導航:首頁 > 網路數據 > 大數據實例講解

大數據實例講解

發布時間:2023-03-01 20:33:52

大數據的四個特點舉例

大數據是什麼?其實很簡單,大數據其實就是海量資料巨量資料,這些巨量資料來源於世界各地隨時產生的數據,在大數據時代,任何微小的數據都可能產生不可思議的價值。大數據有4個特點,為別為:Volume(大量)、Variety(多樣)、Velocity(高速)、Value(價值),一般我們稱之為4V。
大數據

所謂4V,具體指如下4點:

1.大量。大數據的特徵首先就體現為「大」,從先Map3時代,一個小小的MB級別的Map3就可以滿足很多人的需求,然而隨著時間的推移,存儲單位從過去的GB到TB,乃至現在的PB、EB級別。隨著信息技術的高速發展,數據開始爆發性增長。社交網路(微博、推特、臉書)、移動網路、各種智能工具,服務工具等,都成為數據的來源。淘寶網近4億的會員每天產生的商品交易數據約20TB;臉書約10億的用戶每天產生的日誌數據超過300TB。迫切需要智能的演算法、強大的數據處理平台和新的數據處理技術,來統計、分析、預測和實時處理如此大規模的數據。

2.多樣。廣泛的數據來源,決定了大數據形式的多樣性。任何形式的數據都可以產生作用,目前應用最廣泛的就是推薦系統,如淘寶,網易雲音樂、今日頭條等,這些平台都會通過對用戶的日誌數據進行分析,從而進一步推薦用戶喜歡的東西。日誌數據是結構化明顯的數據,還有一些數據結構化不明顯,例如圖片、音頻、視頻等,這些數據因果關系弱,就需要人工對其進行標注。
大數據

3.高速。大數據的產生非常迅速,主要通過互聯網傳輸。生活中每個人都離不開互聯網,也就是說每天個人每天都在向大數據提供大量的資料。並且這些數據是需要及時處理的,因為花費大量資本去存儲作用較小的歷史數據是非常不劃算的,對於一個平台而言,也許保存的數據只有過去幾天或者一個月之內,再遠的數據就要及時清理,不然代價太大。基於這種情況,大數據對處理速度有非常嚴格的要求,伺服器中大量的資源都用於處理和計算數據,很多平台都需要做到實時分析。數據無時無刻不在產生,誰的速度更快,誰就有優勢。

4.價值。這也是大數據的核心特徵。現實世界所產生的數據中,有價值的數據所佔比例很小。相比於傳統的小數據,大數據最大的價值在於通過從大量不相關的各種類型的數據中,挖掘出對未來趨勢與模式預測分析有價值的數據,並通過機器學習方法、人工智慧方法或數據挖掘方法深度分析,發現新規律和新知識,並運用於農業、金融、醫療等各個領域,從而最終達到改善社會治理、提高生產效率、推進科學研究的效果。

大數據

在大數據時代,每個人都會享受到大數據所帶來的便利。買東西可以足不出戶;有急事出門可以不用再隨緣等計程車;想了解天下事只需要動動手指。雖然大數據會產生個人隱私問題,但總的來說,大數據還是在不斷的改善我們的生活,讓生活更加方便

⑵ 生活中的大數據有哪些例子

一、在金融行業的應用

金融行業應該是運用大數據技術最頻繁的一個行業,證券和銀行經常會運用大數據技術進行數據分析,通過對數據的監控和分析,有效規避風險。

金融行業面臨的行業挑戰有很多,證券欺詐預警,超高金融分析,信用卡欺詐和企業信用風險等一系列數據數據風險挑戰,行業內面臨的種種問題,都需要大數據發揮其預測的核心功能,有效規避風險。

二、在娛樂媒體的運用

大數據行業在各個行業都有涉足,舉一個簡單的例子,通過社交媒體明星粉絲數量分析和行業內新聞動態,可以預測影視視頻的播放量和受喜愛程度;通過智能產品的點擊數量和瀏覽量,可以推測用戶的個性偏好,並且推薦其喜愛的產品。

前段時間大火的美劇《紙牌屋》,通過大數據分析,選取適合網友的視頻偏好和明星選擇,造成轟動的播放量。大數據在社交媒體和娛樂行業的大數據分析,一部分也在引導觀眾和粉絲,讓其為娛樂產業消費。

