前人們將現實世界數據化的
最時髦的代名詞。海量的數據就是以這樣的方式源源不斷地產生和積累。

「3V」的定義專注於對數據本身的特徵進行描述。然而,是否是量級龐大、實時傳輸、格式多樣的數據就是大數據?

BCG認為,成就大數據的關鍵點在於「第四個V」,即價值(Value)。當量級龐大、實時傳輸、格式多樣的全量數據通過某種手段得到利用並創造出商業價值,而且能夠進一步推動商業模式的變革時,大數據才真正誕生。

1.2變革中的數據運作與數據推動的內嵌式變革

多元化格式的數據已呈海量爆發,人類分析、利用數據的能力也日益精進,我們已經能夠從大數據中創造出不同於傳統數據挖掘的價值。那麼,大數據帶來的「大價值」究竟是如何產生的?


無論是在金融企業還是非金融企業中,數據應用及業務創新的生命周期都包含五個階段:業務定義需求;IT部門獲取並整合數據;數據科學家構建並完善演算法與
模型;IT發布新洞察;業務應用並衡量洞察的實際成效。在今天的大數據環境下,生命周期仍維持原樣,而唯一變化的是「數據科學家」在生命周期中所扮演的角
色。大數據將允許其運用各種新的演算法與技術手段,幫助IT不斷挖掘新的關聯洞察,更好地滿足業務需求。


因此,BCG認為,大數據改變的並不是傳統數據的生命周期,而是具體的運作模式。在傳統的數據基礎和技術環境下,這樣的周期可能要經歷一年乃至更長的時
間。但是有了現在的數據量和技術,機構可能只需幾周甚至更短的時間就能走完這個生命周期。新的數據運作模式使快速、低成本的試錯成為可能。這樣,商業機構
就有條件關注過去由於種種原因而被忽略的大量「小機會」,並將這些「小機會」累積形成「大價值」。

具體而言,與傳統的數據應用相比,大數據在四個方面(「4C」)改變了傳統數據的運作模式,為機構帶來了新的價值。

1.2.1數據質量的兼容性(Compatibility):大數據通過「量」提升了數據分析對「質」的寬容度


在「小數據」時代,數據的獲取門檻相對較高,這就導致「樣本思維」占據統治地位。人們大多是通過抽樣和截取的方式來捕獲數據。同時,人們分析數據的手段
和能力也相對有限。為了保證分析結果的准確性,人們通常會有意識地收集可量化的、清潔的、准確的數據,對數據的「質」提出了很高的要求。而在大數據時代,
「全量思維」得到了用武之地,人們有條件去獲取多維度、全過程的數據。但在海量數據出現後,數據的清洗與驗證幾乎成為了不可能的事。正是這樣的困境催生了
數據應用的新視角與新方法。類似於分布式技術的新演算法使數據的「量」可以彌補「質」的不足,從而大大提升了數據分析對於數據質量的兼容能力。

1.2.2數據運用的關聯性(Connectedness):大數據使技術與演算法從「靜態」走向「持續」


在大數據時代,對「全量」的追求使「實時」變得異常重要,而這一點也不僅僅只體現在數據採集階段。在雲計算、流處理和內存分析等技術的支撐下,一系列新
的演算法使實時分析成為可能。人們還可以通過使用持續的增量數據來優化分析結果。在這些因素的共同作用下,人們一貫以來對「因果關系」的追求開始松動,而
「相關關系」正在逐步獲得一席之地。

1.2.3數據分析的成本(Cost):大數據降低了數據分析的成本門檻


大數據改變了數據處理資源稀缺的局面。過去,數據挖掘往往意味著不菲的投入。因此,企業希望能夠從數據中發掘出「大機會」,或是將有限的數據處理資源投
入到有可能產生大機會的「大客戶、大項目」中去,以此獲得健康的投入產出比。而在大數據時代,數據處理的成本不斷下降,數據中大量存在的「小機會」得見天
日。每個機會本身帶來的商業價值可能並不可觀,但是累積起來就會實現質的飛躍。所以,大數據往往並非意味著「大機會」,而是「大量機會」。

1.2.4數據價值的轉化(Capitalization):大數據實現了從數據到價值的高效轉化


在《互聯網金融生態系統2020:新動力、新格局、新戰略》報告中,我們探討了傳統金融機構在大變革時代所需採取的新戰略思考框架,即適應型戰略。採取
適應型戰略有助於企業構築以下五大優勢:試錯優勢、觸角優勢、組織優勢、系統優勢和社會優勢,而大數據將為金融機構建立這些優勢提供新的工具和動力。從數
據到價值的轉化與機構的整體轉型相輔相成,「內嵌式變革」由此而生。


例如,金融機構傳統做法中按部就班的長周期模式(從規劃、立項、收集數據到分析、試點、落地、總結)不再適用。快速試錯、寬進嚴出成為了實現大數據價值
的關鍵:以低成本的方式大量嘗試大數據中蘊藏的海量機會,一旦發現某些有價值的規律,馬上進行商業化推廣,否則果斷退出。此外,大數據為金融機構打造「觸
角優勢」提供了新的工具,使其能夠更加靈敏地感知商業環境,更加順暢地搭建反饋閉環。此外,數據的聚合與共享為金融機構搭建生態系統提供了新的場景與動
力。

2.應用場景與基礎設施—縱覽海內外金融機構的大數據發展實踐


金融行業在發展大數據能力方面具有天然優勢:受行業特性影響,金融機構在開展業務的過程中積累了海量的高價值數據,其中包括客戶身份、資產負債情況、資
金收付交易等數據。以銀行業為例,其數據強度高踞各行業之首—銀行業每創收100萬美元,平均就會產生820GB的數據。

2.1大數據的金融應用場景正在逐步拓展

大數據發出的聲音已經在金融行業全面響起。作為行業中的「巨無霸」,銀行業與保險業對大數據的應用尤其可圈可點。

2.1.1海外實踐:全面嘗試

2.1.1.1銀行是金融行業中發展大數據能力的「領軍者」


在發展大數據能力方面,銀行業堪稱是「領軍者」。縱觀銀行業的六個主要業務板塊(零售銀行、公司銀行、資本市場、交易銀行、資產管理、財富管理),每個
業務板塊都可以藉助大數據來更深入地了解客戶,並為其制定更具針對性的價值主張,同時提升風險管理能力。其中,大數據在零售銀行和交易銀行業務板塊中的應
用潛力尤為可觀。


