⑴ 大數據如何給企業創造實際價值
第一,通過大數據分析,各行各業都能更快地對變革進行跟蹤,響應全球經濟快速的變化。
第二,在全球金融經濟危機的狀態下,通過數據分析,能夠更好地理解整個經濟危機行為的演變。
第三,能夠更好地滿足大眾和企業服務的需求,而且可以預測市場的變化。
而從大數據利用的方式上,也可產生幾個方面的價值。
首先,大數據的價值密度較低,現在可利用和分析的數據只是冰山一角,數據里的價值遠沒有被發掘出來,所以要利用分析技術去發現它們的潛在價值。
其次,要實現大數據整合創新的價值,通過不同渠道的聚集整合,創造新的數據價值。
⑵ 將大數據轉化為大價值的10種途徑
將大數據轉化為大價值的10種途徑
大數據可以產生很多價值,但前提是只有當您企業真正知道如何充分利用這些大數據的時候。
當前,大數據顯然已經登上了歷史舞台——在全球范圍內,擁有超過半數的企業組織都已經將大數據項目視為其未來發展的機遇,並計劃在未來幾年內進一步的增加對大數據項目的投資。
但是,大數據的價值並不僅僅只是來自對於相關數據信息的收集而已,這僅僅只是起點。大數據的真正價值來自於您所在的企業組織利用所存儲的信息以發現新的洞察分析見解的能力,然後從中提取出有用的價值,以推動企業做出更好的業務決策,促進企業業務的發展。
現如今,現代化的商務智能解決方案可以通過用戶友好的解決方案來降低企業進入的大數據項目的壁壘,並進一步的提升大數據的價值。這允許企業組織內的更多的相關人員(不僅僅只有數據科學家)能夠就您企業所收集的數據進行訪問、分析和協作。
您企業的團隊如何獲取大數據的驅動價值?
大數據能夠為您的公司提供更為詳細的洞察分析,來洞察企業的各個方面的關鍵要素,以推動更好、更自信、且數據驅動的商業決策。
其培養一種積極開拓探索的企業文化,鼓勵企業員工們通過數據分析來試驗和驗證他們的想法。
通過讓每名相關的工作人員都能訪問到這些大數據信息,推動您企業業務的下一此大的創意性變革的理念可以來自企業的任何一名員工——而不僅僅只是數據科學家。
究竟什麼是大數據?
大數據是數據量相當龐大或結構相當復雜,以至於一般性的企業組織機構難以使用標準的資料庫和軟體工具對其進行管理。但由於每家公司都有不同的能力和要求,故而「大數據」其實可以說是一個相對較為主觀性的術語——對某一家企業組織來說的「大」數據,對另一家企業組織而言可能僅僅只是「平均」性的數據。
想要從您企業的大數據投資項目中獲得更多價值嗎?
如下,我們將為您介紹10種有助於您所在的企業更好的從大數據分析項目中獲取價值的方法:
選擇正確的訪問大數據的方法。
獲得更好的洞察分析的能力與企業所收集到的數據信息有關。
讓整個企業組織都能夠訪問到大數據。
讓相關用戶能夠很容易的找到他們所需要的數據信息。
推動企業內各部門間的協同合作,以推動創新。
打造一個靈活敏捷的分析環境,以便滿足每位用戶的需求。
確保企業所採用的分析解決方案能夠方便的讓相關員工在任何地方採用任何設備均能夠輕松訪問。
部署可擴展的解決方案,確保其能夠隨著企業組織的業務需求的不斷變化而變化。
確保您企業的商務智能解決方案可以很容易地適應未來的技術。
選擇具有廣泛合作夥伴生態系統的BI解決方案。
一、選擇正確的訪問大數據的方法
當涉及到如何訪問和分析所有的數據信息時,沒有一套一成不變的方法——畢竟,每家不同的企業組織都會有著不同的需求、不同的用例和不同的基礎設施配置。
您企業所選擇的方法或方法的組合將取決於所需要滿足的特定用戶的實際需求,並權衡您所願意接受的各種折衷。
當企業組織在選擇大數據的訪問方法時,所需要考慮的相關問題:
您企業需要支持多少數據?數以百萬計的?抑或是數十億的?
相關非技術用戶是否需要訪問您企業的數據,或者僅僅只有IT和數據專家們訪問這些數據呢?您企業將只在整個數據集上運行數據分析嗎?或者您企業還希望能夠分析可選擇的相關數據呢?
您企業是否需要為終端用戶提供流暢、高交互性的體驗?靈活性或用戶性能對您企業的業務來說是最為重要的嗎?