三、在醫療行業的運用

iPhone用戶手機上都有這個功能,通過健康APP里的健康步數統計和鍛煉情況,為你記錄你的健康狀況,並且預測可能發生的疾病,這就是在運用大數據技術,通過一系列的記錄分析,預測可能要發生的事情並且及時解決。

醫療行業可以通過用戶的身體情況和大量病例數據,分析提高醫療行業的監控力度,並且進行有效檢測,降低用戶的患病率。

四、提高體育成績

現在很多運動員在訓練的時候應用大數據技術來分析。很多精英運動隊還追蹤比賽環境外運動員的活動-通過使用智能技術來追蹤其營養狀況以及睡眠,以及社交對話來監控其情感狀況。

五、醫療保健

大數據可以更好的去理解和預測疾病。人們戴上智能手錶等可以產生的數據一樣,大數據同樣可以幫助病人對於病情進行更好的治療。大數據可以幫助我們實現流行病預測、智慧醫療、健康管理,同時還可以幫助我們解讀DNA,了解更多的生命奧秘。

大數據技術目前已經在醫院應用監視早產嬰兒和患病嬰兒的情況,通過記錄和分析嬰兒的心跳,醫生針對嬰兒的身體可能會出現不適症狀做出預測。

⑶ 大數據應用案例有哪些

案例如下:

1、交通大數據暢通出行

交通作為人類行為的重要組成和重要條件之一,對於大數據的感知也是最急迫的。近年來,我國的智能交通已實現了快速發展,許多技術手段都達到了國際領先水平。交通的大數據應用主要在兩個方面,一方面可以利用大數據感測器數據來了解車輛通行密度,合理進行道路規劃包括單行線路規劃。另一方面可以利用大活數據來實現即時信號燈調度,提高已有線路運行能力。

2、教育大數據因材施教

在課堂上,數據不僅可以幫助改善教育教學,在重大教育決策制定和教育改革方面,大數據更有用武之地。利用數據來診斷處在輟學危險期的學生、探索教育開支與學生學習成績提升的關系、探索學生缺課與成績的關系。

3、環保大數據對抗PM2.5

在美國NOAA(國家海洋暨大氣總署)其實早就在使用大數據業務。每天通過衛星、船隻、飛機、浮標、感測器等收集超過35億份觀察數據。收集完畢後,NOAA會匯總大氣數據,海洋數據,以及地質數據,進行直接測定,繪制出復雜的高保真預測模型,將其提供給NWS(國家氣象局)做出氣象預報的參考數據。


大數據特點

1、大容量

例如,IDC最近的報告預測到2020年,世界數據量將擴大50倍.目前,大數據的規模仍然是不斷變化的指標,單一數據集的規模範圍從數十TB到數PB不同.簡單來說,存儲1PB數據需要2萬台配備50GB硬碟的PC.此外,各種意想不到的來源可以產生數據。

2、多樣性

數據多樣性的增加主要是由於網路日誌、社交媒體、網路檢索、手機通話記錄、感測器網路等數據類型。

3、高速

高速描述的是數據創建和移動的速度.在高速網路時代,通過實現軟體性能優化的高速計算機處理器和伺服器,創建實時數據流已成為流行趨勢.企業不僅要知道如何快速創建數據,還要知道如何快速處理、分析和返回用戶,以滿足他們的實時需求。

⑷ 有哪些大數據分析案例

三個領域大數據應用案例分析
1、無人駕駛汽車。汽車非常昂貴,然而在歐洲,人們只有4%的時間在使用汽車,96%的時間把車停在停車場,這是非常不高效的系統。如果未來普及了無人駕駛的汽車,我們就可以過上另一種生活。
我們將只需要在手機上點一個按鍵,車就會自己開過來,把我們帶去目的地。這種車就像沒有駕駛員的計程車,可以被反復使用,效率和可持續性都得到了提升,也避免了資源浪費。
有研究發現,如果自動機動車得到普及,可以減少25%的交通擁堵,減少30%的城市停車場面積。如果北京減少30%的停車場需求,城市生活將大不一樣。
2、醫療行業。我們的壽命現在都比較長了,但仍然希望能夠更長。現在,我們的醫療水平並不是很好,由於我們忽視了每一個人的個體差異,醫生會用通常的方法治療每一個人。然而,基於大數據,我們可以做精確醫療,通過大數據分析每個人的差異,進行精確的治療、劑量、用量,讓患者更快恢復健康。
3、教育行業。我們要讓下一代有能力了解這個世界。然而,因為沒有數據,我們難以做到因材施教,所有孩子獲得同樣的教學,學習同樣的書本。低效率的教學就是在浪費腦力、知識和我們解決問題的能力。
如果我們用大數據去分析孩子在發展學習能力時遇到的問題,就可以進行個性化的學習,就可以釋放知識和理解力的力量,讓每一個孩子充分開發潛能。
-

