導航:首頁 > 網路數據 > 大數據時代教育平台

大數據時代教育平台

發布時間:2023-03-03 01:25:42

大數據時代背景下的教育該如何走

「大數據」是當今最熱的概念之一,有人宣稱掌握大數據的人可以像上帝一樣俯瞰整個世界。進入2012年,大數據一詞越來越多地被提及,人們用它來描述和定義信息爆炸時代產生的海量數據,並命名與之相關的技術發展與創新。

大數據(big data),指的是所涉及的資料量規模巨大到無法透過目前主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。大數據的創新沿著從數據到大數據,再到分析和挖掘,最後是發現和預測的方向發展。隨著雲時代的來臨,大數據也吸引了越來越多的人關注。各行各業更加意識到,誰能率先實現大數據,誰對大數據的挖掘更為深刻,誰就將搶占未來先機。

                                

教育行業也不例外,2013年對於教育來說是傳統育研究走向科學實證的重大機遇。值得我們思考的是,大數據將給教育帶來什麼?如何通過大數據更好的教育學生?大數據對於教育是福還是禍?

翻轉課堂、MOOC和微課程是大數據變革教育的第一波浪潮

翻轉課堂、MOOC和微課程的出現,改變了傳統教育模式,從課堂老師滔滔不絕的講解,到現在「視頻再教育」。學生可以根據個人情況自主制定學習進度,老師可以根據學生在網上做題的情況,有針對性的了解學生學習上遇到的問題。傳統課堂不再講解新課,而成為學生當堂做作業、講解問題或做實驗的場所。

如果說翻轉課堂只是一個觸角的話,那MOOC的出現就是升華的翻轉課堂。「視頻再教育」得到進一步的提升,MOOC大規模開放在線課程,面對全球性的MOOC浪潮,中國的大學也開始行動。2013年,上海市率先引入中國式MOOC,推出了「上海高校課程源共享平台」。

MOOC的興起,使「用視頻再造教育」的學習模式迅速推廣到高等教育,而且進展到可以通過選修MOOC獲得學分、進入正軌教育的程度。清華大學、北京大學也相繼開放了在線教育課程。

而微課程是對翻轉課堂的回應,是學生自主學習不可或缺的資源。微課程是教學視頻濃縮精華的微型課,主要用於學生的前期學習,目前,微課程已開始影響我國中小學信息化教學實踐。微課程實踐的積累,將導致微課程群的形成,微課程群的應用又會形成新的應用數據,將有利於大數據分析與挖掘、發現與預測的創新應用。可以說,教育領域的改革,首當其沖的就是大數據變革信息化教學。

大數據時代對於教育是福還是禍?

人們還沒有來得及搞清楚信息時代是什麼,數據時代己悄然來臨。在大數據理念面前,大家各抒所見,有些人認為,大數據時代可以讓教育者真正讀懂學生。

相對於傳統數據宏觀的教育情況,大數據主要體現在微觀層面。大數據使「經驗式」教學模式變為「數據服務」教育模式。老師可以根據數據關注每個個體學生的微觀表現,通過學生相關數據的分析,有針對性的調整教育方案,從而實現個性化教育。

一些支持大數據教育的人認為,大數據時代的教育將推動傳統以「教師為中心」的教學方式向「學生為中心」教學方法的轉變,推動「演員型」教師向「導演型」教師轉型,從宏觀群體走向微觀個體,對於教育研究者來說,利用數據可以發現真正的學生。

而另一群人認為大數據是「換湯不換葯」,實際上就是用大數據、雲計算作為概念來包裝以前的東西。雖然在線教育來勢洶洶,卻有「叫好不叫座」之態。以新東方為例,公開數據顯示2012年底新東方在線網站於個人注冊用戶已逾1000萬,而據新東方在線副總裁潘欣介紹,用戶願意付費的額度不高,在2012年新東方付費用戶為20萬,佔比僅為2%。

目前主流的在線教育產品只是將線下的課程錄制好搬到線上,這種模式實際上只是線下學習方式的簡單復制,這樣的學習方法還衍生了一些教育上的新問題:如何保證學習過程不會被中斷、怎樣確定是學生本人登錄學習等。對於在線教育,只有學習主動性和控制力比較好的學生才能利用在線學習取得好的學習效果,而這些方面較弱的人將難以長期堅持,學習效果也可想而知。

⑵ 慧學星沒有號可以注冊嗎

可以的。四川雲數賦智教育科技有限公司成立於2016年,是一家專業從事教育行業大數據研究與應用的國家高新技術企業。公司聯合國內專業教科院所發起全國教育科學「十三五」規劃課題《大數據背景下實施精準教學的實踐研究》、四川省重點課題《大數據時代的極課教育創新研究》等多項課題研究,致力於大數據、人工智慧與教育教學的深度融合,推進基於數據驅動的精準教學,助力教育信息化向數智化升級
拓展資料
1、旗下產品「慧學星大數據精準教學管理平台」是針對學校學情分析及發展性教與學評價需求推出的常態化採集、精細化標注、智能化教學、個性化學習輔助平台,其他已開發產品包括:區域教學質量監測評估平台、教師研修網校、空中課堂、微課管理系統、智能考試閱卷系統、智能題庫系統、智慧作業系統、智能錯題列印機等。
2、智慧教輔相對傳統教輔、數字教輔而言,是指在教育信息化背景下,藉助大數據精準教學管理平台系統,依託大數據、雲計算、物聯網等技術,對學生學業數據進行全過程、常態化、伴隨式採集,實現基於大數據的多維度綜合性智能化分析評價。便於學情的精準把握與精細化管理,便於教師因材施教精準輔導,便於學生個性化學習,便於學校實現智慧管理決策。
操作環境:小米11 MIUI12.6.5 安卓版本1.5.4
3、慧學星app是一款專為學校老師打造的校園教學管理軟體,慧學星app擁有手機閱卷、查看成績、學生管理多個功能板塊,通過慧學星軟體隨時隨地移動閱卷。慧學星app是一款教師教育助手,軟體擁有手機閱卷,考試報告,學情管理等等功能服務,可以幫助老師更好的教育學生,需要的朋友可以前來下載使用。

⑶ 大數據對教學的影響

大數據對教學的影響

隨著時代的發展和科技的進步,「大數據」時代悄然來臨。隨著硬體的高速革新化與軟體的高速智能化,大數據時代也對高校教育領域產生了廣泛而深刻的影響。大數據就其性質來說,不是產品,也不是一種技術,而是一個抽象的概念,有人將「大數據」形象地比喻成21世紀人類探索的新邊疆,是以高度發達的信息網路技術為支撐,所呈現出的巨大數據信息,當然包括伴生的相關處理技術。大數據是近年來繼雲計算、物聯網後的新技術熱點。

