Ⅰ 大數據技術出來這么久了,會不會被市場淘汰
作為一個數據開發人員,可以肯定的告訴你,數據分析行業絕對不會被淘汰專,在這屬個數據為王的時代,一點的數據都會提煉出價值,所以不用怕,大膽的去學,黑馬程序員就能學,不妨去試學看看。您的採納給我提供源源不斷的動力,很高興您能滿意
Ⅱ 大數據專業和人工智慧專業哪個好
首先,人工智慧和大數據這兩個專業的前景都比較廣闊,隨著產業結構升級的持續推進,未來大數據和人工智慧專業的人才培養規模會逐漸擴大。
人工智慧與大數據具有密切的聯系,大數據是人工智慧的重要基礎,二者之間的發展會互相促進。在行業內,大數據工程師的工作內容會涉及到人工智慧技術,而人工智慧工程師在工作中也會使用到大數據技術,所以大數據和人工智慧的技術邊界是比較模糊的,當前也有不少大數據工程師開始轉向人工智慧領域的研發。
大數據專業的重點在於完成數據的價值化,而人工智慧專業的重點在於完成智能決策,大數據為人工智慧提出決策的基礎,人工智慧為大數據的價值化提供出口。如果把大數據比喻成「石油」的話,那麼人工智慧就可以比喻成「汽車」。
從技術的成熟度上來看,大數據技術目前已經趨於成熟,正處在落地應用的初期,所以當前選擇大數據專業會有一個較為系統的學習過程,可以參考的案例也比較多。當然,由於目前大數據領域依然有很多課題需要攻克,所以當前大數據領域依然以研發型人才需求為主,從業者要想具有更強的崗位競爭力,建議讀一下研究生。
人工智慧相對於大數據技術來說,目前還遠沒有達到技術的成熟期,人工智慧目前依然處在所謂的「弱人工智慧」階段,所以如果選擇學習人工智慧會面臨一定的難度,不僅知識量比較大,學習的周期也會更長一些。實際上,目前不少人工智慧領域的從業者,有大量的工作內容是基於大數據開展的,所以如果想從事人工智慧領域的研發,也可以從大數據開始學起。
Ⅲ 如何評價大數據的未來
舉報描述不清違規檢舉侵權投訴| 2016-01-21 16:03
#「誰是腦力達人」之電腦網路分類鏖戰ing!#
提問者採納 趨勢一:數據的資源化
何為資源化,是指大數據成為企業和社會關注的重要戰略資源,並已成為大家爭相搶奪的新焦點。因而,企業必須要提前制定大數據營銷戰略計劃,搶占市場先機。
趨勢二:與雲計算的深度結合
大數據離不開雲處理,雲處理為大數據提供了彈性可拓展的基礎設備,是產生大數據的平台之一。自2013年開始,大數據技術已開始和雲計算技術緊密結合,預計未來兩者關系將更為密切。除此之外,物聯網、移動互聯網等新興計算形態,也將一齊助力大數據革命,讓大數據營銷發揮出更大的影響力。
趨勢三:科學理論的突破
隨著大數據的快速發展,就像計算機和互聯網一樣,大數據很有可能是新一輪的技術革命。隨之興起的數據挖掘、機器學習和人工智慧等相關技術,可能會改變數據世界裡的很多演算法和基礎理論,實現科學技術上的突破。
趨勢四:數據科學和數據聯盟的成立
未來,數據科學將成為一門專門的學科,被越來越多的人所認知。各大高校將設立專門的數據科學類專業,也會催生一批與之相關的新的就業崗位。與此同時,基於數據這個基礎平台,也將建立起跨領域的數據共享平台,之後,數據共享將擴展到企業層面,並且成為未來產業的核心一環。
趨勢五:數據泄露泛濫
未來幾年數據泄露事件的增長率也許會達到100%,除非數據在其源頭就能夠得到安全保障。可以說,在未來,每個財富500強企業都會面臨數據攻擊,無論他們是否已經做好安全防範。而所有企業,無論規模大小,都需要重新審視今天的安全定義。在財富500強企業中,超過50%將會設置首席信息安全官這一職位。企業需要從新的角度來確保自身以及客戶數據,所有數據在創建之初便需要獲得安全保障,而並非在數據保存的最後一個環節,僅僅加強後者的安全措施已被證明於事無補。