二、企業獲取洞察分析的能力更多的關乎到企業對相關數據是如何收集的
以前,您企業的大數據項目所面臨的最大的挑戰可能是從廣泛的數據源中識別和收集您企業業務真正所需要的數據信息。
而到了今天,這部分比以往更容易。現在,真正重要的是您企業是否可以收集並整合所有這些數據信息——無論這些大數據具體是來自何處也不管其格式究竟如何,並最終發現所有相關數據信息中的所有可能的聯系。
為了獲得對於大數據的更為全面的掌握,企業組織亟待採用具有關聯模型的BI解決方案,以便您企業可以瀏覽所有數據中的所有關聯。這樣,您企業的用戶將始終可以訪問您企業業務的完整視圖,以便他們可以做出更好、更明智的決策。
與傳統的數據模型不同(傳統的數據模型會限制您所能夠看到的數據,這些數據如何連接以及您所能夠執行的查詢),關聯模型則可以識別您企業的所有數據之間的所有關系。這使得每位用戶 ——不僅僅是數據科學家——均可以快速輕松地探索他們所需要的合適的數據,並使用互動式的選擇和關鍵字搜索來發現意想不到的關鍵和洞察見解。
三、讓整個企業組織均可以訪問大數據
當大數據這一理念剛剛興起的時候,僅僅只有極少數的人意識到其所蘊含的巨大潛力——這些人主要是數據科學家和分析師。非專業人士根本不具備以有意義的方式探索和使用數據所需的知識、工具或經驗。
而今,這種狀況已經一去不復返了。現在,您企業必須將大數據置於業務部門的用戶手中。畢竟,只有那些與您企業的業務最接近的員工們才真正的知道要提出哪些有價值的問題;以及由數據所驅動的哪些分析見解將對企業的業務產生最大的影響。
正確的自助式商務智能解決方案可以在這方面為企業客戶提供有力的幫助,其能夠讓業務部門的用戶順利訪問到他們所需的數據,同時讓數據治理和管理的許可權掌握在您企業的IT團隊手中。藉助自助式服務商務智能解決方案,業務部門的用戶可以使用互動式的可視化儀錶板來自由的探索數據,並在不依賴IT部門的情況下找到問題的答案,改進業務流程,並推動整個企業組織內的創新。
推動企業朝著自助式分析方向轉變的因素:
在最近的一份報告中,Forbes Insights調查了449位資深的IT和商業專業人士,了解了他們為什麼決定轉向採用自助服務模式:
62%的受訪者希望對於數據獲得更多的開放式訪問。
76%的受訪者希望獲得更為及時的數據分析。
71%的受訪者希望獲得質量更高的數據和分析。
四、讓用戶可以輕松找到其所需的大數據信息
越來越多的企業業務管理者希望通過確鑿的證據來支持他們的業務決策過程。但不幸的是,這些用戶往往缺乏經驗,因為他們需要在一個龐大的,不斷增長的數據存儲庫中找到他們所需要的答案。
為了幫助業務部門的用戶們找到這些答案,並從大數據中獲得更多的投資回報,您企業需要讓他們難過輕松的探索大數據。
您企業可以通過提供BI解決方案來實現這一點:
允許業務部門的用戶直觀地訪問到所需的數據,而不需要依靠IT來運行查詢和生成報告。
並提供自然語言搜索功能,便於查找他們所需的信息。
發現不同來源的數據之間的連接和關系——甚至是以意外的方式發現不相關的數據。
用清晰簡潔的方式實現數據的可視化和形象化。
何為自然語言搜索,其如何為企業提供幫助?
藉助自然語言搜索,用戶可以使用常規口語進行查詢。這對於缺乏數據專業知識,並且可能並不知道在資料庫中如何查找精確信息所需的技術術語的用戶極其有用。包含此功能的BI解決方案使更多的用戶(而不僅僅是數據科學家)能夠從企業的大數據中獲得洞察分析能力。
五、促進企業部門間的協作,以推動創新
一項偉大的發現如果不能共享,又有什麼益處呢?如果您企業內部的相關人員不能與更廣泛的同事們分享他們的見解,那麼您企業無疑錯過了最佳的推動部門間合作的機會,也不利於這些好的最初的想法理念進一步的擴展,並使其更好。更糟糕的是,如果其他的同事沒有聽說過您的發現,他們最終可能會重復類似的數據探索,進而導致企業生產力的下降。
但僅僅分享數據是不夠的,您企業必須以正確的方式分享數據。
考慮採用一款「企業就緒」的商業智能解決方案——其既能夠提供自助分析的自由度(允許每位用戶在他們認為合適的時候探索和共享數據),同時還能夠為企業提供全面的治理能力(控制誰有許可權訪問哪些數據信息,所以每位員工都能夠基於單一的事實來源開展工作)。
通過在自助服務和大數據管理之間取得平衡,您企業可以充分利用整個企業組織的集體智慧,結合多個團隊和個人的專業知識來傳播新的想法和理念,促進討論,並推動創新。
確保企業的BI解決方案得到妥善管理:
有效的數據治理可確保在整個企業組織內正確控制和管理對分析功能和對於大數據的訪問。
如果缺乏適當的大數據治理水平,就會出現錯誤、變化和冗餘,進而導致用戶難以驗證數據中的真實情況,從而導致延遲和中斷。
正確的大數據治理可以幫助您企業避免發生上述的不一致,並確保每位員工都能夠從相同的可信數據中獲得他們所需的洞察分析。
六、打造靈活敏捷的分析環境,以切實滿足每位用戶的需求
保持與大數據所提供的大量新信息的同步是一個不小的挑戰。大數據的猛烈沖擊可能會使商業用戶難以真正深入的挖掘,探索並及時獲得他們所需的答案。
為了保持活力,您企業應該考慮創建靈活敏捷分析環境,您的IT團隊可以快速並逐步構建BI解決方案,以應對業務用戶不斷變化的需求。
例如,隨著用戶對數據更加熟悉,您企業可能需要從指導分析發展到自助服務BI。
這使他們能夠自行探索更多的大數據,並更快速地深入細節。使用靈活的框架,您企業可以輕松的滿足這些用戶的需求,而無需花費大量成本或開發時間。
七、確保用戶能夠在任何設備上隨時隨地訪問分析解決方案
隨著手機、平板電腦和筆記本電腦的計算能力的不斷增強,企業員工們越來越多地在辦公室之外進行業務的處理。
無論是在火車上,在機場候機廳還是在客戶會議上,現在的企業業務團隊都希望能夠在任何業務需要的時候訪問他們的工作資料。
為了滿足這些需求,您企業需要能夠以各種形式向客戶和用戶提供分析解決方案——確保他們無論何時何地,對於所需全部功能都能夠得到滿足的期望。
除了通過基於雲服務或在線門戶提供對分析解決方案的直接訪問之外,確保用戶能夠在任何地方均能夠實現順利訪問的另一種方式是在企業的嵌入式分析應用程序中使用開放式API。通過在用戶的日常工作環境中提供強大的分析功能,您可以確保每位業務用戶都可以在他們需要時隨時訪問所需的信息。