BCG通過研究發現,海外銀行在大數據能力的發展方面基本處於三個階段:大約三分之一的銀行還處在思考大數據、理解大數據、制定大數據戰略及實施路徑的
起點階段。還有三分之一的銀行向前發展到了嘗試階段,也就是按照規劃出的路徑和方案,通過試點項目進行測驗,甄選出許多有價值的小機會,並且不停地進行試
錯和調整。而另外三分之一左右的銀行則已經跨越了嘗試階段。基於多年的試錯經驗,他們已經識別出幾個較大的機會,並且已經成功地將這些機會轉化為可持續的
商業價值。而且這些銀行已經將匹配大數據的工作方式嵌入到組織當中。他們正在成熟運用先進的分析手段,並且不斷獲得新的商業洞察。


銀行業應用舉例1:將大數據技術應用到信貸風險控制領域。在美國,一家互聯網信用評估機構已成為多家銀行在個人信貸風險評估方面的好幫手。該機構通過分
析客戶在各個社交平台(如Facebook和Twitter)留下的數據,對銀行的信貸申請客戶進行風險評估,並將結果賣給銀行。銀行將這家機構的評估結
果與內部評估相結合,從而形成更完善更准確的違約評估。這樣的做法既幫助銀行降低了風險成本,同時也為銀行帶來了風險定價方面的競爭優勢。


相較於零售銀行業務,公司銀行業務對大數據的應用似乎缺乏亮點。但實際上,大數據在公司銀行業務的風險領域正在發揮著前所未有的作用。在傳統方法中,銀
行對企業客戶的違約風險評估多是基於過往的營業數據和信用信息。這種方式的最大弊端就是缺少前瞻性,因為影響企業違約的重要因素並不僅僅只是企業自身的經
營狀況,還包括行業的整體發展狀況,正所謂「覆巢之下,焉有完卵」。但要進行這樣的分析往往需要大量的資源投入,因此在數據處理資源稀缺的環境下無法得到
廣泛應用,而大數據手段則大幅減少了此類分析對資源的需求。西班牙一家大型銀行正是利用大數據來為企業客戶提供全面深入的信用風險分析。該行首先識別出影
響行業發展的主要因素,然後對這些因素一一進行模擬,以測試各種事件對其客戶業務發展的潛在影響,並綜合評判每個企業客戶的違約風險。這樣的做法不僅成本
低,而且對風險評估的速度快,同時顯著提升了評估的准確性。


銀行業應用舉例2:用大數據為客戶制定差異化產品和營銷方案。在零售銀行業務中,通過數據分析來判斷客戶行為並匹配營銷手段並不是一件新鮮事。但大數據
為精準營銷提供了廣闊的創新空間。例如,海外銀行開始圍繞客戶的「人生大事」進行交叉銷售。這些銀行對客戶的交易數據進行分析,由此推算出客戶經歷「人生
大事」的大致節點。人生中的這些重要時刻往往能夠激發客戶對高價值金融產品的購買意願。一家澳大利亞銀行通過大數據分析發現,家中即將有嬰兒誕生的客戶對
壽險產品的潛在需求最大。通過對客戶的銀行卡交易數據進行分析,銀行很容易識別出即將添丁的家庭:在這樣的家庭中,准媽媽會開始購買某些葯品,而嬰兒相關
產品的消費會不斷出現。該行面向這一人群推出定製化的營銷活動,獲得了客戶的積極響應,從而大幅提高了交叉銷售的成功率。


客戶細分早已在銀行業得到廣泛應用,但細分維度往往大同小異,包括收入水平、年齡、職業等等。自從開始嘗試大數據手段之後,銀行的客戶細分維度出現了突
破。例如,西班牙的一家銀行從Facebook和Twitter等社交平台上直接抓取數據來分析客戶的業余愛好。該行把客戶細分為常旅客、足球愛好者、高
爾夫愛好者等類別。通過分析,該行發現高爾夫球愛好者對銀行的利潤度貢獻最高,而足球愛好者對銀行的忠誠度最高。此外,通過分析,該行還發現了另外一個小
客群:「敗家族」,即財富水平不高、但消費行為奢侈的人群。這個客群由於人數不多,而且當前的財富水平尚未超越貴賓客戶的門檻,因此往往被銀行所忽略。但
分析顯示這一人群能夠為銀行帶來可觀的利潤,而且頗具成長潛力,因此該行決定將這些客戶升級為貴賓客戶,深入挖掘其潛在價值。


在對公業務中,銀行同樣可以藉助大數據形成更有價值的客戶細分。例如,在BCG與一家加拿大銀行的合作項目中,項目組利用大數據分析技術將所有公司客戶
按照行業和企業規模進行細分,一共建立了上百個細分客戶群。不難想像,如果沒有大數據的支持,這樣深入的細分是很難實現的。然後,項目組在每個細分群中找
出標桿企業,分析其銀行產品組合,並將該細分群中其他客戶的銀行產品組合與標桿企業進行比對,從而識別出差距和潛在的營銷機會。項目組將這些分析結果與該
行的對公客戶經理進行分享,幫助他們利用這些發現來制定更具針對性的銷售計劃和話術,並取得了良好的效果。客戶對這種新的銷售方式也十分歡迎,因為他們可
以從中了解到同行的財務狀況和金融安排,有助於對自身的行業地位與發展空間進行判斷。


銀行業應用舉例3:用大數據為優化銀行運營提供決策基礎。大數據不僅能在前台與中台大顯身手,也能惠及後台運營領域。在互聯網金融風生水起的當
下,「O2O」(OnlineToOffline)成為了銀行的熱點話題。哪些客戶適合線上渠道?哪些客戶不願「觸網」?BCG曾幫助西班牙一家銀行通過
大數據技術應用對這些問題進行了解答。項目組對16個既可以在網點也可以在網路與移動渠道上完成的關鍵運營活動展開分析,建立了12個月的時間回溯深度,
把客戶群體和運營活動按照網點使用強度以及非網點渠道使用潛力進行細分。分析結果顯示,大約66%的交易活動對網點的使用強度較高,但同時對非網點渠道的
使用潛力也很高,因此可以從網點遷移到網路或移動渠道。項目組在客戶細分中發現,年輕客戶、老年客戶以及高端客戶在運營活動遷移方面潛力最大,可以優先作
為渠道遷徙的對象。通過這樣的運營調整,大數據幫助銀行在引導客戶轉移、減輕網點壓力的同時保障了客戶體驗。