⑸ 關於大數據應用有什麼例子

大數據應用實例:

1、關能源行業大數據應用

計算居民用電量。

2、職業籃球賽大數據應用

專業籃球隊會通過搜集大量數據來分析賽事情況,然而他們還在為這些數據的整理和實際意義而發愁。通過分析這些數據,找到對手的弱點。

3、保險行業大數據應用

集中處理所有的客戶信息。

⑹ 大數據時代,幾個例子告訴你什麼叫大數據

例子:比如,阿里來每天都在收集源每一個淘寶用戶的各個方面的信息參考(千人千面)。然後再用大數據演算法來推薦給你現在需要的產品,或者廣告,這個就是大數據。我說的是最淺顯的一種大數據。 大數據就沒有隱私,手機里的APP都回收集你的一切的數據,一切的數據,這樣呢,你在淘寶上看了看一款手機,那麼當你關了淘寶,打開了今日頭條,你如果注意的話,你會發現,頭條今日推薦你的廣告就是手機,文章內容也會偏向手機之內的。這就是大數據。

⑺ 有哪些大數據分析案例

如下:

1. 大數據應用案例之:醫療行業

1)Seton Healthcare是採用IBM最新沃森技術醫療保健內容分析預測的首個客戶。該技術允許企業找到大量病人相關的臨床醫療信息,通過大數據處理,更好地分析病人的信息。

在加拿大多倫多的一家醫院,針對早產嬰兒,每秒鍾有超過3000次的數據讀取。通過這些數據分析,醫院能夠提前知道哪些早產兒出現問題並且有針對性地採取措施,避免早產嬰兒夭折。

它讓更多的創業者更方便地開發產品,比如通過社交網路來收集數據的健康類App。也許未來數年後,它們搜集的數據能讓醫生給你的診斷變得更為精確,比方說不是通用的成人每日三次一次一片,而是檢測到你的血液中葯劑已經代謝完成會自動提醒你再次服葯。

2)大數據配合喬布斯癌症治療

喬布斯是世界上第一個對自身所有DNA和腫瘤DNA進行排序的人。為此,他支付了高達幾十萬美元的費用。他得到的不是樣本,而是包括整個基因的數據文檔。醫生按照所有基因按需下葯,最終這種方式幫助喬布斯延長了好幾年的生命。

2. 大數據應用案例之:能源行業

1)智能電網現在歐洲已經做到了終端,也就是所謂的智能電表。在德國,為了鼓勵利用太陽能,會在家庭安裝太陽能,除了賣電給你,當你的太陽能有多餘電的時候還可以買回來。

通過電網收集每隔五分鍾或十分鍾收集一次數據,收集來的這些數據可以用來預測客戶的用電習慣等,從而推斷出在未來2~3個月時間里,整個電網大概需要多少電。有了這個預測後,就可以向發電或者供電企業購買一定數量的電。

因為電有點像期貨一樣,如果提前買就會比較便宜,買現貨就比較貴。通過這個預測後,可以降低采購成本。

2)丹麥的維斯塔斯風能系統(Vestas Wind Systems)運用大數據,系統依靠的是BigInsights軟體和IBM超級計算機,分析出應該在哪裡設置渦輪發電機,事實上這是風能領域的重大挑戰。在一個風電場20多年的運營過程中,准確的定位能幫助工廠實現能源產出的最大化。

為了鎖定最理想的位置,Vestas分析了來自各方面的信息:風力和天氣數據、湍流度、地形圖、公司遍及全球的2.5萬多個受控渦輪機組發回的感測器數據。這樣一套信息處理體系賦予了公司獨特的競爭優勢,幫助其客戶實現投資回報的最大化。

3. 大數據應用案例之:通信行業—通過大數據分析挽回核心客戶

法國電信-Orange集團旗下的波蘭電信公司Telekomunikacja Polska是波蘭最大的語音和寬頻固網供應商,希望有效的途徑來准確預測並解決客戶流失問題。