自助服務商業智能為大眾帶來了分析的力量,但對於一些用戶來說,獲得額外的應用程序則可能是一大真正的挑戰。 這就是為什麼有些產品和組織直接將分析嵌入到用戶每天所使用的熟悉的環境或應用程序中的原因所在了。
八、部署實施可隨企業業務需求不斷變化的可擴展的解決方案
通常情況下,企業所收集的大數據的量只會越來越大。但無論數據存儲庫怎麼擴展,您的用戶都希望獲得順暢的訪問體驗,而不必等待很長時間或經歷中斷。隨著數據集的不斷增長,大多數工具都難以跟上這一需求。
為了確保用戶能夠以他們想要的方式繼續探索數據,請採用可隨需擴展的BI平台,即使數據量增加並且應用程序變得更加復雜,也可以提供出色的性能。該平台應該採用多種工具和方法,以便您企業可以保持為最終用戶提供互動式的動態體驗,而不管您企業產生了多少數據。
此外,尋找一款使用內存處理執行即時計算的商業智能解決方案。
這些解決方案可以以「思考速度」處理和回答問題,使用戶可以不斷的保持繼續的挖掘和探索。這反過來可以在整個企業組織內推動勇於開拓創新和探索的企業文化。
何為內存中的處理,其能夠為企業組織帶來什麼樣幫助:
內存資料庫 (in-memory database) 是一種數據處理技術,其在隨機存取存儲器(RAM)中暫時存儲和計算信息,而無需在每次用戶進行新的選擇或計算時都從磁碟存儲中提取數據。數據可以在RAM中更快速地讀取和分析,從而使得較之採用更傳統的方法,報告(和決策制定)更快。
九、確保您企業的BI解決方案可以輕松適應未來的技術
管理和探索大數據的技術正在迅速改變,以便為當下的企業客戶提供更好,更快的解決方案,進而從大數據中獲取洞察分析。但是將最新技術整合到現有的分析平台中可能具有挑戰性,有時甚至是不可能的。故而企業應該確保您所採用的分析解決方案能夠快速,輕松地與新技術實現集成。
例如,開放的API可以為您企業的現有解決方案帶來新的功能,就像添加幾行代碼一樣簡單。擁有專注於定製開發的在線社區也很重要。由此,開發人員們可以通過與其他人員輕松協作來確保您的產品或解決方案能夠與最新的技術進步保持同步。
什麼是開放式API?
一款開放的API是一個公開的介面,開發人員可以使用它將第三方解決方案集成到他們自己的解決方案中。實質上,開放式API能夠控制兩款不同的應用程序如何輕松地進行通信,並相互交互。提供開放式API的BI解決方案使企業能夠輕松插入多種解決方案,執行獨立解決方案所無法實現的特定功能。
十、選擇具有廣泛合作夥伴生態系統的商務智能解決方案
當涉及到大數據項目時,有時候企業需要一點額外的幫助才能看到整體的狀況。在選擇商業智能解決方案時,企業務必需要尋找能夠與大量多種技術維持合作關系的供應商。
這將有助於簡化數據交互,確保您企業的所有BI解決方案能夠高效地工作。此外,擁有足夠的合作夥伴可以隨時為您企業的業務需求提供最合適的解決方案——無論現在還是未來。
您企業應選擇哪些類型的技術合作夥伴?
數據存儲和管理解決方案提供商可存儲和查詢您企業的數據,並提供運行分析解決方案所需的基礎架構。
數據整理(Data wrangling)解決方案提供商將原始數據精煉,並重塑為可用數據集。
機器學習解決方案提供商通過使用從數據迭代學習的演算法來自動化分析模型構建。
大數據,大潛力
大數據有可能改變您企業的業務,但為了能夠真正從貴公司的大數據項目中獲得真正的價值,您企業需要知道如何充分利用大數據。
恰當的商業智能解決方案可以幫助您企業最大化您的大數據投資回報,其方法是:
提供完整的業務視圖和影響企業業務的外部因素。
在您的業務的每個領域推動更好的以數據為導向的決策。
讓更多的業務用戶能夠隨時隨地訪問和探索大數據。
在整個企業組織中培養協作、積極開拓探索和創新的企業文化。
隨著業務的增長而實現規模化的擴展,以滿足未來的需求。
⑶ 如何實現大數據真正價值
1. 數據融合
成功的大數據分析可以使用戶應對工作中的困難,例如發現業務計劃和工作中的缺陷和失誤。它甚至可以將新的細分市場進行拆分,企業可以提供新的產品和服務。要想做到這些,就需要從各種資源得來的數據中抓住重點從而做出重要決策。
在數據分析中,時間至關重要。很多企業領導者和決策制定者需要實時的信息來快速做出決定。但是據估算,大約80%的時間都花在了准備和整理數據上。這樣一來真正的分析工作只佔20%。
因此高效的處理工作非常重要,例如數據分析的提取、轉換和載入過程(ETL)。
一個好的ETL工具可以將從多個來源獲取的數據融合在一起,也包括公共數據。它讓用戶的注意力集中到一個源頭,獲得相關性更高的信息,提高工作效率。同時可以確保用戶的信息來源是唯一的,降低錯誤溝通的風險。
企業如何通過各種技術手段,並把數據轉換為信息、知識,已經成了提高其核心競爭力的主要瓶頸。而ETL則是主要的一個技術手段。目前,ETL工具的典型代表有:Informatica、Datastage、OWB、微軟DTS、Beeload、Kettle……
2. 溝通無障礙
就像之前說過的,大數據分析工具可以幫助企業解決商業難題。從業人員也許能很好的理解這些問題,但IT人員卻不能完全理解,這樣就不能提供和專業需求相匹配的分析報告。再加上溝通不順暢,領導層就無法及時得到有用信息,也就無法快速做出決策。
如果技術人員能夠使用這種自助服務分析工具,就能夠找到問題所在並做出可以彌補漏洞的決定。此外,他們還可以將數據同其他開放信息結合在一起,挖掘細分市場。企業還可以共享IT資源來發掘更多的數據信息。
⑷ 如何看待我國大數據發展
隨著信息技術和人類生產生活交匯融合,全球數據呈現爆發增長、海量集聚的特點。無論是國家、企業還是社會公眾,都越來越認識到數據的價值。因此,近年來,各地紛紛成立大數據發展局,企業紛紛推動數據資產治理,大數據輻射的行業也從傳統的電信、金融逐漸擴展到工業、醫療、教育等。一時間,彷彿各行各業都在談大數據,人人都在談大數據。但也有聲音說大數據迎來了「七年之癢」,面對大數據熱潮也需要一些「冷思考」。我國大數據究竟發展得如何?未來我國大數據發展還有哪些機遇和挑戰?