BCG還曾利用專有的大數據分析工具NetworkMax,幫助一家澳大利亞銀行優化網點布局。雖然銀行客戶的線上活動日漸增多,但金融業的鐵律在互聯
網時代依然適用,也就是說在客戶身邊設立實體網點仍然是金融機構的競爭優勢。然而,網點的運營成本往往不菲,如何實現網點資源的價值最大化成為了每家銀行
面臨的問題。在該項目中,項目組結合銀行的內部數據(包括現有的網點分布和業績狀況等)和外部數據(如各個地區的人口數量、人口結構、收入水平等),對
350多個區域進行了評估,並按照主要產品系列為每個區域制定市場份額預測。項目組還通過對市場份額的驅動因素進行模擬,得出在現有網點數量不變的情況下
該行網點的理想布局圖。該行根據項目組的建議對網點布局進行了調整,並取得了良好的成效。這個案例可以為許多銀行帶來啟示:首先,銀行十分清楚自身的網點
布局,有關網點的經營業績和地址的信息全量存在於銀行的資料庫中。其次,有關一個地區的人口數量、人口結構、收入水平等數據都是可以公開獲取的數據。通過
應用大數據技術來把這兩組數據結合在一起,就可以幫助銀行實現網點布局的優化。BCG基於大數據技術而研發的Network
Max正是用來解決類似問題的工具。


銀行業應用舉例4:創新商業模式,用大數據拓展中間收入。過去,坐擁海量數據的銀行考慮的是如何使用數據來服務其核心業務。而如今,很多銀行已經走得更
遠。他們開始考慮如何把數據直接變成新產品並用來實現商業模式,進而直接創造收入。例如,澳大利亞一家大型銀行通過分析支付數據來了解其零售客戶的「消費
路徑」,即客戶進行日常消費時的典型順序,包括客戶的購物地點、購買內容和購物順序,並對其中的關聯進行分析。該銀行將這些分析結果銷售給公司客戶(比如
零售業客戶),幫助客戶更准確地判斷合適的產品廣告投放地點以及適合在該地點進行推廣的產品。這些公司客戶過去往往需要花費大量金錢向市場調研公司購買此
類數據,但如今他們可以花少得多的錢向自己的銀行購買這些分析結果,而且銀行所提供的此類數據也要可靠得多。銀行通過這種方式獲得了傳統業務之外的收入。
更重要的是,銀行通過這樣的創新為客戶提供了增值服務,從而大大增強了客戶粘性。

『貳』 大數據金融的選擇和判斷

大數據金融的選擇和判斷主要用於提供信息推算和,數據篩查。
金融行業是典型的數據驅動行業,每天都會產生大量的數據,包括交易、報價、業績報告、消費者研究報告、各類統計數據、各種指數等。所以擁有豐富的數據,數據維度比較廣泛,數據質量也很高,可以進一步加快數據價值的變現。大數據在金融行業的應用范圍較廣,典型的案例有花旗銀行利用 IBM 沃森電腦為財富管理客戶推薦產品,並預測未來計算機推薦理財的市場將超過銀行專業理財師;摩根大通銀行利用決策樹技術,降低了不良貸款率,轉化了提前還款客戶,一年為摩根大通銀行增加了 6 億美金的利潤。

『叄』 大數據技術在金融行業中的典型應用

大數據技術在金融行業中的典型應用
近年來,我國金融科技快速發展,在多個領域已經走在世界前列。大數據、人工智慧、雲計算、移動互聯網等技術與金融業務深度融合,大大推動了我國金融業轉型升級,助力金融更好地服務實體經濟,有效促進了金融業整體發展。在這一發展過程中,又以大數據技術發展最為成熟、應用最為廣泛。從發展特點和趨勢來看,「金融雲」快速建設落地奠定了金融大數據的應用基礎,金融數據與其他跨領域數據的融合應用不斷強化,人工智慧正在成為金融大數據應用的新方向,金融行業數據的整合、共享和開放正在成為趨勢,給金融行業帶來了新的發展機遇和巨大的發展動力。
大數據在金融行業的典型應用場景
大數據涉及的行業過於廣泛,除金融外,還包括政治、教育、傳媒、醫學、商業、工農業、互聯網等多個方面,各行業對大數據的定義目前尚未統一。大數據的特點可歸納為「4V」。第一,數據體量大(Volume),海量性也許是與大數據最相關的特徵。第二,數據類型繁多(Variety),大數據既包括以事務為代表的傳統結構化數據,還包括以網頁為代表的半結構化數據和以視頻、語音信息為代表的非結構化數據。第三,價值密度低(Value),大數據的體量巨大,但數據中的價值密度卻很低。比如幾個小時甚至幾天的監控視頻中,有價值的線索或許只有幾秒鍾。第四,處理速度快(Velocity),大數據要求快速處理,時效性強,要進行實時或准實時的處理。
金融行業一直較為重視大數據技術的發展。相比常規商業分析手段,大數據可以使業務決策具有前瞻性,讓企業戰略的制定過程更加理性化,實現生產資源優化分配,依據市場變化迅速調整業務策略,提高用戶體驗以及資金周轉率,降低庫存積壓的風險,從而獲取更高的利潤。
當前,大數據在金融行業典型的應用場景有以下幾個方面:
在銀行業的應用主要表現在兩個方面:一是信貸風險評估。以往銀行對企業客戶的違約風險評估多基於過往的信貸數據和交易數據等靜態數據,內外部數據資源整合後的大數據可提供前瞻性預測。二是供應鏈金融。利用大數據技術,銀行可以根據企業之間的投資、控股、借貸、擔保及股東和法人之間的關系,形成企業之間的關系圖譜,利於企業分析及風險控制。
在證券行業的應用主要表現為:一是股市行情預測。大數據可以有效拓寬證券企業量化投資數據維度,幫助企業更精準地了解市場行情,通過構建更多元的量化因子,投研模型會更加完善。二是股價預測。大數據技術通過收集並分析社交網路如微博、朋友圈、專業論壇等渠道上的結構化和非結構化數據,形成市場主觀判斷因素和投資者情緒打分,從而量化股價中人為因素的變化預期。三是智能投資顧問。智能投資顧問業務提供線上投資顧問服務,其基於客戶的風險偏好、交易行為等個性化數據,依靠大數據量化模型,為客戶提供低門檻、低費率的個性化財富管理方案。
在互聯網金融行業的應用,一是精準營銷。大數據通過用戶多維度畫像,對客戶偏好進行分類篩選,從而達到精準營銷的目的。二是消費信貸。基於大數據的自動評分模型、自動審批系統和催收系統可降低消費信貸業務違約風險。
金融大數據的典型案例分析
為實時接收電子渠道交易數據,整合銀行內系統業務數據。中國交通銀行通過規則欲實現快速建模、實時告警與在線智能監控報表等功能,以達到實時接收官網業務數據,整合客戶信息、設備畫像、位置信息、官網交易日誌、瀏覽記錄等數據的目的。
該系統通過為交通銀行卡中心構建反作弊模型、實時計算、實時決策系統,幫助擁有海量歷史數據,日均增長超過兩千萬條日誌流水的銀行卡中心,形成電子渠道實時反欺詐交易監控能力。利用分布式實時數據採集技術和實時決策引擎,幫助信用卡中心高效整合多系統業務數據,處理海量高並發線上行為數據,識別惡意用戶和欺詐行為,並實時預警和處置;通過引入機器學習框架,對少量數據進行分析、挖掘構建並周期性更新反欺詐規則和反欺詐模型。
系統上線後,該銀行迅速監控電子渠道產生的虛假賬號、偽裝賬號、異常登錄、頻繁登錄等新型風險和欺詐行為;系統穩定運行,日均處理逾兩千萬條日誌流水、實時識別出近萬筆風險行為並進行預警。數據接入、計算報警、案件調查的整體處理時間從數小時降低至秒級,監測時效提升近3000倍,上線3個月已幫助卡中心挽回數百萬元的風險損失。
網路的搜索技術正在全面注入網路金融。網路金融使用的梯度增強決策樹演算法可以分析大數據高維特點,在知識分析、匯總、聚合、提煉等多個方面有其獨到之處,其深度學習能力利用數據挖掘演算法能夠較好地解決大數據價值密度低等問題。網路「磐石」系統基於每日100億次搜索行為,通過200多個維度為8.6億賬號精確畫像,高效劃分人群,能夠為銀行、互聯網金融機構提供身份識別、反欺詐、信息檢驗、信用分級等服務。該系統累計為網路內部信貸業務攔截數十萬欺詐用戶,攔截數十億不良資產、減少數百萬人力成本,累計合作近500家社會金融機構,幫助其提升了整體風險防控水平。
金融大數據應用面臨的挑戰及對策
大數據技術為金融行業帶來了裂變式的創新活力,其應用潛力有目共睹,但在數據應用管理、業務場景融合、標准統一、頂層設計等方面存在的瓶頸也有待突破。
一是數據資產管理水平仍待提高。主要體現在數據質量不高、獲取方式單一、數據系統分散等方面。
二是應用技術和業務探索仍需突破。主要體現在金融機構原有的數據系統架構相對復雜,涉及的系統平台和供應商較多,實現大數據應用的技術改造難度很大。同時,金融行業的大數據分析應用模型仍處於起步階段,成熟案例和解決方案仍相對較少,需要投入大量的時間和成本進行調研和試錯。系統誤判率相對較高。
三是行業標准和安全規范仍待完善。金融大數據缺乏統一的存儲管理標准和互通共享平台,對個人隱私的保護上還未形成可信的安全機制。
四是頂層設計和扶持政策還需強化。體現在金融機構間的數據壁壘較為明顯,各自為戰問題突出,缺乏有效的整合協同。同時,行業應用缺乏整體性規劃,分散、臨時、應激等特點突出,信息價值開發仍有較大潛力。
以上問題,一方面需要國家出台促進金融大數據發展的產業規劃和扶持政策,同時,也需要行業分階段推動金融數據開放、共享和統一平台建設,強化行業標准和安全規范。只有這樣,大數據技術才能在金融行業中穩步應用發展,不斷推動金融行業的發展提升。