他們決定進行客戶細分,方法是構建一張「社交圖譜」- 分析客戶數百萬個電話的數據記錄,特別關注 「誰給誰打了電話」以及「打電話的頻率」兩個方面。「社交圖譜」把公司用戶分成幾大類,如:「聯網型」、「橋梁型」、「領導型」以及「跟隨型」。

這樣的關系數據有助電信服務供應商深入洞悉一系列問題,如:哪些人會對可能「棄用」公司服務的客戶產生較大的影響?挽留最有價值客戶的難度有多大?運用這一方法,公司客戶流失預測模型的准確率提升了47%。

4、大數據應用案例之:零售業—大數據幫零售企業制定促銷策略

北美零售商百思買在北美的銷售活動非常活躍,產品總數達到3萬多種,產品的價格也隨地區和市場條件而異。由於產品種類繁多,成本變化比較頻繁,一年之中,變化可達四次之多。

結果,每年的調價次數高達12萬次。最讓高管頭疼的是定價促銷策略。公司組成了一個11人的團隊,希望透過分析消費者的購買記錄和相關信息,提高定價的准確度和響應速度。

定價團隊的分析圍繞著三個關鍵維度:

1)數量:團隊需要分析海量信息。他們收集了上千萬的消費者的購買記錄,從客戶不同維度分析,了解客戶對每種產品種類的最高接受能力,從而為產品定出最佳價位。

2)多樣性:團隊除了分析了購買記錄這種結構化的數據外,他們也利用社交媒體發帖這種新型的非結構化數據。由於消費者需要在零售商專頁上點贊或留言以獲得優惠券,團隊利用情感分析公式來分析專頁上消費者的情緒,從而判斷他們對於公司的促銷活動是否滿意,並微調促銷策略。

3)速度:為了實現價值最大化,團隊對數據進行實時或近似實時的處理。他們成功地根據一個消費者既往的麥片購買記錄,為身處超市麥片專櫃的他/她即時發送優惠券,為客戶帶來便利性和驚喜。

透過這一系列的活動,團隊提高了定價的准確度和響應速度,為零售商新增銷售額和利潤數千萬美元。

5、大數據應用案例之:網路營銷行業(SEM)

很多企業在做SEM的過程中,都有這樣的感觸:每年都會花費大量的預算在SEM推廣中,但是因為關鍵詞投入產出無法可視化,常常花了很多錢卻不見具體的回報。

在競爭如此激烈的SEM市場中,企業需要一個高效的數據分析工具來盡可能地幫企業優化SEM推廣,例如BDP,來幫企業節省不必要的支出,提升整體的經營績效。

企業可藉助數據平台提供的網路營銷整合解決方案,打通各個搜索引擎營銷(SEM)、在線客服系統和CRM系統,營銷競價人員無需掌握復雜的編程技術,簡單拖拽即可生成報表,觀察每一個關鍵詞的投入和產出,分析每一個頁面的轉化,有效降低投放成本。

通過BDP實況分析數據,可以快速洞悉對手關鍵詞的投放時段、地域及排名,並對其進行可視化的分析,實時監控自己和競爭對手的投放情況,了解對手的投放策略,支持自定義設置數據更新的時間點、監控頻次和時段,及時調整策略。知已知彼,才能百戰不殆。

6、大數據應用案例之:電商行業

意料之外:胸部最大的是新疆妹子。曾經淘寶平台顯示,中國女性購買最多的文胸尺碼為B罩杯。B罩杯佔比達41.45%,其中又以75B的銷量最好,其次是A罩杯,購買佔比達25.26%,C罩杯只有8.96%。

雖然淘寶數據平台不能代表一切,但是結合現實來看,這個也具有普遍的代表性,只能感慨中國女性普遍size。在文胸顏色中,黑色最為暢銷,黑色絕對是百搭,每個女性必備。

從省市排名,胸部最大的是新疆妹子。這些數據都對於文胸店鋪而言是很好的參考,為店鋪的庫存、定價、款式選擇等策略都有奠定數據基礎。

7、大數據應用案例之:娛樂行業

微軟大數據成功預測奧斯卡21項大獎。2013年,微軟紐約研究院的經濟學家大衛•羅斯柴爾德(David Rothschild)利用大數據成功預測24個奧斯卡獎項中的19個,成為人們津津樂道的話題。

今年羅斯柴爾德再接再厲,成功預測第86屆奧斯卡金像獎頒獎典禮24個獎項中的21個,繼續向人們展示現代科技的神奇魔力。

總的來說,大數據的終極目標並不僅僅是改變競爭環境,而是徹底扭轉整個競爭環境,帶來新機遇,企業需要應勢而變。企業只有認識到這一點,使用合適的數據分析產品、聰明地使用和管理數據,才能在長期競爭中成為終極贏家。

