⑴ 大數據需要學什麼
數據倉庫東西HIVE;大數據離線剖析Spark、Python言語;數據實時剖析Storm等都是學習大數據需要了解和掌握的。
大數據(bigdata),或稱巨量資料,指的是所涉及的資料量規模巨大到無法透過目前主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。
在維克托·邁爾-舍恩伯格及肯尼斯·庫克耶編寫的《大數據時代》中大數據指不用隨機分析法(抽樣調查)這樣捷徑,而採用所有數據進行分析處理。大數據歸納有五大特點:Volume(大量)、Velocity(高速)、Variety(多樣)、Value(低價值密度)、Veracity(真實性)。
大數據技術的戰略意義不在於掌握龐大的數據信息,而在於對這些含有意義的數據進行專業化處理。換而言之,如果把大數據比作一種產業,那麼這種產業實現盈利的關鍵,在於提高對數據的「加工能力」,通過「加工」實現數據的「增值」。
⑵ 大數據專業主要學什麼
大數據專業主要學:
1. Java編程技術
Java編程技術是大數據學習的基礎,Java是一種強類型語言,擁有極高的跨平台能力,可以編寫桌面應用程序、Web應用程序、分布式系統和嵌入式系統應用程序等,是大數據工程師最喜歡的編程工具,因此,想學好大數據,掌握Java基礎是必不可少的!
2.Linux命令
對於大數據開發通常是在Linux環境下進行的,相比Linux操作系統,Windows操作系統是封閉的操作系統,開源的大數據軟體很受限制,因此,想從事大數據開發相關工作,還需掌握Linux基礎操作命令。
3. Hadoop
Hadoop是大數據開發的重要框架,其核心是HDFS和MapRece,HDFS為海量的數據提供了存儲,MapRece為海量的數據提供了計算,因此,需要重點掌握,除此之外,還需要掌握Hadoop集群、Hadoop集群管理、YARN以及Hadoop高級管理等相關技術與操作!
4. Hive
Hive是基於Hadoop的一個數據倉庫工具,可以將結構化的數據文件映射為一張資料庫表,並提供簡單的sql查詢功能,可以將sql語句轉換為MapRece任務進行運行,十分適合數據倉庫的統計分析。對於Hive需掌握其安裝、應用及高級操作等。
5. Avro與Protobuf
Avro與Protobuf均是數據序列化系統,可以提供豐富的數據結構類型,十分適合做數據存儲,還可進行不同語言之間相互通信的數據交換格式,學大數據,需掌握其具體用法。
6.ZooKeeper
ZooKeeper是Hadoop和Hbase的重要組件,是一個為分布式應用提供一致性服務的軟體,提供的功能包括:配置維護、域名服務、分布式同步、組件服務等,在大數據開發中要掌握ZooKeeper的常用命令及功能的實現方法。
7. HBase
HBase是一個分布式的、面向列的開源資料庫,它不同於一般的關系資料庫,更適合於非結構化數據存儲的資料庫,是一個高可靠性、高性能、面向列、可伸縮的分布式存儲系統,大數據開發需掌握HBase基礎知識、應用、架構以及高級用法等。
8.phoenix
phoenix是用Java編寫的基於JDBC API操作HBase的開源SQL引擎,其具有動態列、散列載入、查詢伺服器、追蹤、事務、用戶自定義函數、二級索引、命名空間映射、數據收集、行時間戳列、分頁查詢、跳躍查詢、視圖以及多租戶的特性,大數據開發需掌握其原理和使用方法。
9. Redis
Redis是一個key-value存儲系統,其出現很大程度補償了memcached這類key/value存儲的不足,在部分場合可以對關系資料庫起到很好的補充作用,它提供了Java,C/C++,C#,PHP,JavaScript,Perl,Object-C,Python,Ruby,Erlang等客戶端,使用很方便。