趨勢六:數據管理成為核心競爭力
數據管理成為核心競爭力,直接影響財務表現。當「數據資產是企業核心資產」的概念深入人心之後,企業對於數據管理便有了更清晰的界定,將數據管理作為企業核心競爭力,持續發展,戰略性規劃與運用數據資產,成為企業數據管理的核心。數據資產管理效率與主營業務收入增長率、銷售收入增長率顯著正相關;此外,對於具有互聯網思維的企業而言,數據資產競爭力所佔比重為36.8%,數據資產的管理效果將直接影響企業的財務表現。
趨勢七:數據質量是BI(商業智能)成功的關鍵
採用自助式商業智能工具進行大數據處理的企業將會脫穎而出。其中要面臨的一個挑戰是,很多數據源會帶來大量低質量數據。想要成功,企業需要理解原始數據與數據分析之間的差距,從而消除低質量數據並通過BI獲得更佳決策。
趨勢八:數據生態系統復合化程度加強
大數據的世界不只是一個單一的、巨大的計算機網路,而是一個由大量活動構件與多元參與者元素所構成的生態系統,終端設備提供商、基礎設施提供商、網路服務提供商、網路接入服務提供商、數據服務使能者、數據服務提供商、觸點服務、數據服務零售商等等一系列的參與者共同構建的生態系統。而今,這樣一套數據生態系統的基本雛形已然形成,接下來的發展將趨向於系統內部角色的細分,也就是市場的細分;系統機制的調整,也就是商業模式的創新;系統結構的調整,也就是競爭環境的調整等等,從而使得數據生態系統復合化程度逐漸增強。
Ⅳ Gartner發布2014技術成熟度曲線,大數據去哪兒
摘要:近日,Gartner發布了最新的新興技術成熟度曲線(Hype Cycle for Emerging Technologies)。去年,大數據享有至高無上的地位,處於Gartner所說的「期望膨脹高峰期」。但現在,大數據已經跌入「幻滅的低谷期」。物聯網取而代之,占據了成熟度曲線的最高點。
在2012年和2013年,Gartner的分析師們曾認為,物聯網還需要10年以上的時間才會達到「生產率穩定期」。但今年,他們認為物聯網只需要5到10年時間就會達到這個最終成熟階段。
小編的理解是,無論是大數據還是物聯網,數據和數據之上的信息都是不變的「主旋律」。物聯網將數據流動的介質進一步「下沉」至具備聯網功能和數據傳輸能力的「物件」上,讓更多的機器、設備成為人們生產與生活交互的一部分。
今年成熟度曲線上的一個新面孔是「數據科學」,預計它將在2到5年時間里達到穩定期。與其說它是一項或一套具體的技術,不如說是一個處理大數據的學科。Gartner在《成熟度曲線特別報告》(Hype Cycle Special Report)中指出:「雖然對大數據的興趣依然不減,但它已經離開高峰期,因為該市場已經安定下來,有了一整套合理的方法,新的技術和實踐被添加進現有方案。」雖然大數據興趣不減,市場趨向穩定,但Gartner認為,大數據還有5到10年才會達到穩定期。看來,大數據相關技術的演進在未來一段時間內仍將展現出強大的生命力,相關市場的營收也將不斷放大。
對於Gartner對新興技術起伏的判斷,皮尤研究中心(Pew Research Center)的互聯網、科學和技術研究主管李·雷尼(Lee Rainie)作出了如下評價:「雖然成熟度曲線不是嚴格地以數據為基礎,但高德納分析師們對技術採納狀況作出的判斷常常與其他優秀觀察者的看法相一致。在特定創新應該處於曲線什麼位置的問題上,有時會有爭議,但該曲線所勾勒的總體趨勢很少受到質疑。」