『肆』 金融大數據平台應該如何搭建及應用是否有金融案例可以借鑒的

金融大數據平台的搭建和應用是兩個部分,對於金融大數據平台來說,這兩個部分都很重要。所以以下的部分我們從大數據平台和銀行可以分析哪些指標這兩個角度來闡述。

一、大數據平台

大數據平台的整體架構可以由以下幾個部分組成:

1.一個客戶

客戶主題:客戶屬性(客戶編號、客戶類別)、指標(資產總額、持有產品、交易筆數、交易金額、RFM)、簽約(渠道簽約、業務簽約)組成寬表

2.做了一筆交易

交易主題:交易金融屬性、業務類別、支付通道組成寬表。

3.使用哪個賬戶

賬戶主題:賬戶屬性(所屬客戶、開戶日期、所屬分行、產品、利率、成本)組成寬表

4.通過什麼渠道

渠道主題:

渠道屬性、維度、限額組成寬表

5.涉及哪類業務&產品

產品主題:產品屬性、維度、指標組成寬表

三、案例

鑒於篇幅問題,此處可以參考這篇文章:

華夏銀行:大數據技術服務業務需求,實現銷售高速增長

『伍』 大數據在銀行業的應用與實踐

大數據在銀行業的應用

一、輿情分析

對於銀行來說,輿情分析包括:銀行的聲譽分析、品牌分析和客戶質量分析。它主要是通過分析網路社交媒體的評論,對於客戶的流失情況進行預警,還可以通過對新聞熱點的跟蹤以及政府報道的分析,為銀行提供個性化的分析場所。

二、客戶信用評級

銀行可以通過手機客戶申請信用卡的數據,分析客戶的信用程度,從而幫助業務人員做出相應的決策。

三、客戶與市場洞察

銀行可以通過跟蹤社交媒體的評論信息,利用各種非結構化數據,對客戶進行細分,改進客戶的流失情況。這是銀行對於市場的趨勢分析。

四、運營優化

銀行通過大數據平台對各種歷史數據進行保存和管理,同時可以對系統日誌進行維護、預測系統故障,從而提升系統的運營效率。

五、風險與欺詐分析

主要包括財務風險分析、貸款風險分析、各種反洗錢和欺詐調查和實時欺詐分析等內容。所謂財務風險分析是分析信用風險和市場風險產生的數據;貸款風險分析是從媒體或者社會公眾信息中提取企業客戶和潛在客戶的信息。提高對於風險的預測能力和預警能力;反洗錢與欺詐調查是提取犯罪記錄的信息;實時欺詐分析則是對大量的欺詐數據進行分析。

銀行數據架構規劃

隨著銀行業務的擴展,可以對數據進行架構規劃。大數據的數據架構規劃可以採用Hadoop技術,即通過與節後或數據進行關聯,進一步拓展對非結構化數據的處理。其數據源包括結構化數據、半結構化數據和非結構化數據。半結構化數據和非結構化數據通過網路爬蟲的方式來搜集,再經過內容管理處理,將數據進行結構化處理,然後可以將內容管理處理得出的數據信息存放到基礎數據存儲中。這是基於HDFS存放的非結構化數據。