1、大數據產業進展顯著
過去幾年,大數據理念已經深入人心,「用數據說話」已經成為所有人的共識,數據也成了堪比石油、黃金、鑽石的戰略資源。五年來,我國大數據產業政策日漸完善,技術、應用和產業都取得了非常明顯的進展。
在政策方面,我國從中央到地方的大數據政策體系已經基本完善,目前已經進入落地實施階段。自從2014年「大數據」這個詞寫入政府工作報告以來,我國大數據發展的政策環境掀開了全新的篇章。在頂層設計上,國務院《促進大數據發展行動綱要》對政務數據共享開放、產業發展和安全三方面做了總體部署。《政務信息資源共享管理暫行辦法》《大數據產業發展規劃(2016-2020)》等文件也都已經出台。十九大報告中提出「推動大數據與實體經濟深度融合」,「十三五」規劃中提出「實施國家大數據戰略」。衛健、農業、環保、檢察、稅務等部門還出台了領域大數據發展的具體政策。截至2019年初,所有省級行政區都發布了大數據相關的發展規劃,十幾個省市設立了大數據管理局,8個國家大數據綜合試驗區、11個國家工程實驗室啟動建設。可以說,大數據的政策體系已經基本搭建完成,目前已經紛紛進入落地實施甚至評估檢查階段。
在技術方面,我國大數據技術發展屬於「全球第一梯隊」,但國產核心技術能力嚴重不足。我國獨有的大體量應用場景和多類型實踐模式,促進了大數據領域技術創新速度和能力水平,處於國際領先地位。在技術全面性上,我國平台類、管理類、應用類技術均具有大面積落地案例和研究;在應用規模方面,我國已經完成大數據領域的最大集群公開能力測試,達到了萬台節點;在效率能力方面,我國大數據產品在國際大數據技術能力競爭平台上也取得了前幾名的好成績;在知識產權方面,2018年我國大數據領域專利公開量約佔全球的40%,位居世界第二。但我國大數據技術大部分為基於國外開源產品的二次改造,核心技術能力亟待加強。例如,目前國內主流大數據平台技術中,自研比例不超過10%。
在產業方面,我國大數據產業多年來保持平穩快速增長,但面臨提質增效的關鍵轉型。2018年,我國大數據產業延續多年來的增速,繼續保持相對高速的增長。根據中國信息通信研究院的測算,2018年我國大數據產業整體規模有望達到5400億元,同比增長15%。然而,綜合國內外環境、新興技術發展等多種因素,大數據產業的增速出現了下滑。我國的大數據產業也面臨著從高速發展向高質量發展的關鍵轉型期。
在應用方面,大數據的行業應用更加廣泛,正加速滲透到經濟社會的方方面面。隨著大數據工具的門檻降低以及企業數據意識的不斷提升,越來越多的行業開始嘗到大數據帶來的「甜頭」。無論是從新增企業數量、融資規模還是應用熱度來說,與大數據結合緊密的行業正在從傳統的電信業、金融業擴展到政務、健康醫療、工業、交通物流、能源行業、教育文化等,行業應用「脫虛向實」趨勢明顯,與實體經濟的融合更加深入。
2、產業的五大困局
雖然我國大數據總體發展形勢良好,也面臨難得的發展機遇,但仍然存在一些困難和問題。
一是,涉及核心技術的產業發展薄弱,未能有效提升我國核心技術競爭力。核心技術的影響力在大數據產業有著極高的重要性。由於大數據企業在完成產品開發後,可以近乎零成本無限制的復制,因此擁有核心技術的大企業,很容易將技術優勢轉化為市場優勢,即憑借具體的信息產品贏得海量用戶獲得壟斷地位。當前,從大數據技術與產品的供給側看,我國雖然在局部技術實現了單點突破,但大數據領域系統性、平台級核心技術創新仍不多見。大數據處理工具都是「他山之石」,大部分企業用的都是國外的數據採集、數據處理、數據分析、數據可視化技術,自主核心技術突破還有待時日。尤其是開源產品的技術標准方面,我國的影響力尚亟待提升。
二是,數據孤島和壁壘降低了大數據產業資源配置效率。大數據產業發展必須實現數據信息的自由流動和共享,如果數據不開放、不共享,數據整合就不能實現,數據價值也會大大降低。無論是政府數據、互聯網數據還是其他數據,數據擁有者往往不願對其進行開放流通。受制於前期信息基礎設施建設,目前我國政府數據往往還存在著諸多「數據孤島」和「數據煙囪」,數據價值難以發揮。