2014年標志著新興技術成熟度曲線這個有用的工具已經問世20周年。該工具旨在跟蹤人們對技術和商業創新的周期性興趣爆發和經常性失望的起起伏伏。Gartner副總裁兼著名分析師貝特西·伯頓(Betsy Burton)談到了成熟度曲線作為跟蹤創新及其商業影響力如何逐漸演變的工具,以及2014年版的新變化。伯頓說:「很多時候,我們看到的是人們的注意力從支持信息、應用、雲端系統和大數據的基礎設施,轉向我們如何運用雲計算、大數據和社交的某些能力來解決現實的商業問題。我們正目睹人們的注意力從技術本身轉向將這項技術實際運用到現實的商業需求和商業成果中。」
Ⅳ 大數據的生命周期的九個階段
大數據的生命周期的九個階段
企業建立大數據的生命周期應該包括這些部分:大數據組織、評估現狀、制定大數據戰略、數據定義、數據收集、數據分析、數據治理、持續改進。
一、大數據的組織
沒有人,一切都是妄談。大數據生命周期的第一步應該是建立一個專門預算和獨立KPI的「大數據規劃、建設和運營組織」。包括高層的首席數據官,作為sponsor,然後是公司數據管理委員會或大數據執行籌劃指導委員會,再往下就是大數據的項目組或大數據項目組的前身:大數據項目預研究團隊或大數據項目籌備組。這個團隊是今後大數據戰略的制定和實施者的中堅力量。由於人數眾多,建議引入RACI模型來明確所有人的角色和職責。
二、大數據的現狀評估和差距分析
定戰略之前,先要做現狀評估,評估前的調研包括三個方面:一是對外調研:了解業界大數據有哪些最新的發展,行業頂尖企業的大數據應用水平如何?行業的平均尤其是主要競爭對手的大數據應用水準如何?二是對內客戶調研。管理層、業務部門、IT部門自身、我們的最終用戶,對我們的大數據業務有何期望?三是自身狀況摸底,了解自己的技術、人員儲備情況。最後對標,作差距分析,找出gap。
找出gap後,要給出成熟度現狀評估。一般而言,一個公司的大數據應用成熟度可以劃分為四個階段:初始期(僅有概念,沒有實踐);探索期(已經了解基本概念,也有專人進行了探索和探討,有了基本的大數據技術儲備);發展期(已經擁有或正在建設明確的戰略、團隊、工具、流程,交付了初步的成果);成熟期(有了穩定且不斷成熟的戰略、團隊、工具、流程,不斷交付高質量成果)。
三、大數據的戰略
有了大數據組織、知道了本公司大數據現狀、差距和需求,我們就可以制定大數據的戰略目標了。大數據戰略的制定是整個大數據生命周期的靈魂和核心,它將成為整個組織大數據發展的指引。
大數據戰略的內容,沒有統一的模板,但有一些基本的要求:
1. 要簡潔,又要能涵蓋公司內外干係人的需求。
2. 要明確,以便清晰地告訴所有人我們的目標和願景是什麼。
3. 要現實,這個目標經過努力是能達成的。
四、大數據的定義
我認為:「數據不去定義它,你就無法採集它;無法採集它,你就無法分析它;無法分析它,你就無法衡量它;無法衡量它,你就無法控制它;無法控制它,你就無法管理它;無法管理它,你就無法利用它」。所以「在需求和戰略明確之後,數據定義就是一切數據管理的前提」。
五、 數據採集
1. 大數據時代的數據源很廣泛,它們可能來自於三個主要方面:現有公司內部網各應用系統產生的數據(比如辦公、經營生產數據),也有來自公司外互聯網的數據(比如社交網路數據)和物聯網等。
2.大數據種類很多,總的來講可以分為:傳統的結構化數據,大量的非結構化數據(比如音視頻等)。