大數據具有4V特性,包括海量的數據規模(Volune)、快速的數據流轉和動態的數據體系(Velocity)、多樣的數據類型(Variety)和巨大的數據價值(Value)。而就數據的實用價值,IBM認為還應具有第五個V特徵,就是真實性(Veracity),在日常工作和學習中,數據信息真實性的好處不言而喻,對教育領域來說,更是最基本的要求與保障。要利用大數據時代的巨大資源為教育服務,教師的選取和甄別手段更顯得尤為重要,從這個層面上來說,數據的真實性在一定方面上制約著教師教的內容和學生學的內容。

大數據時代給傳統的教育提出了挑戰,由於自身特點,它給教育提出了教育對象的個性化發展、教育方式的變革、教育觀念的開放化、管理的科學化等要求,更有利於素質教育的開展。大數據時代的數據具有信息量大、形式多樣、實時性強和價值多元等特性,因此教育模式和教育理念只有關注人的多樣化發展才能培養出高素質人才。然而,與此相矛盾的是,傳統的教學方式強調教師的主體地位,為了便於管理和保證教學效果,教師最有效也最輕松的方式就是以標准化來要求每一位同學,表現於統一的教材、統一的作業、統一的考核和對學生單一的評價方式上,這不僅不利於發揮學生的主動性,長此以往,更限制了學生的思維方式與視域,無法滿足學生個性化發展和大數據時代對高素質人才的需求。

要想利用信息時代的數據更好地應用於教育,必須變革教學方式,對教師提出新的要求,教師不僅要樹立終身學習的理念,還要更好地掌握學科前沿的動態信息,更好地利用數據的開放性、共享性等特點,充實學習內容,提升教學水平。以「慕課」和「小微課」平台的問世為廣大學生所熟悉和利用,豐富和發展了在線教學模式,這更需要教師不斷調整,告別傳統的授業者的角色,以學生為主體,以技術為手段和平台,成為知識學習的組織者、引導者和評價者。

除了促進個性化發展、豐富學習內容和提高學習效率,大數據技術的應用更有利於教師掌握學生的身心發展規律。與傳統的教師通過面談、電話交流、家訪及其他同學側面反映和憑借工作經驗判斷學生心理特徵等方式,應用大數據技術,分析和測量學生的心理特點,通過對以前遇到的實際問題的解決方式進行歸納和總結,這種體察方式不僅更理性,還可進一步對未來的心理狀況進行有效預測,能促進教師更好地了解學生,還能有針對性地促進學習效果,提高學習能力。

大數據背景下,不僅革新教育理念,對高等學校的管理也提供了新思路。高等學校的信息化進程中會產生大量的數據,包括教師和學生信息、學籍和成績信息、注冊與選課信息等,利用大數據技術管理這些信息,對幫助學校資源管理和教學方法等方面將會產生極大的便利。目前,高等學校的信息化系統正不斷發展完善。除數據管理、校園網路和遠程教育系統外,還發展了圖書館信息管理系統、數字化校園等,如何對這些系統產生的大量信息進行系統分析,在信息化背景下建設優質高校就顯得尤為重要。其中,教學管理、學習行為、教學評估等,均受到大數據的影響。

在教育領域如何利用大數據及其相關技術促進教育發展,是一個漫長的過程,在此過程中機遇與挑戰並存,作為教育人士,我們應抓住機遇,迎接挑戰,緊緊握住時代的脈搏,更好地服務於教育。

以上是小編為大家分享的關於大數據對教學的影響的相關內容,更多信息可以關注環球青藤分享更多干貨

⑷ 大數據與教育的結合,體現在哪些方面

可以說自從互聯網技術越來越發達之後,大數據分析成為了許多行業的獨門秘籍版。
如果說問權大數據與教育的結合,那麼更多的就是體現在數據分析方面。
像我們機構在用的什麼書,什麼雲,染什麼的,還是染書什麼的。
專屬的MA系統,大數據實時監測,高性能實時計算引擎,讓數據分析更實時,更靈活和高效;簡單高效的數據分析工具,不懂技術也能玩轉數據;為網站的精細化運營決策提供數據支持,進而有效提高企業的投資回報率。
在數據化學員管理方面,學員數據報表分類匯總,精細化學員檔案管理;招生專屬CRM,將學員線索掌握在企業手裡,有效提高轉化,減少客戶流失;報班選課,結課批量操作、一鍵完成,讓教學運營管理形式形成,完成閉環。
可以說,大數據的應用,方便的教育管理,更是便捷了教育工作。

⑸ 教育大數據是什麼教育大數據作用有哪些

本文主要內容是介紹教育大數據的定義與作用,在了解教育大數據前我們首先要了解什麼是大數據。大數據技術是21世紀最具時代標志的技術之一。國務院發布的《促進大數據發展行動綱要》中提出「大數據是以容量大、類型多、存取速度快、應用價值高為主要特徵的數據集合」。簡單的說,大數據就是將海量碎片化的信息數據能夠及時地進行篩選、分析,並最終歸納、整理出我們需要的資訊。

教育大數據,顧名思義就是教育行業的數據分析應用。

而大數據,則需要具備5V的特點(IBM提出):Volume(大量)、Velocity(高速)、Variety(多樣)、Value(低價值密度)、Veracity(真實性)。

其中的「大」主要指的是 Volume(大量),我們現階段用的數據分析,大部分情況下的數據量還達不到這個「大」的級別。

教育行業在數據分析的應用方面,主要痛點有以下四個方面:

1.數據涉及面窄

數據主要來源為數字化校園系統產生的,其他教學管理的數據多為手工錄入非結構化數據

數據維度少,數據來源不足。

2.數據介面不完善

內部信息系統的教務系統、一卡通系統、圖書館系統、財務系統等數據都不規范一致,數據結構也不一樣,各業務系統介面對接難度大

業務介面與數據結構還不規范

3.缺乏統一的數據管理平台

沒有統一的數據處理中心對數據進行管理,沒有人力維護各系統的接入

有效數據量少,數據質量差,達不到大數據處理分析要求

在具體的應用方面,即數據分析體系搭建上,可以在以下四個方面開展。

1.教務管理

在這方面可以進行招生分析、就業分析、住宿分析、圖書館分析、資產數據統計分析等。

2.教學創新

在這里可以進行教學質量評估、上網行為分析、學生成績分析、學生特長能力分析

3.應用創新

可以進行學生軌跡分析、學生畫像、學生輿情監控

4.科研支撐

可以開展科研成果分析統計、科研項目研究、科研經費跟蹤研究,對整個科研情況有全面的了解和掌握。

1.大數據或把老師從作業批改中解放

在線教育除了能以優質教育資源為學生提供幫助外,對廣大家長、老師和學校也大有裨益。蘇靜以作業幫家長版的「口算批改」功能為例介紹,家長或老師只需要用手機對著學生作業一掃,就能立刻對作業完成智能批改,顯示出批改結果,能夠大大節省老師和家長批改作業的時間。