10. Flume
Flume是一款高可用、高可靠、分布式的海量日誌採集、聚合和傳輸的系統,Flume支持在日誌系統中定製各類數據發送方,用於收集數據;同時,Flume提供對數據進行簡單處理,並寫到各種數據接受方(可定製)的能力。大數據開發需掌握其安裝、配置以及相關使用方法。
⑶ 大數據專業主要學什麼
要想學習大數據需要掌握以下幾個基本內容:
第一:計算機基礎知識。計算機基礎知識對於學習大數據技術是非常重要的,其中操作系統、編程語言和資料庫這三方面知識是一定要學習的。編程語言可以從Python開始學起,而且如果未來要從事專業的大數據開發,也可以從Java開始學起。計算機基礎知識的學習具有一定的難度,學習過程中要重視實驗的作用。
第二:數學和統計學基礎知識。大數據技術體系的核心目的是「數據價值化」,數據價值化的過程一定離不開數據分析,所以作為數據分析基礎的數學和統計學知識就比較重要了。數學和統計學基礎對於大數據從業者未來的成長空間有比較重要的影響,所以一定要重視這兩個方面知識的學習。
第三:大數據平台基礎。大數據開發和大數據分析都離不開大數據平台的支撐,大數據平台涉及到分布式存儲和分布式計算等基礎性功能,掌握大數據平台也會對於大數據技術體系形成較深的認知程度。對於初學者來說,可以從Hadoop和Spark開始學起。
⑷ 大數據具體學什麼
大數據分析挖掘與處理、移動開發與架構、軟體開發、雲計算等前沿技術等。
主修課程:面向對象程序設計、Hadoop實用技術、數據挖掘、機器學習、數據統計分析、高等數學、Python編程、JAVA編程、資料庫技術、Web開發、Linux操作系統、大數據平台搭建及運維、大數據應用開發、可視化設計與開發等。
大數據旨在培養學生系統掌握數據管理及數據挖掘方法,成為具備大數據分析處理、數據倉庫管理、大數據平台綜合部署、大數據平台應用軟體開發和數據產品的可視化展現與分析能力的高級專業大數據技術人才。
大數據崗位:
1、大數據系統架構師
大數據平台搭建、系統設計、基礎設施。
技能:計算機體系結構、網路架構、編程範式、文件系統、分布並行處理等。
2、大數據系統分析師
面向實際行業領域,利用大數據技術進行數據安全生命周期管理、分析和應用。
技能:人工智慧、機器學習、數理統計、矩陣計算、優化方法。
3、hadoop開發工程師
解決大數據存儲問題。
4、數據分析師
不同行業中,專門從事行業數據搜集、整理、分析,並依據數據做出行業研究、評估和預測的專業人員,在工作中通過運用工具,提取、分析、呈現數據,實現數據的商業意義。
5、數據挖掘工程師
做數據挖掘要從海量數據中發現規律,這就需要一定的數學知識,最基本的比如線性代數、高等代數、凸優化、概率論等,經常會用到的語言包括Python、Java、C或者C++。
⑸ 大數據專業主要學什麼
什麼是大數據?
在英文里被稱為big data,或稱為巨量資料,就是當代海量數據構成的一個集合,包括了我們在互聯網上的一切信息。
大數據能幹什麼?
通過對大數據的抽取,管理,處理,並整理成為幫助我們做決策。列如:應用以犯罪預測,流感趨勢預測,選舉預測,商品推薦預測等等
大數據專業需要學什麼?
因為涉及對海量數據的分析,離不開的就是數學,很多很多的數學。按照我們學習計劃的安排來看,我在大一大二期間就學了有:數學分析,線性代數,概率統計,應用統計學,離散數學,常微分。相比起其他計算機專業來說,我們確實要學很多數學。然後什麼公共課就不用多說了,如:大學英語,大學物理,思想政治,毛概等等。在專業課上,我們首先要學的就是C語言基礎,然後就是數據結構,Python基礎,Java面向對象程序設計,數據結構與演算法,數學建模,大數據等,簡直不要太多了,留給圖看看吧
未完待寫
接著上一次內容
學大數據能做什麼工作?