3. 數據採集、挖掘工具很多。可以基於或集成hadoop的ETL平台、以互動式探索及數據挖掘為代表的數據價值發掘類工具漸成趨勢。
4. 數據採集的原則:在數據源廣泛、數據量巨大、採集挖掘工具眾多的背景下,大數據決策者必須清楚地確定數據採集的原則:「能夠採集到的數據,並不意味著值得或需要去採集它。需要採集的數據和能夠採集到的數據的"交集",才是我們確定要去採集的數據。」
六、數據處理和分析
業界有很多工具能幫助企業構建一個集成的「數據處理和分析平台」。對企業大數據管理者、規劃者來講,關鍵是「工具要滿足平台要求,平台要滿足業務需求,而不是業務要去適應平台要求,平台要去適應廠商的工具要求」。那麼這個集成的平台應該有怎樣的能力構成呢?它應該能檢索、分類、關聯、推送和方便地實施元數據管理等。見下圖:
七、 數據呈現
大數據管理的價值,最終要通過多種形式的數據呈現,來幫助管理層和業務部門進行商業決策。大數據的決策者需要將大數據的系統與BI(商業智能)系統和KM(知識管理)系統集成。下圖就是大數據的各種呈現形式。
八、 審計、治理與控制
1.大數據的審計、治理和控制指的是大數據管理層,組建專門的治理控制團隊,制定一系列策略、流程、制度和考核指標體系,來監督、檢查、協調多個相關職能部門的目標,從而優化、保護和利用大數據,保障其作為一項企業戰略資產真正發揮價值。
2.大數據的治理是IT治理的組成部分,大數據的審計是IT審計的組成部分,這個體系要統籌規劃和實施,而不是割裂的規劃和實施。
3.大數據的審計、治理與控制的核心是數據安全、數據質量和數據效率。
九、 持續改進
基於不斷變化的業務需求和審計與治理中發現的大數據整個生命周期中暴露的問題,引入PDCA等方法論,去不斷優化策略、方法、流程、工具,不斷提升相關人員的技能,從而確保大數據戰略的持續成功!
Ⅵ 大數據生命周期的多個階段分析
大數據生命周期的多個階段分析
如今,各個企業對於大數據的應用都甚為積極,但企業在建立大數據的生命周期時應注意,其中包括了這些部分:大數據組織、評估現狀、制定大數據戰略、數據定義、數據收集、數據分析、數據治理、持續改進這幾方面,下面就來詳細了解下。
大數據的現狀評估和差距分析
在定戰略之前,先要做必要的現狀評估,評估前的調研包括三個方面:一是對外調研:了解業界大數據有哪些最新的發展,行業頂尖企業的大數據應用水平如何?行業的平均尤其是主要競爭對手的大數據應用水準如何?二是對內客戶調研。管理層、業務部門、IT部門自身、我們的最終用戶,對我們的大數據業務有何期望?三是自身狀況摸底,了解自己的技術、人員儲備情況。最後對標,作差距分析,找出gap。找出gap後,要給出成熟度現狀評估。一個公司的大數據應用成熟度可以劃分為四個階段:初始期;探索期;發展期;成熟期。
大數據的發展戰略
有了大數據組織、知道了本公司大數據現狀、差距和需求,企業就可以制定大數據的戰略目標了。大數據戰略的制定是整個大數據生命周期的靈魂和核心,它將成為整個組織大數據發展的指引。大數據戰略的內容,沒有統一的模板,但有一些基本的要求:
要現實,這個目標經過努力是能達成的。
要簡潔,又要能涵蓋公司內外干係人的需求。
要明確,以便清晰地告訴所有人我們的目標和願景是什麼。
對於大數據的定義
如果不對大數據進行定義,你將無法採集到它,你沒法採集它就不能分析它;而不能分析它,你就不能衡量它的價值,既然不能衡量它的價值,你也就無法真正的控制它;如果你不能很好的控制它,那麼你就無法管理並且利用它。在需求和戰略明確之後,數據定義就是一切數據管理的前提。