A. 大數據是怎麼定義的,大數據包括什麼
最早提出大數據的是麥肯錫公司,當時的定義是:
滲透在每一個行業和業務領域的數據,通過人們對這些海量數據的挖掘和運用,產生出一波新的生產率增長和消費者盈餘浪潮。
後來麥肯錫全球研究所給出的定義是:
一種規模大到在獲取、存儲、管理、分析方面大大超出了傳統資料庫軟體工具能力范圍的數據集合,具有海量的數據規模、快速的數據流轉、多樣的數據類型和價值密度低四大特徵。
研究機構Gartner給出了這樣的定義:
「大數據」是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力來適應海量、高增長率和多樣化的信息資產。
網路的定義:
指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,所涉及的數據資料量規模巨大到無法通過人腦甚至主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。
簡單理解為:
"大數據"是一個體量特別大,數據類別特別大的數據集,並且這樣的數據集無法用傳統資料庫工具對其內容進行抓取、管理和處理。簡單的說就是超級存儲,海量數據上傳到雲平台後,大數據就會對數據進行深入分析和挖掘。
B. 大數據包括哪些
大數據技術龐大復雜,基礎的技術包含數據的採集、數據預處理、分布式存儲、NoSQL數據內庫、容數據倉庫、機器學習、並行計算、可視化等各種技術范疇和不同的技術層面。
大數據主要技術組件:Hadoop、HBase、kafka、Hive、MongoDB、Redis、Spark 、Storm、Flink等。
大數據技術包括數據採集,數據管理,數據分析,數據可視化,數據安全等內容。數據的採集包括感測器採集,系統日誌採集以及網路爬蟲等。數據管理包括傳統的資料庫技術,nosql技術,以及對於針對大規模數據的大數據平台,例如hadoop,spark,storm等。數據分析的核心是機器學習,當然也包括深度學習和強化學習,以及自然語言處理,圖與網路分析等。
C. 什麼是大數據,通俗的講
有人說大數據技術是第四次技術革命,這個說法其實不為過。
很多人只是聽過大數據這個詞或者是簡單知道它是什麼,那麼它是什麼呢,在這里就通俗點來說一下個人對大數據的理解。
大數據,很明顯從字面上理解就是大量的數據,海量的數據。大,意思就是數據的量級很大,不上TB都不好意思說是大數據。數據,狹義上理解就是12345那麼些數據,畢竟計算機底層是二進制來存的,那麼在大數據領域,數據就不僅僅包括數字這些,它可以是所有格式的東西,比如日誌,音頻視頻,文件等等。
所以,大數據從字面上理解就是海量的數據,技術上它包括這些海量數據的採集,過濾,清洗,存儲,處理,查看等等部分,每一個部分包括一些大數據的相關技術框架來支持。
舉個例子,淘寶雙十一的總交易額的顯示,後面就是大數據技術的支持,全國那麼多淘寶用戶的交易記錄匯聚到一起,數據量很大,而且要做到實時的展現,就需要強有力的大數據技術來處理了。
數據量一大,那麼得找地方來存,一個伺服器硬碟可以掛多少,肯定滿足不了這么大的數據量存儲啊,所以,分布式的存儲系統應運而生,那就是HDFS分布式文件系統。簡單的說,就是把這么大的數據分開存在甚至幾百甚至幾千台伺服器上,那麼管理他們的系統就是HDFS文件系統,也是大數據技術的最基本的組件。
有地方存了,需要一些分布式的資料庫來管理查詢啊,那就有了Hbase等,還需要一些組件來計算分析這些數據啊,maprece是最基本的計算框架,其他的計算框架Spark和Storm可以完成實時的處理,其中HDFS和MapRece組成了Hadoop1.
總之,一切都是數據。我們的歷史,是不是都是大量的數據保存下來的,現在我們也是大數據的生活,天天有沒有接到騷擾電話還知道你姓什麼,你查話費什麼的從幾億人的數據中查到你的信息,大數據生活。未來,大數據將更深刻的滲透到生活中。