⑻ 什麼是大數據,通俗的講

有人說大數據技術是第四次技術革命,這個說法其實不為過。
很多人只是聽過大數據這個詞或者是簡單知道它是什麼,那麼它是什麼呢,在這里就通俗點來說一下個人對大數據的理解。
大數據,很明顯從字面上理解就是大量的數據,海量的數據。大,意思就是數據的量級很大,不上TB都不好意思說是大數據。數據,狹義上理解就是12345那麼些數據,畢竟計算機底層是二進制來存的,那麼在大數據領域,數據就不僅僅包括數字這些,它可以是所有格式的東西,比如日誌,音頻視頻,文件等等。
所以,大數據從字面上理解就是海量的數據,技術上它包括這些海量數據的採集,過濾,清洗,存儲,處理,查看等等部分,每一個部分包括一些大數據的相關技術框架來支持。
舉個例子,淘寶雙十一的總交易額的顯示,後面就是大數據技術的支持,全國那麼多淘寶用戶的交易記錄匯聚到一起,數據量很大,而且要做到實時的展現,就需要強有力的大數據技術來處理了。
數據量一大,那麼得找地方來存,一個伺服器硬碟可以掛多少,肯定滿足不了這么大的數據量存儲啊,所以,分布式的存儲系統應運而生,那就是HDFS分布式文件系統。簡單的說,就是把這么大的數據分開存在甚至幾百甚至幾千台伺服器上,那麼管理他們的系統就是HDFS文件系統,也是大數據技術的最基本的組件。
有地方存了,需要一些分布式的資料庫來管理查詢啊,那就有了Hbase等,還需要一些組件來計算分析這些數據啊,maprece是最基本的計算框架,其他的計算框架Spark和Storm可以完成實時的處理,其中HDFS和MapRece組成了Hadoop1.
總之,一切都是數據。我們的歷史,是不是都是大量的數據保存下來的,現在我們也是大數據的生活,天天有沒有接到騷擾電話還知道你姓什麼,你查話費什麼的從幾億人的數據中查到你的信息,大數據生活。未來,大數據將更深刻的滲透到生活中。

⑼ 什麼是大數據,大數據的典型案例有哪些

隨著大數據時代的到來,大數據早已被逐步的運用在我們生活中的方方面面,那麼除了之前眾所周知的大數據殺熟事件,對於大數據你還了解多少呢?科學運用案例你又知道多少?今天就跟隨千鋒小編一起來看看。
洛杉磯警察局和加利福尼亞大學合作利用大數據預測犯罪的發生。
google流感趨勢(Google Flu Trends)利用搜索關鍵詞預測禽流感的散布。
統計學家內特.西爾弗(Nate Silver)利用大數據預測2012美國選舉結果。
麻省理工學院利用手機定位數據和交通數據建立城市規劃。
梅西百貨的實時定價機制,根據需求和庫存的情況,該公司基於SAS的系統對多達7300萬種貨品進行實時調價。
……
種種的案例實在是太多,或許我們永遠說不完一樣,所以我們就來看一看大數據被科學運用的一個經典案例:

「啤酒與尿布」的故事產生於20世紀90年代的美國沃爾瑪超市中,沃爾瑪的超市管理人員分析銷售數據時發現了一個令人難於理解的現象:在某些特定的情況下,「啤酒」與「尿布」兩件看上去毫無關系的商品會經常出現在同一個購物籃中,這種獨特的銷售現象引起了管理人員的注意,經過後續調查發現,這種現象出現在年輕的父親身上。
如果這個年輕的父親在賣場只能買到兩件商品之一,則他很有可能會放棄購物而到另一家商店,直到可以一次同時買到啤酒與尿布為止。沃爾瑪發現了這一獨特的現象,開始在賣場嘗試將啤酒與尿布擺放在相同的區域,讓年輕的父親可以同時找到這兩件商品,並很快地完成購物;而沃爾瑪超市也可以讓這些客戶一次購買兩件商品、而不是一件,從而獲得了很好的商品銷售收入,這就是「啤酒與尿布」 故事的由來。
當然「啤酒與尿布」的故事必須具有技術方面的支持。1993年美國學者Agrawal提出通過分析購物籃中的商品集合,從而找出商品之間關聯關系的關聯演算法,並根據商品之間的關系,找出客戶的購買行為。艾格拉沃從數學及計算機演算法角度提 出了商品關聯關系的計算方法——Aprior演算法。沃爾瑪從上個世紀 90 年代嘗試將 Aprior 演算法引入到 POS機數據分析中,並獲得了成功,於是產生了「啤酒與尿布」的故事。
其實大數據,其影響除了以上列舉的方面外,它同時也能在經濟、政治、文化等方面產生深遠的影響,大數據可以幫助人們開啟循「數」管理的模式,也是我們當下「大社會」的集中體現,三分技術,七分數據,得數據者得天下。