三是,數據安全管理薄弱增加了大數據產業的發展風險。大數據技術為經濟社會發展帶來創新活力的同時,也使數據安全、個人信息保護乃至大數據平台安全等面臨新威脅與新風險。海量多源數據在大數據平台匯聚,來自多個用戶的數據可能存儲在同一個數據池中,並分別被不同用戶使用,極易引發數據泄露風險。利用大數據技術對海量數據(21.90 -5.19%,診股)進行挖掘分析所得結果可能包含涉及國家經濟社會等各方面的敏感信息,需要對分析結果的共享和披露加強安全管理。
四是,產業壟斷與惡性競爭現象頻發,「劣幣驅逐良幣」現象明顯。由於資源型產業門檻低、利潤高,新興的大數據企業往往首先將目光盯在獲取數據資源上面。大量依託數據資源優勢的企業誕生,為大數據產業帶來了低附加值的壟斷經濟模式,使得依靠技術壁壘打江山的企業不得不面對殘酷的市場競爭,放緩了技術研發的步伐。同時,數據壟斷問題也愈發明顯。少數互聯網巨頭企業擁有巨大數據,不但對產業發展不利,甚至存在巨大的數據聚集隱患。
五是,各地發展同質化嚴重,普遍存在重存儲輕應用的現象。由於缺乏統一的大數據產業分類統計體系和產業運行監測手段,各地大數據產業的定位相似,同質化競爭加劇。而盲目的重復建設,更是可能導致大數據產業過剩。同時,由於部分地區信息化發展程度有限,大數據應用場景不夠豐富,更是以數據中心等大數據存儲設施的建設作為發展大數據產業的關鍵,且規模巨大,目標動輒以百萬台計,後期若無法有效利用,將造成巨大的資源浪費。
⑸ 如何利用大數據來創造價值
深圳遠標為你解答
大數據如何創造價值
這里列舉5個大數據廣泛適用,能創造質變性的價值並影響機構的設計、組織和管理的方面。
首先,大數據能提高透明度。僅僅讓相關的利益共享者盡可能簡單及時地使用大數據就可以創造極大的價值。例如在公共行業,讓原本孤立的部門間輕易地共享數據,就能明顯減少搜索和處理時間。在製造業中,整合研發、工程和生產單位數據以實現並行工程,就能顯著縮短上實時間並提高質量。
其次,讓發現需求、尋求變化和提高性能的實驗成為可能。當組織機構創建和儲存更多數字形式的業務數據時,他們可以收集更多准確和細節的性能參數(實時或近乎實時),從產品庫存到人員病假等任何事物。
再次能針對細分人口採取定製行動。大數據允許組織機構高度細分市場,專門定製產品和提供精準服務來滿足各種需求。這種方式在市場營銷和風險管理領域眾所周知,但在其他行業可能是革命性的——比如在形成一種同等對待所有群眾的道德觀的公共行業。然而即使是已經使用市場細分多年的消費品和服務公司,也開始部署復雜的大數據技術來瞄準促銷和廣告推廣。
還能用自動化演算法取代或支持人類決策。復雜而巧妙的分析可以大幅度改善決策、降低風險和發覺有價值的觀點。對組織來說,像這樣的分析應用,從稅務機構能夠使用自動化風險引擎標記需進一步檢查的候選人,跨越到零售商可以利用演算法優化類似於自動庫存微調和專櫃店與在線銷售實時價格響應的決策過程。在某些情況下,決策不一定是自動的,但通過使用大數據技術和科技,而非小樣本的個人處理和理解電子表格來分析海量、完整的數據會增強決策。決策也許會變得不同,但一些組織已經著手通過分析來自顧客、員工,甚至嵌入在產品內的感測器中的完整數據來決策。
最後,大數據有助於革新商業模式、產品和服務。大數據能夠讓公司創造新產品和服務,強化現存功能,並創建全新的商業模式。製造業正在運用來自實際產品使用的數據,來改善下一代產品的發展並建立創新型售後服務。從導航到基於人們駕駛汽車的位置和方式的財險定價,實時定位數據的出現已經創造了一個基於定位服務的全新篇章。
⑹ 縱觀大數據是如何實現自己的數據價值
縱觀大數據是如何實現自己的數據價值
大數據開啟了人類數據管理史的一段嶄新旅程。人類想要測量、記錄和分析世界的渴望是驅動大數據技術不斷向前的動力。但如同此前的電子商務、雲計算等創新構想一樣,大數據也不得不懷抱變革理想在現實中披荊斬棘。
我們該如何定義我們所身處的信息技術時代?是雲計算、社交、移動,還是大數據?相信每位從業者和客戶都會有自己的認知與解讀。「一千個人眼中就有一千個哈姆雷特」,很多時候是一個放之四海皆準的道理,更何況我們正在經歷一段創新趨勢疊加、創新領域融合的獨特時期。而對於那些想要體會技術創新真正內涵的人士,有一個話題永遠不可迴避,這就是技術創新到底會給其受眾帶來怎樣的真實價值?這種價值是否能夠在其被發掘後長期、持續地給予?