事實上,隨著人工智慧等新興技術的深入應用,在線教育平台能夠為家長、老師、學校提供更有效的教學輔助。

2.因材施教,將更有的放矢

「人工智慧+大數據精準教育」系統能利用大數據技術,完成對學生學習進度、學力、習慣的跟蹤和分析,系統後台能夠准確對用戶進行用戶畫像,找到他們的知識薄弱點,形成用戶學情報告,這可以幫助老師和學校更細致地了解每一個學生的情況,並有的放矢地制定更精準的學生學習計劃。

⑹ 大數據時代校本教研轉型策略及路徑

大數據時代校本教研轉型策略及路徑

基於雲、物聯網、資料庫技術以及人工智慧和虛擬現實在教育中的廣泛滲透,大數據時代正催生著一場場新的教育變革。現有的教研機制如何適應大數據主導的未來?基於大數據的運用如何創新校本教研思路和策略?如何依託大數據平台探尋到最佳的校本教研轉型路徑?這正是本文試圖回答的問題。
一、大數據缺乏的傳統教研局限性
我們生活在一個被幾何級爆炸的數據包圍的時代,我們的一切行為都在產生海量的數據,這些數據被稱作「大數據」。[1]2大數據之「大」,並不僅在於「容量之大」,更大的意義在於可以藉助雲技術等手段,通過海量數據的篩選、整合和分析,解決新的問題,創造新的價值。大數據時代,傳統校本教研形態已經滯後於時代的發展。
第一,以行政命令型為主的教研管理已不能適應教研發展的新趨勢。傳統的校本教研活動因其行政主導過多、任務驅動過強、互動生成較少、過程數據欠缺等,其教研形態存在著單一性、封閉性、滯後性與靜態化的特點。教研活動更多執行的是「規定性動作」,大多數學校都是循著「期初學校安排教研計劃—教研組按計劃布置落實—分階段組織教學展示或研討—期末各部門進行教研總結」這樣的模式進行。[2]在這樣「齊步走」的統一步調中,教研的目光很難細致地聚焦到課堂真實疑難問題的研究上,研討活動更少觸及普遍學科規律探尋的應有深度。校本教研缺乏實實在在的研究歷程,案例追蹤缺少過程性資料的佐證。沒有過程,缺乏實踐數據的支撐,教研的有效性大打折扣,教研視野也很難有效拓寬。這種形態的教研活動,聚合性、開放性、創新性與動態性都明顯不足,形式化、低效化特徵突出。
第二,以經驗幫帶型為主的教研方式已不能適應教研發展的新態勢。現如今,絕大部分學校對於大數據的認識和研究尚處於起步階段,對於大數據在教育領域的探索和實踐才剛剛開始。對於如何真正地將大數據應用於教研,反饋於教育,普遍缺乏深度的認識和操作的策略。究其原因,一方面是因為傳統教研「自下而上的主題確認意識」缺乏,加上空間、時間以及技術設備的約束,教研內容無法直接喚起教師教研的內在需求,無法直接對其課堂產生輻射與效益,因此難以吸引教師深度參與。另一方面,面對新時期急劇變化的教研態勢,更多的學校沒有主動與時代對接,無法前瞻性地為教師提供思維自由碰撞的教研平台(比如活動前後討論平台的提供),無法適時、足量地為其提供教育科研所需要的數據支持與技術便利,教師教研的多元合作與深度拓展缺乏足夠的凝聚與吸引。這樣的教研必然無法在大數據時代展現應有的價值與活力。
二、大數據時代校本教研的轉型策略
面對海量信息呼嘯而來的大數據時代,面對以「移動互聯和平板觸控技術」為核心的雲計算、雲存儲、雲教育、雲課堂、雲教研疊加出現的全新教育態勢,中小學校該如何應對這種前所未有的教育變革?有哪些好的教研策略與應用範式呢?
(一)核心視角轉型:由關注「教」轉向聚焦「學」
「師本」還是「生本」一度成為教研熱議的話題。以「誰」為本體現的是一種教學觀念的更新,更展現的是一種教學行動的選擇。傳統的教學教研當中,學生主體的評價往往是最單薄的——聽課者大多隻能根據經驗來假想學生的體驗,這種隔靴搔癢式的評價弊端,源於一個重要因素的缺席——沒有足夠的數據源可提供學情分析與實證考據。
大數據時代的到來,恰恰能夠對這種缺失作出有效轉化。藉助視頻傳輸、數據收集、點對點終端、雲存儲伺服器和個性化的數據分析軟體等,能夠從技術層面解決數據源缺乏的問題,對數據的全面處理和分析,可以讓學生個體化的感受得以精準的量化與顯現。學生在教學活動進程中的現實需求與即時心態,也可以經過技術的轉化和動態整合分析變得可讀、可視、可量化。這就為教研視角由關注「教」轉向關注「學」提供了強大的技術支持與解讀保障,為學情的研究與預判提供了更為鮮活的素材。我們甚至還可以利用流媒體視頻和數據分析等手段,幫助教師跟蹤學生的即時學習情況,從而根據他們的能力等級水平制訂相應的教學計劃並調整策略方案,更好地開展有針對性的個性化學習研究。
藉助大數據的運用,課堂有了一個全新的觀察視角,教學研討有了一個全新的視點,站在學生學情分析與預判的角度去改變教師的教學行為已經成為可能。當技術能夠幫助我們了解每個學生的需求之後,綿延了兩千多年的「因材施教」思想,是否離我們更近一些?
(二)常態方法轉型:由經驗重復轉向數據實證
傳統的校本教研往往是經驗式的。我們總是主觀地揣定某些教育因素對學生很重要,哪些變數對課堂有影響,然後,再依據自己的判定,通過一次次反復的實踐來驗證這些主觀經驗的可靠性。這種以經驗為主導的傳統教研往往存在著主觀化、臆測式、靈感型的缺陷,常常容易出現「問題不夠『草根』、目標比較寬泛、實證相對缺乏」等狀況。研究後與研究前相比,對問題的認識高度與解決程度並沒有質的提升。究其原因,是研究之前沒有深入的問題質疑和數據調查,研究中缺乏足夠的數據比對和邏輯分析,研究後少了細致的演繹分析及實踐認證。
大數據時代的來臨,為有效解決經驗重復型教研的痼疾找到了憑借和方向。依據實驗數據的收集、整理和分析所得,能有效確立教研主題,讓研究直指現實問題的解決;依託「雲教研、雲管理」平台,過去無法收集與分析的數據都被新的技術手段賦予了獲取的可能,為有效展開問題的探究與課題的論證提供了技術保障。這種依託數據實證的教研更加具有科學性、邏輯性和說服力。正如魏忠博士在《教育正悄悄發生一場革命》一書中所說:「教育將繼經濟學之後,不再是一個靠理念和經驗傳承的社會科學和道德良心的學科,大數據時代的教育,將變成一門實實在在的實證科學。」[1]3明確的目標監控、海量的數據支撐、清晰的過程性案例資料,強大的數據分析與論證,配以與之緊密融合的教與研創新平台,讓教研更加充滿創新與活力。
(三)實踐模式轉型:從零散問題研究轉向系列項目研究
「指令式」、任務驅動式教研在我國中小學普遍存在,其被動接受式的研究心態、直指結論的研究方式、以分散點狀活動替代系列研究實踐的研討模式,讓校本教研難以貼地而行,最終導致教研成果的可信度、可推廣度不高。新時期的教研必須從形式化、表層化、零散狀的教研形態中轉變出來,向主題化、系列化、課題化、項目化教研轉型,這也是由大數據時代的教育和研究特點所決定的。