大數據為銀行創造的價值

當銀行客戶與銀行產生交易,會產生大量的數據,這些數據具有大量的業務價值,為銀行進行有針對性的營銷創造了機會。

在大部分的應用中,隨著數據量指數級的增長,特別是一些非結構化數據的快速增長,大量的數據導致分析時間增長,傳統的商業智能已經無法滿足需求,阻礙了業務的發展,以FineBI為代表的新型BI的涌現,無論在數據處理量和速度上都相比傳統BI有突破性的進步。

在很長的一段時間內,銀行的大部分業務是建立在客戶和銀行的交易過程中的,但是為了能更好地為客戶服務,光靠依賴這些數據是不夠的。隨著技術的進步,銀行可以通過很多途徑來搜集客戶的資料。從而進行有針對性的營銷。

隨著互聯網技術的發展,客戶可以通過電子渠道對銀行業務發表看法或者購買銀行產品。這些操作都是為增強對於客戶的了解,降低信息的不對稱性。

目前來說,在利率市場化的趨勢下,存款的穩定性降低,存貸款的利差收窄,數據分析已經逐漸成為銀行實現核心業務價值的重要手段。金融脫媒會導致大量客戶的流失和客戶忠誠度的降低。銀行作為「支付中介」的地位開始動搖,客戶對於銀行服務的要求越來越高。

在這種情況下,銀行需要通過大數據深入全名了解客戶的基本信息,提升業務運行的效率,逐步提高客戶的體驗。通過對大數據的加工以及挖掘,可能為銀行帶來極大的效益,特別是商業銀行。

對於銀行來說,風險管控和用戶營銷是未來最重要的兩個方向。而對客戶的信用評分是實現這兩個方向的重要條件之一。信用評分是根據申請人的申請信息和證明材料,幫助業務員作出決策,降低壞賬率。

比如:我們可以根據大數據的分析和查詢,有針對性地為客戶提供理財產品建議和提醒,同時通過對大數據的分析和挖掘,來評估客戶的信用風險和資金償還能力,降低了銀行的各種風險。

『陸』 [恆豐銀行]基於大數據的精準營銷模型應用

【案例】恆豐銀行——基於大數據的精準營銷模型應用 https://mp.weixin.qq.com/s?src=3&timestamp=1500159788&ver=1&signature=-86itFcexY XKcX3Vb1ypwGo8v0IU6fkNgcs *=

本篇案例為數據猿推出的大型 「金融大數據主題策劃」 活動 (查看詳情) 第一部分的系列案例/徵文;感謝** 恆豐銀行** 的投遞

作為整體活動的第二部分,2017年6月29日,由數據猿主辦,上海金融信息行業協會、互聯網普惠金融研究院合辦,中國信息通信研究院、大數據發展促進委員會、上海大數據聯盟、首席數據官聯盟、中國大數據技術與應用聯盟協辦的 《「數據猿·超聲波」之金融科技·商業價值探索高峰論壇》 還將在上海隆重舉辦 【論壇詳情】 【上屆回顧(點擊閱讀原文查看)】

在論壇現場,也將頒發 「技術創新獎」、「應用創新獎」、「最佳實踐獎」、「優秀案例獎」 四大類案例獎

本文長度為 6000 字,建議閱讀 12 分鍾

如今,商業銀行信息化的迅速發展,產生了大量的業務數據、中間數據和非結構化數據,大數據隨之興起。要從這些海量數據中提取出有價值的信息,為商業銀行的各類決策提供參考和服務,需要結合大數據和人工智慧技術。國外的匯豐、花旗和瑞士銀行是數據挖掘技術應用的先行者。在國內的商業銀行中,大數據的思想和技術逐步開始在業務中獲得實踐和嘗試。

面對日趨激烈的行業內部競爭及互聯網金融帶來的沖擊,傳統的上門營銷、電話營銷,甚至是掃街營銷等方式跟不上時代的節奏。利用精準營銷可節約大量的人力物力、提高營銷精準程度,並減少業務環節,無形中為商業銀行節約了大量的營銷成本。

雖然恆豐銀行內部擁有客戶的基本信息和交易等大量數據,但是傳統的營銷系統並沒有挖掘出行內大量數據的價值,仍然停留在傳統的規則模型。當下,恆豐銀行接入了大量的外部數據,有著更多的維度,如果將內部數據與外部數據進行交叉,則能產生更大的價值。客戶信息收集越全面、完整,數據分析得到的結論就越趨向於合理和客觀。利用人工智慧技術,建立精準營銷系統變得可能且必要。

恆豐銀行基於大數據的精準營銷方案是利用大數據平台上的機器學習模型深入洞察客戶行為、客戶需求,客戶偏好,挖掘潛出在客戶,實現可持續的營銷計劃。

周期/節奏

2016.4-2016.5 完成需求梳理和業務調研,並在此基礎上進行總體方案設計。
2016.5-2016.8 整理銀行內、外部數據,根據營銷需求制定客戶標簽和設計文檔,實施用戶畫像。
2016.8-2016.10 在用戶畫像的基礎上,構建理財產品個性化推薦系統。其中包括個性化推薦演算法調研,模型對比等一系列工作。
2016.10-2017.1 客戶需求預測並對客戶價值進行建模,並完善整合精準營銷應用模型。
2017.1-2017.3 用戶畫像、個性化推薦、客戶價值預測等精準營銷模型上線。

客戶名稱/所屬分類

恆豐銀行/客戶管理

任務/目標

根據零售業務營銷要求,運用多種數據源分析客戶行為洞察客戶需求,實現精準營銷與服務,提高銀行客戶滿意度和忠誠度。

針對不同的客戶特徵、產品特徵和渠道特徵,制定不同市場推廣策略。為了完成以上任務,主要從以下幾個方面構建精準營銷系統:

1.用戶畫像: 結合用戶的歷史行為和基本屬性給用戶打標簽。

2.精準推薦系統: 給用戶推薦個性化理財產品, 例如在微信銀行中給每個客戶推薦他喜歡的產品,幫客戶找到其最適合的產品,增加產品的購買率。

3.需求預測和客戶價值: 新產品發售的時候,找到最有可能購買該產品的客戶,進行簡訊營銷,進而提高產品響應率。客戶價值精準定位,根據客戶價值水平制定不同的推薦策略。銀行通過計算客戶使用其產品與服務後所形成的實際業務收益,充分了解每一個客戶的貢獻度,為管理層提供決策支撐。