分為三個大類,第一是大數據系統研發類,第二是大數據應用開發類,第三是大數據分析類
大數據分析師:大數據分析師要學會打破信息孤島利用各種數據源,在海量數據中尋找數據規律,在海量數據中發現數據異常。負責大數據數據分析和挖掘平台的規劃、開發、運營和優化;根據項目設計開發數據模型、數據挖掘和處理演算法;通過數據探索和模型的輸出進行分析,給出分析結果。
大數據工程師: 主要是偏開發層面,指的是圍繞大數據系平台系統級的研發人員, 熟練Hadoop大數據平台的核心框架,能夠使用Hadoop提供的通用演算法, 熟練掌握Hadoop整個生態系統的組件如: Yarn,HBase、Hive、Pig等重要組件,能夠實現對平台監控、輔助運維系統的開發。
數據挖掘師/演算法工程師: 數據建模、機器學習和演算法實現,需要業務理解、熟悉演算法和精通計算機編程 。
數據架構師: 高級演算法設計與優化;數據相關系統設計與優化,有垂直行業經驗最佳,需要平台級開發和架構設計能力。
數據科學家:據科學家是指能採用科學方法、運用數據挖掘工具對復雜多量的數字、符號、文字、網址、音頻或視頻等信息進行數字化重現與認識,並能尋找新的數據洞察的工程師或專家(不同於統計學家或分析師)。一個優秀的數據科學家需要具備的素質有:懂數據採集、懂數學演算法、懂數學軟體、懂數據分析、懂預測分析、懂市場應用、懂決策分析等。
薪資待遇方面:
數據科學家->數據架構師==演算法工程師>大數據工程師>數據分析師
⑹ 大數據專業主要學什麼
大數據是近年來興起的一門新興學科,也是一門具有良好就業前景的專業。
大數據技術專業屬於交叉學科:統計學、數學和計算機是三大支撐學科;生物學、醫學、環境科學、經濟學、社會學和管理學是應用和拓展的學科。
此外,他們還需要學習數據採集、分析、處理軟體、數學建模軟體和計算機編程語言等。知識結構是第二學院的跨國界人才(具有專業知識和數據思維能力)。
以中國人民大學為例
基礎課程:數學分析、高等代數、普通物理、數學與信息科學概論、數據結構、數據科學概論、程序設計概論、程序設計實踐。
必修課程:離散數學、概率統計、演算法分析與設計、數據計算智能、資料庫系統介紹、計算機系統基礎、並行體系結構和編程、非結構化大數據分析。
選修:數據科學演算法概論,數據科學專題,數據科學實踐,網路實用開發技術,抽樣技術,統計學習,回歸分析,隨機過程。
大數據就業方向
1數據工程
畢業生可從事基於計算機、移動互聯網、電子信息、電子商務技術、電子金融、電子政務、軍事等領域的Java大數據分布式程序開發、應用和大數據集成平台開發,可在政府機關從事各類Java大數據工作,房地產、銀行、金融、移動互聯網等領域根據分布式開發、基於大數據平台的程序開發、數據可視化等相關工作,也可以從事IT領域的計算機應用。
2數據分析方向
畢業生可從事計算機、移動互聯網、電子信息、電子商務技術、電子金融、電子政務、軍事等領域的大數據平台和流計算核心技術的運維,可從事各類大數據平台運維工作,大數據分析等在政府機構、房地產、銀行、金融、移動互聯網等領域的大數據挖掘等相關工作也可以從事計算機在IT領域的應用。
⑺ 大數據專業主要學什麼
大數據專業一般指大數據採集與管理專業。 大數據採集與管理專業是從大數據應用的數據管理、系統開發、海量數據分析與挖掘等層面系統地幫助企業掌握大數據應用中的各種典型問題的解決辦法的專業。
⑻ 大數據需要學什麼課程
大數據專業開設的課程有很多,例如高等數學、數理統計、概率論;Python編程、JAVA編程、Web開發、Linux操作系統;面向對象程序設計、數據挖掘、機器學習資料庫技術、大數據平台搭建及運維、大數據應用開發、可視化設計與開發等。不同的院校對課程安排略有不同,這些課程旨在培養學生對系統管理和數據挖掘的方法,成為具備大數據分析處理、數據倉庫管理、平台綜合部署、大數據平台應用軟體開發和數據產品的可視化展現與分析能力的高級專業大數據技術人才。
大數據專業未來就業方向
1、大數據工程師
大數據工程師包涵了很多,比如大數據開發,測試,運維,挖據等等。
2、Hadoop開發工程師
參與優化改進數據平台基礎服務,參與日傳輸量超過百TB的數據傳輸體系優化,日處理量超過PB級別的數據處理平台改進,多維實時查詢分析系統的構建優化。
3、大數據研發工程師
構建分布式大數據服務平台,參與和構建包括海量數據存儲、離線/實時計算、實時查詢,大數據系統運維等系統;服務各種業務需求,服務日益增長的`業務和數據量。
4、大數據分析師
利用數據挖掘等工具對多種數據源進行診斷分析,建設徵信分析模型並優化;負責項目的需求調研、通過對運行數據進行分析挖掘背後隱含的規律及對未來的預測。