大數據時代,由於教學平台、教研平台、管理平台已經有效對接,各個層面、各個系列的數據已經可以共享到大教育的「雲平台」,大數據技術將較嫻熟地運用於課堂和教研的方方面面。無論是自上而下的數據調用,還是自下而上的數據收集,都已經或者能夠成為中小學教育教研的常態。技術手段的創新與變革,為教育大數據的儲存、整合、分析創造了條件。「蘇醒的數據能夠說話」,尤其是當研究者開始自覺地、有意識地將數據採集、轉化和運用,當作一種大數據時代系列性、周期性、可比對性的常態研究去做,這種經過甄別、篩選的數據,將成為主題教研、項目研究的最強有力的實證,也必將給那些原本因為技術或條件限制無法便利地獲取研究數據而苦惱的教師們帶來教研思路的突變,並將最終實現校本教研的實踐模式由零散問題研究向系列項目研究轉型。
三、大數據時代校本教研的轉型路徑
(一)「雲課堂」研究:技術與數據更好地服務於「學」
新技術就在身邊,你用與不用,它都在那裡。蘇州工業園區星海小學讓「ipad進課堂」,以數字技術帶動教學教研,為我們提供了研究大數據運用的全新視角。2014年,該校開啟了以移動網路為平台、ipad為終端的實驗教學,通過新技術的應用,構建了以生為本的「雲課堂」,在很大程度上改變了傳統「教」與「學」的方式。雲課堂技術支撐的核心是「雲計算」。它是一種計算方式,通過大量網路連接的統一管理和調度,將大量信息和資源按需向用戶提供服務。這種全息服務的網路就叫作「雲」。「雲」就像一個專業的「信息提款機」,其強大的信息技術和極為豐富的立體數據資源,為學生的學、教師的教、團隊的研搭建了多維互動的「雲平台」。[3]
該校基於大數據時代教研方式轉變的研判,並在充分調查、論證和研發的基礎上,為師生數字化的學與研搭建了一整套自主的雲存儲伺服器,每個ipad上都安裝了用於雲存儲和分享的「網盤精靈」,學生和教師都能在其中建立一個單獨的存儲空間,每位教師製作的課件、收集的實驗數據等,都能在第一時間上傳到伺服器,全校師生都能在第一時間下載所需資源。各科老師還能藉助無線平台和應用軟體,協同開展數據上傳下載、數據存儲與分析的嘗試與研究,許多或大或小的教研探究活動都在強大的數據平台支持下進行,網路教研讓更多的教師提升了教研的動力。比如,英語學科將ipad接入課堂後,學生可以在家裡錄制自己朗讀和吟唱的視頻,上傳到「網盤精靈」,為教師即時了解學生學習狀態和學習成效,提供了第一手的研究和分析資料。鮮活的數據讓教學的跟蹤與預判成為常態。[4]
再比如,亞洲教育網自主研發的「三網智慧泛教育雲平台」,就是一種「三網融合、泛在學習」的公共智慧雲,它利用雲計算、物聯網和虛擬化等新技術來升級校園網、城域網,其創建的「教育雲+互動電視+電子書包」新模式開啟了教育信息化新紀元,為全方位、大范圍地實現多校、多地教育資源共享、教育成果分享、教學研的互動打下了基礎。[5]10-11
(二)「實證研究」:加強數據論證,探尋「普適」規律
近些年,依託於數據實證的教研探索已然展開,微格教研、片段教研、主題教研等應運而生。這些教研模式大多採用的是「實證研究」的方式。它們都是通過對研究對象大量的觀察、實驗和調查,獲取客觀數據,從個別到一般,歸納出事物的本質屬性和發展規律的一類研究方法。這些教研模式以問題研究為基礎,以教學案例為載體,以數據分析為根據,對教學教研工作進行了微格化、片段化、前置化和主題實踐性論證,依託數據探尋規律,教研成果更加清晰、顯性、有效。
近幾年,上海靜安區開始在7所幼兒園和9所小學試點實施「社會性與情緒能力養成」實踐項目研究。經過近百名教師長達四年多的摸索和改進,如今,靜安區小學階段的「社會性與情緒能力養成」課程正逐步走向成熟,其研究方法之一就是「實證研究」。他們以「社會性情緒」項目為主題,探索出依靠「數據終端」去記錄每一個學生、每一堂課、每一個環節表現的數據收集方法。例如,在一節擁有六個環節的課堂上,大部分時間內學生的節奏都是緊密跟隨教師,但是在某個環節,大多數學生停留的時間遠遠超過了教師。這就提醒我們,這個環節需要著重研究,需要調整,也許這個部分的內容非常吸引學生,也有可能這部分內容難度較高,他們需要更多的時間來閱讀與消化。這種藉助大數據進行教研探索的方法也適合於我們在課堂中更有效地去捕捉學生點滴行為的微觀研究。可以這樣說,大數據時代的到來,讓跟蹤每一個數據成為可能,從而讓研究「人性」成為可能。而對於教育研究者來說,我們將比任何時候都更接近發現真正的學生。
(三)「項目研究」:用證據支撐評價,用項目推進教研
2014年,蘇州市教育局設立了「義務教育質量綜合評價改革」等五大教改項目,從全市范圍遴選了50所特色鮮明的學校組建項目學校共同體,推進項目研究的實施。在研究過程中,各項目學校有效地藉助雲計算、物聯網和虛擬化等新技術來升級校園網,努力將雲技術與物聯網進行高度融合,對全方位、個性化的過程數據和研究資源的上傳、存儲、整合與分析進行了必要的硬體配置和軟體開發,然後在嚴格的過程管理中依託平台、依託案例、依託數據開展系列主題研究和項目實踐論證。目前,項目研究進展順利,也取得了可喜的成果。以蘇州工業園區星海小學為例,學校以「十佳」取代「三好」,推出了「十佳星海娃」多元評價體系,率先開啟了蘇州市「義務教育質量綜合評價改革」的實踐與研究。項目研究中,全面的資源和個性化的數據收集與分析是項目推進的基礎,研究的進程中共享研究資源、分享教育成果,使研究者與被研究者實現有效互動是研究成功的關鍵。為有效地整合資源,顯化數據,蘇州工業園區星海小學推出了「星海娃」自主申報、「四葉草」積點獎章、金點子徵集、小公民系列招募等個性化實踐案例,拓寬了評價體系,豐富了評價數據。與「星海娃」評價體系相配套,蘇州工業園區星海小學還創新出「四葉草」小公民實踐中心等多元評價支撐系統,並著手開發「星海師生成長檔案在線跟蹤平台」,該平台全面支持綠色評價體系,以開放共享的「雲」資源平台的無縫對接,消除學校、家庭及社會間的信息孤島,以電腦、手機、電視、平板等多終端實現了教師、學生、家長的輕松上傳與訪問,從而有力地促進了綠色評價研究資源的優化配置。[5]281-282蘇州工業園區星海小學項目建設試點的初步探索說明,數據實證讓教研更加准確,更為科學,「用證據支撐評價,用項目推進教研」成了校本教研的一條可行之路。