挑戰

項目實施過程由用戶畫像,精準推薦系統,需求預測和客戶價值建模三部分組成,採用TDH機器學習平台Discover所提供的演算法和模型庫進行開發和驗證。

(一)用戶畫像的建立

客戶標簽主要包含客戶基本屬性,客戶等級標簽,客戶偏好標簽,客戶交易特徵,客戶流失特徵,客戶信用特徵,客戶終身價值標簽,客戶潛在需求標簽。

(二)精準推薦系統的建立

由於系統復雜,且篇幅有限,僅對其中最重要的理財推薦系統做詳細闡述。精準推薦系統架構圖如下。

2.1業務問題轉化為機器學習問題

業務問題

銀行理財產品個性化推薦給客戶。 例如在微信銀行中給每個客戶推薦此客戶喜歡的產品,幫客戶找到其最適合的產品,增加產品的購買率。

將業務問題轉化為機器學習問題

理財產品種類繁多,產品迭代速度很快,客戶在繁多的產品中不能快速找到適合自己的產品,因此有必要建立一個自動化推薦模型,建立客戶理財偏好,給客戶推薦最適合的產品。

將銀行理財產品推薦業務問題轉化為機器學習問題,進而利用人工智慧技術提高推薦產品的點擊率和購買率。例如在恰當的時間,通過用戶偏好的渠道給用戶推薦產品,推薦的結果為用戶購買或者未購買。這個問題可以看作一個典型機器學習二分類問題:基於歷史營銷數據來訓練模型,讓模型自動學到客戶購買的產品偏好,並預測客戶下次購買理財產品的概率。對模型預測出所有客戶對所有產品的響應概率進行排序,可選擇客戶購買概率最高的topN個產品推薦給客戶。

下面將敘述如何構建該推薦預測模型。

2.2數據源准備

在建立的一個理財推薦模型之前,可以預見到相似的客戶可能會喜好相似的產品(需要表徵客戶和產品的數據),同一個人的喜好可能具有連續性(購買歷史交易數據,包括基金國債等),他的存款、貸款資金可能決定了他能購買什麼檔次的理財等等。因此,我們需要准備以下數據。

客戶基本屬性:客戶性別,年齡,開戶時間,評估的風險等級等等。
產品基本屬性:產品的逾期收益率,產品周期,保本非保本,風險等級等。
客戶購買理財產品的歷史:在什麼時候購買什麼產品以及購買的金額。
客戶的存款歷史: 客戶歷史存款日均余額等。
客戶的貸款歷史: 客戶歷史貸款信息等。
客戶工資:客戶工資的多少也決定了客戶購買理財的額度和偏好。
用戶畫像提取的特徵:用戶的AUM等級,貢獻度,之前購買基金,國債的金額等。

2.3特徵轉換和抽取

有了這么多數據,但是有一部分特徵是演算法不能直接處理的,還有一部分數據是演算法不能直接利用的。

特徵轉換

把不能處理的特徵做一些轉換,處理成演算法容易處理的干凈特徵。舉例如下:

開戶日期。就時間屬性本身來說,對模型來說不具有任何意義,需要把開戶日期轉變成到購買理財時的時間間隔。

產品特徵。從理財產品信息表裡面可以得到風險等級,起點金額等。但是並沒有標志這款產品是否是新手專屬,是否是忠誠客戶專屬。這就需要我們從產品名字抽取這款產品的上述特徵。

客戶交易的時間信息。同客戶的開戶日期,孤立時間點的交易信息不具有任何意義,我們可以把交易時間轉變為距離上次購買的時間間隔。

特徵抽取

還有一部分數據演算法不能直接利用,例如客戶存款信息,客戶交易信息。我們需用從理財交易和存款表中抽取可能有用的信息。

用戶存款信息:根據我們的經驗,客戶購買理財之前的存款變動信息更能表明客戶購買理財的真實想法,因此我們需要從客戶歷史存款數據抽取客戶近三個月,近一個月,近一周的日均余額,以體現客戶存款變化。

客戶交易信息:客戶最近一次購買的產品、購買的金額、及其相關屬性,最近一個月購買的產品、購買的金額及其相關屬性等等。

以上例舉的只是部分特徵。

2.4構造、劃分訓練和測試集

構造

以上說明了如何抽取客戶購買理財的相關特徵,只是針對正樣本的,即客戶購買某種理財時候的特徵。隱藏著的信息是,此客戶當時沒有購買其他在發售的產品。假設把客戶購買了產品的標簽設為1,沒有購買的產品樣本設為0,我們大致有如下訓練樣本(只列舉部分特徵)。

其中客戶是否購買產品是我們在有監督訓練的標簽,也就是我們建立的是一個預測客戶是否會購買產的模型。

劃分訓練集和測試集

考慮到最終模型會預測將來的某時間客戶購買某種產品的概率,為了更真實的測試模型效果,以時間來切分訓練集和測試集。具體做法如下。假設我們有2016-09-01 ~ 2017-03-20 的理財購買相關數據。以2016-09-01 ~ 2017-03-19的理財交易數據作為訓練,2017-03-20這一天的客戶對每個產品是否購買的數據作為測試。以2016-09-01 ~ 2017-03-18的理財交易數據作為訓練,2017-03-19這一天的客戶對每個產品是否購買的數據作為測試,以此類推。

2.5模型訓練

根據提取的特徵,組成樣本寬表,輸入到分類模型,這里選擇了TDH平台機器學習組件Discover所提供的近百個分布式演算法進行建模和訓練,同時我們還使用了特徵的高階交叉特性進行推薦的預測和分析。

2.6模型評估

評價推薦好壞的指標很多,比較常用的有

1.ROC曲線下面積(AUC)
2.logloss
3.推薦產品第一次命中rank的倒數(MRR)
4.TopN

針對銀行的理財推薦實際業務,客戶當天絕大多數是只購買了某一款理財,MRR(Mean Average Precision 的特殊情況)能反應這種情況下推薦的好壞。另一種直觀的評價指標是TopN,假定我們只推薦N個模型認為客戶最有可能購買的產品,並和真實情況比較,就能得到當天推薦的結果的混淆矩陣,TN,TP,FN,FP,recall,precision等。

我們在生產上驗證了最近十天的推薦效果,即測試了2017-03-20, 2017-03-19,…… , 2017-03-11等十天的推薦效果,以下是這些結果的評價。

AUC

Logloss

MRR

0.89

0.45

0.78

也可以把新客戶(之前沒有購買理財)和老客戶(至少購買過一次)分開評估效果。 新客戶的購買佔了整個理財購買的1/3 以上。

測試新客戶的預測效果,可以看出模型對冷啟動問題解決的好壞。

對新客戶的預測效果

AUC

Logloss

MRR

0.80

0.73

0.32

對老客戶的預測效果

AUC

Logloss

MRR

0.92

0.38

0.88

2.7模型優化

1.上線之前的優化:特徵提取,樣本抽樣,參數調參
2.上線之後的迭代,根據實際的A/B testing和業務人員的建議改進模型

(三)需求預測和客戶價值

「顧客終生價值」(Customer Lifetime Value)指的是每個購買者在未來可能為企業帶來的收益總和。研究表明,如同某種產品一樣,顧客對於企業利潤的貢獻也可以分為導入期、快速增長期、成熟期和衰退期。