本文重點關注大數據技術這一重大技術創新趨勢在企業環境中價值實現的過程。在全民熱議的氛圍中,或許我們可以暫時遠離那些對大數據的定義、技術特徵、未來走向的種種爭論,潛心聆聽喧囂中實地探索的腳步。我們希望與您共同探討大數據所能夠開辟的數據價值轉換與兌現路徑,從而為企業高效、合理利用快速增長的業務數據帶來啟發。也希望這些來自中國企業的真實應用案例能夠證明,大數據並不僅僅是一個催生佈道師的舞台,它正在真切地影響著我們的工作與生活。
腳踏實地的大數據
人類的想像力有多豐富,大數據的未來世界就會有多廣博。要讓海量數據資源變成寶貴的商業資產,企業的大數據技術實踐者們需要從現實中起步。
如今,「大數據」總會與「變革」作為聯動的詞彙出現。牛津大學網路學院互聯網研究所治理與監管專業教授維克托·邁爾-舍恩伯格在其著作《大數據時代》一書中,將大數據定義為一次重大時代轉型的開啟者,稱其將會引發一場生活、工作與思維的大變革。
他認為,在大數據時代,人類處理數據的方法和思維模式將被徹底改變,它會呈現出一些前所未有的現象。比方說,人們將會分析更多的數據,而不再依賴於隨機采樣;人們將不再沉迷於對數據分析精確度的追求,轉而關注對趨勢的把握;人們不會再習慣性地追問事情的因果,而是尋找事物之間的相關關系。
無論這些數據處理的未來趨勢最終是否能夠成真,我們都可以從日常的工作和生活中窺探到一些變化的端倪。首先,企業的數據管理范疇正在不斷擴大,在線交易、Web日誌、點擊流、感測器信息、社交媒體數據等都被納入企業的業務數據集。另一方面,我們在生活中會遇到越來越多與數據分析相關的商業創意。例如,各個電子商務、視頻網站中花樣繁多的推薦系統,還有超市中零食與手電筒這樣不明所以、卻能帶來實際銷售增長的擺放組合。
大數據對企業究竟意味著什麼?舍恩伯格在《大數據時代》一書中做出了這樣的描述:「在大數據時代,數據的價值從它最基本的用途轉變為未來的潛在用途。這一轉變意義重大,它影響了企業評估其擁有的數據及訪問者的方式,促使甚至是迫使公司改變他們的商業模式,同時也改變了組織看待和使用數據的方式。」
轉變並不會在一夜之間發生。從多來源的數據採集,到通過深度分析獲取洞察力,之間會是一段並不平坦的征程。毫無疑問,Hadoop等技術的日趨成熟,讓企業用戶可以更方便地、在更大的范圍內收集業務的相關數據,但同時真正的挑戰也會接踵而至。這就是如何高效地處理多來源的海量數據,並且為其找到適合的商業用途。
在過去的一個月里,我們實地探訪了三家正在實際部署大數據應用的企業。它們分別是京東(JD.com)、人人游戲和PPTV聚力。這三家互聯網企業正在用業界前沿的數據管理思維,展開大數據技術的早期實踐。同時,在它們身上也折射出全球互聯網企業利用大數據的實際趨勢。全球范圍內與之業務相類似的在線零售巨頭亞馬遜(Amazon.com)、社交遊戲先鋒Zynga、全球最大的在線影片租賃服務商Netflix,同樣處在大數據商業應用的最前沿。
另外,我們還特別加入了一個寓技術於體育競技的輕松案例。網球賽場上細致入微的數據統計和分析背後,正是大數據技術的鼎力支持。
遠觀不如近臨。大數據的價值實現之旅已經啟程,改變就在我們的身邊發生!
⑺ 大數據實現商業價值的九種方法
大數據實現商業價值的九種方法_數據分析師考試
雖然很多人已有了這樣一個認識:大數據將為我們呈現一個新的商業機會。但目前僅有少量公司可以真正的從大數據中獲取到較多的商業價值。下邊介紹了9個大數據用例,我們在進行大數據分析項目時可以參考一下這些用例,從而更好地從大數據中獲取到我們想要的價值。
從數據分析中獲取商業價值。
請注意,這里涉及到一些高級的數據分析方法,例如數據挖掘、統計分析、自然語言處理和極端SQL等等。與原來的報告和OLAP技術不同,這些方法可以讓你更好地探索數據和發現分析見解。
探索大數據以發現新的商業機會。
很多大數據都是來自一些新的來源,這代表客戶或合作夥伴互動的新渠道。和任何新的數據來源一樣,大數據值得探索。通過數據探索,你可以了解一些之前所不知道的商業模式和事實真相,比如新的客戶群細分、客戶行為、客戶流失的形式,和最低成本的根本原因等等。
對已收集到的大數據進行分析。
許多公司都收集了大量的數據,他們感覺這些數據存在著商業價值,但並不知道怎樣從這些弄出來的值大的數據。不同行業的數據集有所不同,比如,如果你處於網路營銷行業,你可能會有大量Web站點的日誌數據集,這可以把數據按會話進行劃分,進行分析以了解網站訪客的行為並提升網站的訪問體驗。同樣,來自製造業的質量保證數據將有助於公司生產出更可靠的產品和選擇更好的供應商,而通過RFID數據可以幫助你更深入地供應鏈中產品的運動軌跡。
重點分析對你的行業有價值的大數據。
大數據的類型和內容因行業而異,每一類數據對於每個行業的價值是不一樣的。比如電信行業的呼叫詳細記錄(CDR),零售業、製造業或其他以產口為中心的行業的RFID數據,以及製造業(特別是汽車和消費電子)中機器人的感測器數據等等,這些都是各個行業中非常重要的數據。
理解非結構化的大數據。
非結構化的信息主要指的是是使用文字表達的人類語言,這與大多數關系型數據有著很大的不同,你需要使用一些新的工具來進行自然語言處理、搜索和文本分析。把基於文本內容的業務流程進行可視化展示,比如,保險索賠過程,醫療病歷記錄,各個行業的呼叫中心和幫助台應用程序,以及以客戶為導向的企業情感分析等內容均可以在進行處理後以可視化的形式表現出來。
使用社交媒體數據來擴展現有的客戶分析。