⑽ 大數據時代的案例分析

個案一
你開心他就買你焦慮他就拋
華爾街「德溫特資本市場」公司首席執行官保羅·霍廷每天的工作之一,就是利用電腦程序分析全球3.4億微博賬戶的留言,進而判斷民眾情緒,再以「1」到「50」進行打分。根據打分結果,霍廷再決定如何處理手中數以百萬美元計的股票。
霍廷的判斷原則很簡單:如果所有人似乎都高興,那就買入;如果大家的焦慮情緒上升,那就拋售。
這一招收效顯著——當年第一季度,霍廷的公司獲得了7%的收益率。
個案二
國際商用機器公司(IBM)估測,這些「數據」值錢的地方主要在於時效。對於片刻便能定輸贏的華爾街,這一時效至關重要。曾經,華爾街2%的企業搜集微博等平台的「非正式」數據;如今,接近半數企業採用了這種手段。
●「社會流動」創業公司在「大數據」行業生機勃勃,和微博推特是合作夥伴。它分析數據,告訴廣告商什麼是正確的時間,誰是正確的用戶,什麼是應該發表的正確內容,備受廣告商熱愛。
●通過喬希·詹姆斯的Omniture(著名的網頁流量分析工具)公司,你可以知道有多少人訪問你的網站,以及他們呆了多長時間——這些數據對於任何企業來說都至關重要。詹姆斯把公司賣掉,進賬18億美元。
●微軟專家吉拉德喜歡把這些「大數據」結果可視化:他把客戶請到辦公室,將包含這些公司的數據圖譜展現出來——有些是普通的時間軸,有些像蒲公英,有些則是鋪滿整個畫面的泡泡,泡泡中顯示這些客戶的粉絲正在談論什麼話題。
●「臉譜」數據分析師傑弗遜的工作就是搭建數據分析模型,弄清楚用戶點擊廣告的動機和方式。
處理和分析工具
用於分析大數據的工具主要有開源與商用兩個生態圈。
開源大數據生態圈:
1、Hadoop HDFS、HadoopMapRece, HBase、Hive 漸次誕生,早期Hadoop生態圈逐步形成。
2、. Hypertable是另類。它存在於Hadoop生態圈之外,但也曾經有一些用戶。
3、NoSQL,membase、MongoDb
商用大數據生態圈:
1、一體機資料庫/數據倉庫:IBM PureData(Netezza), OracleExadata, SAP Hana等等。
2、數據倉庫:TeradataAsterData, EMC GreenPlum, HPVertica 等等。
3、數據集市:QlikView、 Tableau 、 以及國內的Yonghong Data Mart 。

閱讀全文

與大數據實例講解相關的資料

熱點內容
哪些紅頭文件的抬頭下面是雙紅線 瀏覽:638
炒股app有哪個 瀏覽:108
汽車鑰匙編程器哪個好 瀏覽:688
誤刪除文件怎麼恢復 瀏覽:885
360wifi擴展器版本升級 瀏覽:336
word批量刪除某個同一圖片logo 瀏覽:637
蘋果5應用需要證書 瀏覽:531
觸摸屏編程有哪些優勢 瀏覽:550
ps文件存儲環境 瀏覽:74
文件名怎麼改不了大小寫 瀏覽:613
眼睛驗光數據什麼樣算假近視 瀏覽:269
1在編程里代表什麼 瀏覽:193
密碼文件櫃哪裡便宜 瀏覽:949
box文件怎麼打開 瀏覽:114
線切割編程哪個好用 瀏覽:70
反詐app官方已下載怎麼注冊 瀏覽:496
安卓5flash游戲 瀏覽:895
什麼卡有免費微信提示 瀏覽:511
iphone看不了文件管理 瀏覽:783
數據包如何上傳寶貝 瀏覽:885

友情鏈接