經典的客戶終身價值建模的模型基於客戶RFM模型。模型簡單的把客戶劃分為幾個狀態,有一定意義但不一定準確,畢竟RFM模型用到的特徵不全面,不能很好的表徵客戶的價值以及客戶銀行關系管理。

為了方便的對客戶終身價值建模,有幾個假定條件。其一把客戶的購買價值近似為客戶為企業帶來的總收益,其二把未來時間定義在未來一個季度、半年或者一年。也就是我們通過預測客戶在下一個時間段內的購買價值來定義客戶的終身價值。因此,我們將預測的問題分為兩個步驟:第一步預測這個客戶在下一個階段是否會發生購買(需求預測)。第二步對預測有購買行為的客戶繼續建模預測會購買多大產品價值。

3.1需求預測

提取客戶定活期存款、pos機刷卡、渠道端查詢歷史等特徵,以這些特徵作為輸入預測用戶在當前時間節點是否有購買需求,訓練和測試樣本構造如下:

1.歷史用戶購買記錄作為正樣本。
2.抽樣一部分從未購買的理財產品的用戶作為負樣本集合Un,對於每一個正樣本Un中隨機選取一個用戶構造負樣本。
3.選取2016.04-201610 的購買數據作為訓練樣本,2016.11的數據作為測試樣本。

使用機器學習演算法進行分類訓練和預測,重復上述實驗,得到下列結果:

AUC: 0.930451274
precision: 0.8993963783
recall: 0.8357507082
fmeasure: 0.8664062729

進一步對客戶分群之後,可以更好的對新客戶進行建模,對於老客戶我們可以進一步提取他們的歷史購買特徵,預測他們在下一段時間內購買的產品價值(數量,金額等),對於新客戶,可以進根據他的存款量預測其第一次購買的產品價值,把存款客戶變成理財客戶。通過分析客戶存款變動於客戶購買理財的關系,我們發現客戶購買理財的前一段時間內定活期的增加的有不同的模式,如下圖。

根據需求預測模型,我們給出新客戶最有可能購買的top N 列表,然後由業務人員進行市場推廣。

3.2客戶價值預測

進一步預測有購買需求的客戶的購買價值高低。這是個回歸問題,但是預測變數從二分類變數變為預測連續的金額值。訓練的時候預測值取訓練周期內(一個月或者季度)客戶所購買的總金額。

算出客戶的當前價值(即當前階段購買的產品價值)和未來價值(預測的下一個階段的客戶價值)可以幫助我們鑒定客戶處於流失階段,或者上升階段,或者是穩定階段。當前價值取的是當前時間前三個月的交易量。對流失階段高價值客戶可以適當給予營銷優惠,對於有購買意向的客戶適當引導。如下圖所示。

結果/效果

一是提高銀行營銷准確性。隨著客戶不斷增加,理財產品也在不斷推陳出新,在實時精準營銷平台的幫助下,銀行從以前盲目撒網式的營銷方式轉變到對不同客戶精準觸達,提高了理財產品的營銷成功率,降低銷售和運作成本。理財產品推薦的上線以來,產品推薦成功率比專家經驗排序模型最高提升10倍。

二是增加銀行獲客數量。精準營銷系統洞察客戶潛在需求和偏好,提高了銀行獲取目標客戶群的准確率。從數百萬客戶中,通過機器學習模型,找到最有可能購買產品的客戶群,通過渠道營銷,實現響應率提升。相比傳統盲發模式,發送原38%的簡訊即可覆蓋80%的客戶。