客戶的各種行為比如評論品牌、評價產品、參與營銷活動或表示他們的喜好等等,會在客戶中相互影響。社交大數據可以來自社交媒體網站,以及自有的客戶能夠表達意見及事實的渠道。我們可以使用預測性分析發現規律和預測產品或服務的問題。我們也可以利用這些數據來評估市場知名度、品牌美譽度、用戶情緒變動和新的客戶群。
把客戶的意見整合到大數據中。
通過運用大數據(與原有的企業資源集成),我們可以對客戶或其他商業實體(產品,供應商,合作夥伴)實現360度全景分析,分析的維度屬性從幾百個擴展到幾千個。新增的粒狀細節帶來更准確的客戶群細分,直銷策略和客戶分析。
整合大數據以改善原有的分析應用。
對於原有的分析應用,大數據可以擴大和擴展其數據樣本。尤其在依賴於大樣本的分析技術的情況下,比如統計或數據挖掘;而在欺詐檢測、風險管理或精確計算的情況下同樣也得用上大樣本的數據。
分析大數據流,實時操作業務,提升業務動作水平。
實時監測和分析的程序已經在企業運營中存在了很多年,那些需要全天候運行的能源、通訊網路或任何系統網路、服務或設施的機構早就在使用這類型的程序。最近,從監控行業(網路安全、態勢感知、欺詐檢測)到物流行業(公路或鐵路運輸、移動資產管理、實時庫存),越來越多的組織正在利用大數據流的應用。目前大數據分析仍主要以批量和離線的方式執行,但隨著用戶與技術的成熟,大數據分析將會進入實時分析的時代。
以上是小編為大家分享的關於大數據實現商業價值的九種方法的相關內容,更多信息可以關注環球青藤分享更多干貨
⑻ 大數據知識的價值體現
大數據知識的價值體現
數據時代對人類的數據駕馭能力提出了新的挑戰,也為人們獲得更為深刻、全面的洞察能力提供了前所未有的空間與潛力。
哈佛大學社會學教授加里·金說:「這是一場革命,龐大的數據資源使得各個領域開始了量化進程,無論學術界、商界還是政府,所有領域都將開始這種進程。」
「大數據產業的生態環境正在加速構成。」同方股份有限公司物聯網應用產業本部副總經理李小華先生在主題為」擁抱大數據共贏新時代」的2013年合作夥伴大會上如是說,並對此做了詳細的分析。
首先看社會環境。信息技術向融合、智慧、綠色的方向發展。大數據伴隨雲計算、移動互聯網領域的發展,產生新的管理模式和商業模式,能夠創造出更大的價值,提升社會的管理水平和效率。縱觀產業經濟發展史,帶來應用的技術一定能夠發展繁榮的產業。
再看政策環境。政府高度重視,發展戰略目標清晰明確。近期發布了一系列促進大數據產業發展的政策。《十二五國家戰略新興產業發展規劃》中指出,加強海量數據處理軟體為代表的技術軟體開發;《物聯網十二五發展產業規劃》中把大數據信息處理等作為4項關鍵技術創新工程;《國家發改委關於加強和完善國家電子政務工程建設管理的意見》強調,政府數據中心的建設注重頂層設計,向跨部門、跨區域的協同互動和資源共享轉變。
市場環境。前景巨大,空間廣闊。結合對中國相關市場的研究,IDC認為中國在大數據領域具有巨大的市場潛力。越來越多的IT供應商將中國作為大數據業務發展的熱點。目前,中國已經是全球最大的PC和智能手機市場,並且中國的互聯網用戶和移動互聯網用戶數量也是全球最多,這些終端設備每時每刻都在互聯網上創造數據。龐大的數據容量不但令眾多國際廠商重視中國市場,也使得中國的大數據應用具備了不同於國外的特點,大數據的機遇就在我們面前。
「數據,已經滲透到當今每一個行業和業務智能領域,成為重要的生產因素。人們對於海量數據的挖掘和運用,預示著新一波生產率增長和消費者盈餘浪潮的到來。」 麥肯錫稱。
數據挖掘的意義
這是一個關於零售帝國沃爾瑪的故事。
沃爾瑪,全世界最大的零售商,它的人數和美國聯邦政府的雇員等量齊觀,它的收入2010年突破了4000億美元,超過了很多國家的GDP總值。在一次例行的數據分析之後,研究人員突然發現,跟尿布一起搭配購買最多的商品竟然是啤酒!這種關系令人費解,尿布喝啤酒風馬牛不相及,這是一個真正的規律嗎?
經過跟蹤調查,研究人員終於發現事出有因。一些年輕的爸爸經常要到超市去購買嬰兒尿布,有30%-40%的爸爸會順便買點啤酒來犒勞自己,沃爾瑪隨後對啤酒和尿布進行了捆綁銷售,不出意料,銷售量雙雙增加。
這就是對歷史數據進行挖掘的結果,反映的是數據層面的規律。沃爾瑪是世界上最早應用數據挖掘技術的企業之一,也是數據挖掘技術的集大成者。
數據挖掘是指通過特定的計算機演算法對大量的數據進行自動分析,從而揭示數據之間隱藏的關系、模式和趨勢,為決策者提供新的知識。數據挖掘,把數據分析的范圍從「已知」擴大到了「未知」,從「過去」推向了「將來」,它的發展和成熟,最終推動了「大數據」在各行各業的廣泛應用。
正如《紐約時報》2012年2月的一篇專欄中所稱,「大數據」時代已經降臨,在商業、經濟及其他領域中,決策將日益基於數據和分析而作出,而並非基於經驗和直覺。隨著信息管理系統的普及,企業的規模越來越龐大,組織越來越復雜,市場更加多變,競爭更加激烈,信息是否及時准確、決策是否正確合理,對組織的興衰存亡影響越來越大,一步走錯可能全盤皆輸。
數據服務於決策
大數據勢不可擋,但踐行不易。怎樣發揮其價值?20世紀全世界最具影響力的科學家赫伯特。西蒙曾預測,在後工業時代,也就是信息時代,人類社會面臨的的中心問題將從如何提高生產率轉變為如何更好的利用信息來輔助決策。
如何將數據、信息轉化為知識,擴大人類的理性,輔助決策?怎樣從各個獨立的信息系統中提取、整合有價值的數據,從而實現從數據到知識、從信息到知識、從知識到利潤的轉化?