⑺ 如何通過抓取教育大數據來深化課堂教學改革

現代信息技術的發展為大數據的收集和分析提供了無限的可能,大數據時代的這一趨勢也對教育產生了巨大的影響:一方面,在科技理性的指導下,通過多維度收集學生行為的數據並進行模型建構,可以對學生的學習行為進行預測;另一方面,大數據時代的人文主義轉向使人們更關注教學活動的適應性,教育大數據的挖掘和利用可以更好地實現適應個人需求的定製化教學。

國際數據公司(IDC)認為大數據時代數據有4大特點——數據的規模大、價值大、數據流轉速度快以及數據類型多。大數據的挖掘和利用對教育——特別是課堂教學——產生著深遠的影響。學習科學家索耶認為:越來越多的學習將經過計算機中介發生, 並產生越來越多的數據,我們有必要運用這些數據分析什麼時候有效的學習正在發生。所以數據挖掘可以用於探究行為與學習之間的關系,如學習者的個體差異與學習行為之間有何關系,不同行為又會導致何種不同的學習結果等。2012年美國發布《通過教育數據挖掘和學習分析促進教與學》(Enhancing Teaching and Learning through Ecational Data Miningand Learning Analytics)提出大數據時代教育數據的特點:具有層級性、時序性和情境性,其中數據的層級性指,既收集教師層面的數據也收集學生層面的數據,既收集課堂數據也收集活動數據,為後期模型的建立提供了多維度的資源;數據的時序性是指,數據是實時的、連續的,為材料的前沿性提供了保障;而數據的情境性是指,數據是基於真實情境脈的,保證了模型的信度。

大數據技術能夠促進以學生為本的學習,數據不僅僅是科技理性指導下收集數據和擬合成模型,並針對學生的群體行為做出預測判斷,還可能在固有模型的基礎上,通過診斷學生在課堂中的行為表現,對固有模型進行修改,使課程內容更加適合學生的長尾需求,實現個性化教學。大數據的利用可以支持對教育活動行為的建模預測,還可能支持教育實踐中的適應性教學。前者是後者的基礎,後者是前者的深化。

建模與預測導向的大數據應用

大數據時代數據促進教育變革的方法之一是收集和分析處理數據,並進行預測。現如今,由於數據記錄、存儲與運算的便捷性,海量的、多層次的數據可以便捷地加以收集,由隨機抽樣帶來的誤差因此減小,建模和預測可以基於全數據和真實數據,因而就更為精確。大數據時代通過探求海量數據的相關關系獲得盈利的最成功的案例是亞馬遜的市場營銷,亞馬遜收集讀者網上查閱行為和購買行為數據,建立讀者偏愛閱讀模型,預測讀者購買的群體行為,實現書籍的推薦。近幾年,教育研究的對象逐漸關注學生的學習行為,其背後是一種學習觀的轉變,學習被視為一種識知的過程(knowing about),識知是一個活動,而不是將知識作為一個物品加以傳遞。識知總是境脈化的,而不是抽象的和脫離於具體情境的。識知是在個體與環境的互動中交互建構的,而不是客觀准確的,也不是主觀創造的。所以,學生的行為活動數據被認為是可以反映學生在學習過程這一情境化的動態變化進程中的情況。海量、多層次、連續的行為數據在收集後被擬合成模型,實現預測,如學習管理系統(LMS)的運用。然而,由於建模和預測依賴的基本原理為數理統計,其預判對象主要是學生的群體行為。

1.案例分析

學習管理系統(Learning Manage System)簡稱LMS,是基於網路的管理系統平台,用於監控學生學習活動行為,識別和預測學困生(student at-risk),並為其提供相應的幫助。大多數LMS包括5個部分:有和課程相關的學習資料、用於確保學生提交作業與完成測試的評價工具、用於溝通的交流工具(如郵件、聊天室等)、用於確保教師記錄和存儲學生的學習活動並發布活動截止日期的課程管理工具、用於幫助學生學習回顧和跟蹤學習進程的學習管理工具。在高校大量使用的BB(Blackboard)平台就是一個常見的學習管理系統。系統記錄了學生參與選修的網上課程的種類、在線時長、閱讀和瀏覽的文章數量,反映學習者的學習行為。2008年,Leah P.Macfadyen和Shane Dawson教授在加拿大不列顛哥倫比亞大學通過分析5個本科班級使用BB平台選修生物課的數據,建立了預測模型。平台記錄了學生課程材料的使用情況、參與學業交流情況和完成作業提交和考試情況。大數據時代教育數據記錄的層級性在這裏充分顯現,課程材料的使用包括記錄在線時長、郵件的閱讀時間、郵件的發送時間、討論信息的閱讀時間等。參與學業交流記錄了發布新討論的時間、回復討論的時間、使用搜索工具所花的時間、訪問個人信息的時間、文件的瀏覽時間、瀏覽誰同時在線的時間、瀏覽網頁連結的時間等等。評價模塊記錄了評價的閱讀時長和提交評價的時間等。通過應用統計工具描述散點圖,發現了在LMS記錄下學生在線時長和學業表現呈相關關系。在進行多元回歸時,研究者發現,學業成就處在後四分之一的學生在線時間略長於平均時間,而學業成就處於前四分之一的學生的在線學習時間低於平均水平。緊接著,研究人員為了作出預測,利用邏輯斯特回歸生成了一個預測模型,通過收集學生的新的行為數據,預測學生是否處於真正參與了學習活動,並得出如下結論:討論舉行的次數、郵件信息發送量和測評的完成情況這三個維度構成的模型可以預測學生的學業水平情況。