通過構建基於大數據的精準營銷方案,恆豐銀行深入洞察客戶行為、需求、偏好,幫助銀行深入了解客戶,並打造個性化推薦系統和建立客戶價值預測模型,實現可持續的營銷計劃。

『柒』 大數據能為銀行做什麼

隨著移動互聯網、雲計算、物聯網和社交網路的廣泛應用,人類社會已經邁入一個全新的「大數據」信息化時代。而銀行信貸的未來,也離不開大數據。
國內不少銀行已經開始嘗試通過大數據來驅動業務運營,如中信銀行信用卡中心使用大數據技術實現了實時營銷,光大銀行建立了社交網路信息資料庫,招商銀行則利用大數據發展小微貸款。從發展趨勢來看,銀行大數據應用總的可以分為四大方面:
第一方面:客戶畫像應用。
客戶畫像應用主要分為個人客戶畫像和企業客戶畫像。個人客戶畫像包括人口統計學特徵、消費能力數據、興趣數據、風險偏好等;企業客戶畫像包括企業的生產、流通、運營、財務、銷售和客戶數據、相關產業鏈上下游等數據。值得注意的是,銀行擁有的客戶信息並不全面,基於自身擁有的數據有時難以得出理想的結果甚至可能得出錯誤的結論。
比如,如果某位信用卡客戶月均刷卡8次,平均每年打4次客服電話,從未有過投訴,按照傳統的數據分析,該客戶是一位滿意度較高流失風險較低的客戶。但如果看到該客戶的微博,真實情況是:工資卡和信用卡不在同一家銀行,還款不方便,好幾次打客服電話沒接通,客戶多次在微博上抱怨,該客戶流失風險較高。所以銀行不僅僅要考慮銀行自身業務所採集到的數據,更應考慮整合外部更多的數據,以擴展對客戶的了解。包括:
(1)客戶在社交媒體上的行為數據(如光大銀行建立了社交網路信息資料庫)。通過打通銀行內部數據和外部社會化的數據可以獲得更為完整的客戶拼圖,從而進行更為精準的營銷和管理;
(2)客戶在電商網站的交易數據,如建設銀行則將自己的電子商務平台和信貸業務結合起來,阿里金融為阿里巴巴用戶提供無抵押貸款,用戶只需要憑借過去的信用即可;
(3)企業客戶的產業鏈上下游數據。如果銀行掌握了企業所在的產業鏈上下游的數據,可以更好掌握企業的外部環境發展情況,從而可以預測企業未來的狀況;
(4)其他有利於擴展銀行對客戶興趣愛好的數據,如網路廣告界目前正在興起的DMP數據平台的互聯網用戶行為數據。
第二方面:精準營銷
在客戶畫像的基礎上銀行可以有效的開展精準營銷,包括:
(1)實時營銷。實時營銷是根據客戶的實時狀態來進行營銷,比如客戶當時的所在地、客戶最近一次消費等信息來有針對地進行營銷(某客戶採用信用卡采購孕婦用品,可以通過建模推測懷孕的概率並推薦孕婦類喜歡的業務);或者將改變生活狀態的事件(換工作、改變婚姻狀況、置居等)視為營銷機會;
(2)交叉營銷。即不同業務或產品的交叉推薦,如招商銀行可以根據客戶交易記錄分析,有效地識別小微企業客戶,然後用遠程銀行來實施交叉銷售;
(3)個性化推薦。銀行可以根據客戶的喜歡進行服務或者銀行產品的個性化推薦,如根據客戶的年齡、資產規模、理財偏好等,對客戶群進行精準定位,分析出其潛在金融服務需求,進而有針對性的營銷推廣;
(4)客戶生命周期管理。客戶生命周期管理包括新客戶獲取、客戶防流失和客戶贏回等。如招商銀行通過構建客戶流失預警模型,對流失率等級前20%的客戶發售高收益理財產品予以挽留,使得金卡和金葵花卡客戶流失率分別降低了15個和7個百分點。
第三方面:風險管控
包括中小企業貸款風險評估和欺詐交易識別等手段。
(1)中小企業貸款風險評估。銀行可通過企業的產、流通、銷售、財務等相關信息結合大數據挖掘方法進行貸款風險分析,量化企業的信用額度,更有效的開展中小企業貸款。
(2)實時欺詐交易識別和反洗錢分析。銀行可以利用持卡人基本信息、卡基本信息、交易歷史、客戶歷史行為模式、正在發生行為模式(如轉賬)等,結合智能規則引擎進行實時的交易反欺詐分析。如IBM金融犯罪管理解決方案幫助銀行利用大數據有效地預防與管理金融犯罪,摩根大通銀行則利用大數據技術追蹤盜取客戶賬號或侵入自動櫃員機(ATM)系統的罪犯。
第四方面:運營優化。
(1)市場和渠道分析優化。通過大數據,銀行可以監控不同市場推廣渠道尤其是網路渠道推廣的質量,從而進行合作渠道的調整和優化。同時,也可以分析哪些渠道更適合推廣哪類銀行產品或者服務,從而進行渠道推廣策略的優化。
(2)產品和服務優化:銀行可以將客戶行為轉化為信息流,並從中分析客戶的個性特徵和風險偏好,更深層次地理解客戶的習慣,智能化分析和預測客戶需求,從而進行產品創新和服務優化。如興業銀行目前對大數據進行初步分析,通過對還款數據挖掘比較區分優質客戶,根據客戶還款數額的差別,提供差異化的金融產品和服務方式。
(3)輿情分析:銀行可以通過爬蟲技術,抓取社區、論壇和微博上關於銀行以及銀行產品和服務的相關信息,並通過自然語言處理技術進行正負面判斷,尤其是及時掌握銀行以及銀行產品和服務的負面信息,及時發現和處理問題;對於正面信息,可以加以總結並繼續強化。同時,銀行也可以抓取同行業的銀行正負面信息,及時了解同行做的好的方面,以作為自身業務優化的借鑒。
銀行是經營信用的企業,數據的力量尤為關鍵和重要。在「大數據」時代,以互聯網為代表的現代信息科技,特別是門戶網站、社區論壇、微博、微信等新型傳播方式的蓬勃發展,移動支付、搜索引擎和雲計算的廣泛應用,構建起了全新的虛擬客戶信息體系,並將改變現代金融運營模式。
大數據海量化、多樣化、傳輸快速化和價值化等特徵,將給商業銀行市場競爭帶來全新的挑戰和機遇。數據時代,智者生存,未來的銀行信貸,是從數據中贏得未來,是從風控中獲得安穩。

『捌』 大數據在金融行業有哪些典型應用

大數據在金融領域中有哪些應用?應用很廣,定價、授信、風控領域尤其多,我這邊主要用到的分析軟體是單位的帆軟FineBI系統,應用案例隨便說兩個: 車險。其實根據車主的日常行車路線、里程、行車習慣、出險記錄、職業、年齡、性別,可以給出非常不同的定價。比如一個開中級車,每天固定路線往返幾公里通勤的熟練女白領車主,和一個開同樣車型每天在珠三角或者長三角跑生意的中年暴躁小老闆車主,假設後者出險概率是前者的3倍,那麼完全可以定3倍於前者的價格(商業部分)。對於保險公司,前者才是優質客戶,後者做了生意也是賠錢貨,不如趕到競爭對手那裡去。 貸款。現在各種小額貸款、消費貸款、供應鏈金融,都是在吃4大行懶得吃的散客市場,之所以他們懶得吃,就是怕麻煩。最麻煩的就是授信環節,對於一個沒有固定資產等擔保物的客戶,能授信多少額度是個問題。淘寶能做小微是因為商家的流水在他們手裡,白領的消費貸敢做是因為有穩定的現金流收入。但除了淘寶可以做到比較准確的模型,其他的業務都非常的粗放,基本每個領域都是根據幾條死規則來做業務。這意味著這個市場還有很大的潛力可以挖掘,比如一個小老闆,其實風險不大,他需要100w周轉,但你沒把握估算他的風險,只敢貸50w出去,就少賺了那50w的利息。

閱讀全文

與金融大數據在銀行的應用實例相關的資料

熱點內容
炒股app有哪個 瀏覽:108
汽車鑰匙編程器哪個好 瀏覽:688
誤刪除文件怎麼恢復 瀏覽:885
360wifi擴展器版本升級 瀏覽:336
word批量刪除某個同一圖片logo 瀏覽:637
蘋果5應用需要證書 瀏覽:531
觸摸屏編程有哪些優勢 瀏覽:550
ps文件存儲環境 瀏覽:74
文件名怎麼改不了大小寫 瀏覽:613
眼睛驗光數據什麼樣算假近視 瀏覽:269
1在編程里代表什麼 瀏覽:193
密碼文件櫃哪裡便宜 瀏覽:949
box文件怎麼打開 瀏覽:114
線切割編程哪個好用 瀏覽:70
反詐app官方已下載怎麼注冊 瀏覽:496
安卓5flash游戲 瀏覽:895
什麼卡有免費微信提示 瀏覽:511
iphone看不了文件管理 瀏覽:783
數據包如何上傳寶貝 瀏覽:885
java獲得url參數 瀏覽:753

友情鏈接