大數據時代,通過探求學生行為與學業水平之間的相關關系,建立模型,實現預測,能夠對課堂教學產生重要影響。然而,數據建模過程中,為了保證模型的效度與信度,極端個別數據被處理,使模型只能實現群體行為的預測,不能針對學習者個體實現定製化和個性化。

2.建模與預測的不足

數據建模與預測的背後充分體現了實證主義的思想和方法。19世紀上半葉,以孔德為代表的社會學家提出了實證主義的基本信條:利用觀察、分類,探求彼此的關系,得到科學定律。實證主義的哲學思潮到20世紀60年代,演變成一種科技理性,實踐知識逐漸染上了工具性的色彩,專業活動存在於工具性的解決問題之中,所有的專業活動都被視為釐定目標、套用已知的方法解決問題的過程。這一期間,大量的學科被系統地整合發展,甚至包括教育學和社會學這樣的「軟科學」。用證據解決未知的問題,用數據預測未來一時成為潮流。

學生活動行為數據的建模尤其側重體驗實證主義的思想,模型注重成功教學行為的共性,忽視教師與學生群體的獨特性需求時,科技理性的主導有可能使課堂教學被視為獨立於真實境脈的模塊,只要教學行為取得成功,就會被數據抽象化,形成模型,對學生群體行為產生預測。科技理性有賴於人們認同的共有目標,教學實踐目標的釐定極其復雜,包含巨大的不確定性和獨特性,甚至,由於社會角色的不同,還會帶來價值沖突。一個穩定的、為所有人所認同的目標不復存在,依據科技理性精神和方法推理預測的行為模式並不可能滿足每一個人的需求,教育變革在大數據時代下出現新的取向。

從數據模型到支持適應性學習

在數據建模的基礎上實現教學的適應性是大數據時代促進教育變革的另一成果。數據建模及行為預測依舊屬於科技理性指導下的行為模式,可能會造成忽視學生個性需求的現象,而個性化需求正是知識社會的重要特徵,個性化的教育也受到教育研究者、政策制定者和教育實踐者越來越多的關注。教育系統設計專家賴格盧斯認為,教育投入沒有達到效果的一個很重要的原因是忽視了社會的轉型。「社會已經從工業社會步入了資訊時代,勞動力市場對人才的要求不再是工業時代在流水線上操作的工人,而是具有創新性思維、決斷力強的知識性人才。」教學面臨從產生清一色的勞工轉向產生有判斷力和適應性能力的人群。2010年,OECD的報告《The Nature Of Learning》中指出,適應性能力(adaptive competence)是21世紀核心競爭力,包括在真實的境脈中靈活並有創造力地使用有意義的知識和技能。吳剛在《大數據時代的個性化教育:策略與實踐》中提出了個性化教育的必要性和必然性,指出「只有利用信息技術所提供的強大支持,才有可能真正實現個性化學習」。大數據時代的來臨,正是個性化教育發展的一個良好契機。2012年,美國頒布了《通過教育數據挖掘和學習分析促進教與學》,提出大數據時代,通過收集在線學習數據,對數據進行分類和探尋數據之間關聯的方式挖掘數據,形成數據模型。通過學生行為和模型的互動,形成適應性學習系統。概言之,我們可以以對行為數據的充分利用為基礎,改變教學的內容和進度,構建適應性評價和教學系統,充分實現教育的定製化,滿足學生的長尾需求。

1.案例分析:
適應性教學系統又稱適應性學習系統,(Adaptive Learning Support System),簡稱ALSS系統,強調基於資源的主動學習,認為學習不是知識的傳遞,而是學習者的自我建構。自上世紀90年代以來,研究者開發了不少適應性學習系統,如1998年De Bra開發的AHA系統,2003年,Brandsford和Smith開發的針對任務型學習的MLtutor系統,以及近幾年頗受關注的翻轉課堂(Flipped Classroom Model)簡稱FCM系統。

學習者學習相關學科內容時,學習行為被記錄跟蹤下來,學生的學習行為數據被傳送到後台,記錄在學習者資料庫內,作用於預測模塊。預測模塊通過改變內容傳遞模塊,再次作用於學習者。在整個過程中,教師、教學管理者起干涉作用。

適應性學習系統是一個交互的動態系統,系統往往會提供給學生一些學習行為建議。奧地利針對學生的問題解決的過程設計了一個適應性學習系統。適應性學習系統的第一步是教育數據挖掘(ecational data mining),簡稱EDM。數據挖掘的過程包括數據收集、數據預處理、應用數據的挖掘和詮釋評價發展結果。Moodle提出了CMS數據挖掘系統(Course Management System)。研究者先使用原始數據進行建模,第一步是原始數據的收集,原始數據大約包含2007年73名用戶產生的28000活動例子,2008年97名用戶產生的265000份解決問題的案例和2009年45名用戶產生的115000個活動案例。除了記錄學生解答問題時產生的數據,原始數據還收集了學生的信息、問題的信息和解決問題的步驟;在對數據進行分類後,歸納出問題解決的類型,利用很擅長擬合連續數據的Markvo Models(MMs)的一個子模型DMMs擬合了如上的連續性數據,通過添加判斷學生學習行為的結果模型和一系列監控和調節模塊,構成了整個面向問題解決的適應性系統。當學生使用這個模型時,模型會根據學生的行為數據為學生提供他們所偏愛的解決問題的過程與方法。

除了適應性教學系統,還有適應性評測系統。LON-CAPA(Learning Online Network with Computer-Assisted Personalized Approach)是一個計算機輔助的個性化網路學習測評平台,平台不提供課程設計和課程目標,而是一個教學工具。CAPA通過後台記錄學生的基本資料,學生參與的互動交流、學業情況,針對學業課程中的疑難點,提供個性化的考試資源。

2.適應性轉向的意義

在大數據時代,科技理性指導下的模型預判在面對結構不良的問題時顯得應對能力不足。科技理性指導下的數據建模忽視學習的真實境脈,只能支持群體行為的預判,模型的推廣可能會使人們忽視其實踐成功背後的個體經驗與具體情境,從而導致科技理性與哲學思辨對抗。然而,完全依靠哲學思辨和經驗進行教學不僅不利於教育學科系統理論性的發展,也不利於課堂實踐的管理與教師的培訓。唐納德·A.舍恩提出了一種適應性思維模式。他指出:「如果科技理性的模式在面對『多樣』的情境時,是無法勝任、不完整的,甚至更遭的話,那麼,讓我們重新尋找替代的、較符合實踐的、富有藝術性及直覺性的實踐認識。」適應性學習是在系統理論知識的指導下,針對個體差異,使學習內容和活動高度個性化的學習方式。

適應性平衡了理性與經驗的兩難,英國學者Hargreaves(1996)首次提出基於證據的教育研究向醫療診斷學靠攏。臨床診斷學和教育的相似之處在於,他們都要面對變動不居、極其復雜的環境,在這樣一個結構不良的系統中,充分意識到客體(患者或者學生)的獨特性與共性,利用系統的專業知識解決問題。

Ralf St. Clair教授在參考醫學臨床實踐研究的三要素後提出基於證據的教育研究的三要素——研究的證據、教育工作者的經驗、學習者的環境與特點。其中,行為預測關注的是研究的證據,而適應性學習系統的建設則關注的是教育工作者的經驗和學習者的環境與特點。

從預測行為到支持適應性教學的轉向,是一種人文主義的轉向,教育研究的重點從關注研究的證據走向關注教育工作者的經驗與學習環境特點,關注以證據支持個性化學習的實踐變革。證據不再是其在科技理性時代所處的指導決策的角色,而是被視作一種資源,教育工作者在大量的基於證據的課堂教學決策中找尋最適合自己特點和學生特點的方式,推進課堂教學流程。也就是說,大數據的更重要價值在於支持適應性學習,滿足個性化學習和個性化發展的時代需要。數據的預測功能依賴於大數據收集數據的全面性與處理數據的便捷性,根據統計學原理對群體行為做出預測,一定程度上弱化了個體特徵和具體情境。其主要指向行為預判。而適應性是在模型與客體的交互作用上改變模型,如圖3所示,數據的適應性運轉模型比預測模型多了一個循環(loop until)系統,使其更加契合個人需求,其主要指向實踐改進。預測是支持個性化學習的基礎,而支持個性化學習是預測功能的深化和轉化——從整體人群到個體學習者、從理論模型到實踐策略的轉化。

分析與啟示

大數據時代由於數據量大,數據收集與攜帶便捷,使海量學生行為數據被挖掘、收集,通過數據建模對學習者行為的分析變得比前大數據時代更為全面和可靠。數據時代在數據的挖掘和預測上固然潛力十足,但是大數據時代更多的價值是滿足學習者的適應性長尾需求,在預測行為的基礎上,修改教學模式,使之個性化與定製化。從數據建模走向支持適應性教學,支持對象從群體轉向了個人,對教育活動的影響從對行為的認識轉向了教育活動的實踐,從科技理性指導下的去境脈轉向了基於真實情境的教學活動。

走向適應性,不僅改變人類行為方式,更重要的是改變了認知方式。前大數據時代人們在科技理性的指導下完全被數據證據左右(driven by the data),教師和學生、教育決策者和學校形成傳統社會契約關系,當事人把自己百分之百地交給專業工作人員,而專業工作人員遵守契約,對當事人全心全意地負責,從而使專業工作人員享受至高無上的壟斷性地位。大數據時代,教師不再是知識的控制者,他通過參與學生的學習活動,根據學生的先擁知識和認知特點、個性需求,不斷地調整教學步驟、教學進度和難度。學生不用完全將自己有如病人交付給醫生一般完全託付給教師。在學習的過程中,通過與教師的互動交流,在教師的協助下,成為自己學習的主體,控制並對自己的學習負責。由於教師精力有限,大數據時代下網路計算機輔助學習系統可以為教師和學生提供輔助指導的機會。

盡管如此,一方面,我們要擁抱大數據給我們帶來的便捷的生活和高質量的教育,另一方面,我們需要保持警惕和防止因果關系和相關關系的誤用,並且維護數據安全。

在推理方面,教育工作者需要警惕將相關關系和因果關系誤用,以Leah P.Macfadyen教授的前述案例為例,BB平台在線時間的長短和學生的學業成就有相關關系,而非因果關系,成績優異的學生在線時間低於平均在線時間,但不能說低於平均在線時間的學習導致學生成績優異而要求學生減少在線學習時間。

此外,在信息安全方面,學生和教師的大量信息被收集和使用,在使用的過程中,必須制定相關私隱保護法,保證信息的安全,警惕數據濫用。學生的行為數據也不可以作為教師教學評優的依據,讓大數據真正成為支持教學變革、提升教學效能、促進學生發展的手段,而不是控制教師和學生的工具。

⑻ 大數據時代教師專業發展需要哪些支持

大數據時代特殊教育教師專業發展的機遇

1

打破「小樣本」的限制,特殊教育理論建構的跨越式發展將為特殊教育教師的專業發展提供全新的參照。由於特殊教育教師的人數比較少,專業發展的歷史比較短,專業發展的理論和實踐積累比較少,相對自身的發展,特殊兒童及其家庭對教育質量的訴求和需求卻是直線上升,兩者之間的落差要遠遠大於普通教育。然而,特殊教育的顯著特點是學生個體間和個體內部的差異比較大,這一特點導致特殊教育基礎研究只能以小樣本或個案的方式開展,極大地限制了特殊教育理論發展的速度,也制約了特殊教育理論和實踐的客觀性。大數據時代的一個重要轉變就是「利用所有數據,而不再僅僅依靠一小部分數據」。這一轉變將會把特殊教育的理論建構帶入到「樣本=總體」時代,每個特殊學生的學習過程、每個特殊教育教師的教學過程將超越「樣本」的局限,使特殊教育理論建構更快速、更准確、更系統,這將為特殊教育教師的專業提升提供接近特殊兒童發展實際的一套理論框架和實踐證據,從而使特殊教育教師的專業水平真正滿足特殊兒童發展的需要。

2

專業學習將突破時空限制,打破等級制的藩籬,讓特殊教育教師的專業學習進入「全民化」的時代。專業學習是教師專業發展的主要途徑之一,然而,由於特殊教育教師人數少、分布比較分散,導致日常的學習局限在某個狹小的區域里,與普通教育相比,特殊教育教師的學習機會和資源都比較缺乏。相對普通教師,特殊教育教師實踐操作的時間更多,相對而言,用於專業學習的時間被大大限制。大數據時代,數據收集及挖掘技術的運用,讓每個特殊教育教師都將成為專業理論建構的貢獻者,在海量的專業學習資源面前也都將獲得平等的機會,這些新的變化將促使特殊教育教師的專業發展的潛力逐步得到解放,並最終形成專業等級界限模糊、學習全民化的局面。

3

特殊教育教師自組織的發展狀態成為可能。自組織普遍存在於自然界,於人類社會,是生命系統、社會系統由無序向有序、由低級向高級演進的重要機制。教師的專業發展究其實質是使教師所從事的教育由無序向有序、由低級向高級發展。在傳統的特殊教育發展中,教師的專業發展要受到「等級制」的制約,專業發展的主動性受到壓抑,再加之特殊教育效果不易彰顯,特殊教育教師個體的專業發展自覺水平比較低,這種狀態又反過來制約了整個特殊教育教師專業持續發展的推動力。教師專業發展必須要關注到個體的需求,大數據時代的專業資源海量積累和有序呈現,以及數據挖掘技術的參與,將會更好地滿足個體的需求,當每個特殊教育教師都能根據教育服務對象的需求,獲得相關的專業支持的時候,教師的專業積極性將得到滿足,專業發展的成就容易得到彰顯,每個特教教師能在自身的工作里體驗到更多平等和價值感,這會增加特教教師對美好教育的嚮往,進而喚醒教師內在的教育潛能,促使教師在教育改革中實現專業發展。

4

特殊教育教師專業發展的評價將在行業內部真正實現。目前特殊教育教師的專業發展的評價囿於信息的不共享,只能在局部范圍內開展,導致行業內部無法形成公認的評價標准和評價方法,這樣的局面極大地阻礙了特殊教育教師的專業發展。但大數據時代的到來將會改變這一現狀,教育數據的採集渠道和方式越來越多樣化,並且非結構化數據所佔比例越來越高,所有人的教育實踐過程將被納入大數據系統中,在專業團體內部經過資源的選擇過程,將會出現淘汰和優化的局面,而此過程會將會把更符合學生心理特點、更符合社會情境的教育理念和方法優選出來,這種大數據下的評價機制,並沒有很明確的標准和方案,卻是最有效的評價機制。



四招助推大數據時代特殊教育教師專業發展

特殊教育教師的專業發展是一個系統工程,政策框架的搭建、社會氛圍的營造、專業自治的提高、學習方式的轉變都是影響專業發展的重要因素。大數據時代,如何利用好技術革新帶來的契機,使特殊教育教師專業實現跨越式發展,需要積極應對,未雨綢繆。

1

政策機制層面。大數據之所以能有誘人的價值,就在於數據的量足夠大,達到可以直接獲得總體的參數,但如果這些數據不能被准確收集、及時共享,大數據也將無從談起。特殊教育教師群體數量雖然不大,但由於教育對象的特殊性,個性化的數據積累量也是非常大的,制定專門政策,打破數據壁壘,教師個體之間、學校與學校之間、地區與地區之間、部門與部門之間形成數據共享,才能真正產生大數據,數據內部的價值才能被聚集和挖掘出來。當然,在大數據平台的建設中要提高數據的可信度,教育信息特別是特殊兒童的信息必須要准確才能具有參考的價值,否則將無法突破教育中個案教育的狀態,甚至還會造成資源的浪費。還有,要確保大數據平台能持續為特殊教育教師專業發展提供動力,以大數據為基礎,制定教師專業發展規劃,減少不必要的資源浪費,同時,需要制定信息相關的法律法規,確保特殊教育領域大數據的規范使用。

2

基礎設施層面。大數據時代是相對傳統的數據收集而言的,不僅體量巨大,更是信息的價值的巨大。要獲得如此大量的數據,必須要有數據收集的渠道和平台。這就要求我們順應大數據的發展趨勢,建立大數據獲取、分析和應用的平台,以學生為中心,建立學校—家庭—社區—社會的數據收集網路,建立數據分析中心和連接點,確保數據能被完整快速收集,同時數據能經過整理、挖掘,變成可視化的數據群,為特殊教育教師獲取所需教育信息、形成科學的決策提供支持。

3

專業文化層面。大數據時代是一種趨勢,不可阻擋。我們要從現在開始著手建設數據文化,樹立三種觀念:客觀、准確、及時。要在特殊教育領域提倡這些觀念。同時,教師要不斷提高數據意識和數據素質,掌握數據收集、分析、呈現、共享的基本技能,做大數據時代特殊教育專業知識的積極使用者和分享者。要做到這些,必須從現在開始,在培養特殊教育人才的高等院校進行積極的宣傳、推動,更為重要的是要在特教學校開始推進此項工作,在日常的工作中就要提倡用數據說話,讓數據開始深入人心。對於新進入的教師要設立門檻、確定目標,對於數據的分析能力要作為基本素質。當然,在特殊教育教師中推動數據文化時,也要注意不要讓過去界定未來,不要讓數據束縛人們對未來發展的認識和探索。

4

技術人才儲備。在大數據時代,誰能擁有大數據IT基礎設施人才,擁有大數據的深度分析人才,擁有大數據分析結果的運用管理人才,誰就占據了未來競爭的主動地位。大數據本質上是一種信息技術的產物,當其運用在特殊教育領域,為教師專業發展服務的時候,對專業人才的需求就被提上日程。專業技術人員的主要任務在於建設和維護特殊教育相關的大數據基礎設施,做好數據安全的把控

閱讀全文

與大數據時代教育平台相關的資料

熱點內容
炒股app有哪個 瀏覽:108
汽車鑰匙編程器哪個好 瀏覽:688
誤刪除文件怎麼恢復 瀏覽:885
360wifi擴展器版本升級 瀏覽:336
word批量刪除某個同一圖片logo 瀏覽:637
蘋果5應用需要證書 瀏覽:531
觸摸屏編程有哪些優勢 瀏覽:550
ps文件存儲環境 瀏覽:74
文件名怎麼改不了大小寫 瀏覽:613
眼睛驗光數據什麼樣算假近視 瀏覽:269
1在編程里代表什麼 瀏覽:193
密碼文件櫃哪裡便宜 瀏覽:949
box文件怎麼打開 瀏覽:114
線切割編程哪個好用 瀏覽:70
反詐app官方已下載怎麼注冊 瀏覽:496
安卓5flash游戲 瀏覽:895
什麼卡有免費微信提示 瀏覽:511
iphone看不了文件管理 瀏覽:783
數據包如何上傳寶貝 瀏覽:885
java獲得url參數 瀏覽:753

友情鏈接