面對記者的提問,同方副總裁周俠及物聯網應用產業本部副總經理李小華對同方大數據理念做了深度的解讀。
同方提出的以「數據資源體系」為核心的大數據戰略,彌補了過去在不同行業中對管理和決策支持的空白。針對典型業務需求的六個產品應用平台,是數據從產生到服務全過程的六個最重要的結點,每個平台對一系列的產品。一系列擲地有聲地落地實踐以及「指標體系」、「頂層設計」、「獨立於行業」的先進技術理念足以讓企業、機構在具體業務實施時有「據」可依。
數據資源體系是獨立於行業的,這是同方大數據理念最核心的一點。實現的方式就是構建獨立於行業的通用數據生產流程——在不同的行業中抽取相同的數據資源體系。雖然不同行業的業務不同,所產生的數據及其所支撐的管理形態也千差萬別,但從數據的獲取,數據的整合,數據的加工,數據的綜合應用,數據的服務和推廣,數據處理的生命線流程來分析,所有行業的模式是一致的。如果在不同行業的業務和管理層之間,增加數據資源體系,通過數據資源體系的數據加工,把今天的數據和歷史數據對接,把現在的數據和領導和企業機構關心的指標關聯起來,把面向業務的數據轉換成面向管理的數據,輔助於領導層的決策,真正實現了從數據到知識的轉變,這樣的數據資源體系是非常適合管理和決策使用的。
同方副總裁周俠表示,讓數據產生價值,不是大數據自身能夠解決的。首先要把數據組織成數據資源體系,再對數據進行層次、類別等方面的劃分,同時,要把數據和數據的相關性標注出來,這種相關性是反映客觀現象的核心。在此基礎上,通過分析數據資源和相關部門的業務對接程度,以此發揮數據資源體系在管理、決策、監測及評價等方面的作用,從而產生大數據的大價值,為領導決策提供服務依據。
物聯網應用產業本部副總李小華進一步給記者介紹了同方數據資源體系進行數據處理的流程——同方幫助企業建立數據中心建設的理念,在理念指導下建設配套機制,企業通過這個機制和相關數據進行對接,通過對接在不同的管理層級產生出來的效果設立指標體系,有指標體系以後創建監測評價機制。值得說明的是,指標體系是隨著具體情況不斷變更的,指標體系的變更會引領著後續的業務和數據自動的去適應新的指標體系,這是一個閉環的系統,在閉環系統里,企業可以發現有自身目標以及目標偏差,並可以依據目標偏差進行新的決策,以此減少目標偏差帶來的損失。這樣就形成了一個可循環的生態系統,幫助企業良性健康發展。
⑼ 大數據如何體現其價值
第一、幫助企業尋找更多的市場機會
基於用戶分析的基礎上,企業可以獲得更好的產品和營銷的創意和概念,怎麼去搜集到更多的用戶信息,挖掘可能有的市場機會,這是大數據幫助企業實現的最好方法。
第二、幫助企業提高決策的科學合理性
從大數據誕生的時候來講,它都是站在企業的決策角度出發,從數據的數量到數據的本質,數據越多,管理者進行決策的時候所依據的信息完整性就會越高。
第三、幫助企業找到人員管理新模式
企業的員工是無條件的服從上級的管理,還是內部一盤散沙,企業的管理效率高不高,在競爭環境日益激烈的今天,對於企業來說,管理高不高效直接關繫到企業的經營效益高不高效,大數據與企業的核心管理因素相結合,成為企業的資產之一,大數據的成果可以進行企業內部共享,對於企業來說,這是一個變革的機會。
第四、幫助企業提供更加個性化的服務
彈性管理,個性化領導,每一個員工都可以得到更加個性化的培訓,每一個用戶都可以得到更加個性化的服務,對於企業來說這種個性化的創新無疑要依靠大數據技術的支持和發展。
⑽ 大數據時代九種從大數據中獲取價值的方法
大數據時代九種從大數據中獲取價值的方法
大數據時代九種從大數據中獲取價值的方法,現在已經有了許多利用大數據獲取商業價值的案例,我們可以參考這些案例並以之為起點,我們也可以從大數據中挖掘出更多的金礦。 去年TDWI關於管理大數據的調查顯示,89%的受訪者認為大數據是一個機會,而在2011年的大數據分析的調查中這個比例僅為70%。在這兩次調查中受訪問者均普遍認為,要抓住大數據的機會並從中獲取商業價值,需要使用先進的分析方法。此外,其他從大數據中獲取商業價值的方法包括數據探索、捕捉實時流動的大數據並把新的大數據來源與原來的企業數據相整合。 雖然很多人已有了這樣一個認識:大數據將為我們呈現一個新的商業機會。但目前僅有少量公司可以真正的從大數據中獲取到較多的商業價值。下邊介紹了9個大數據用例,我們在進行大數據分析項目時可以參考一下這些用例,從而更好地從大數據中獲取到我們想要的價值。1、探索大數據以發現新的商業機會。很多大數據都是來自一些新的來源,這代表客戶或合作夥伴互動的新渠道。和任何新的數據來源一樣,大數據值得探索。通過數據探索,你可以了解一些之前所不知道的商業模式和事實真相,比如新的客戶群細分、客戶行為、客戶流失的形式,和最低成本的根本原因等等。2、從數據分析中獲取商業價值。請注意,這里涉及到一些高級的數據分析方法,例如數據挖掘、統計分析、自然語言處理和極端SQL等等。3、對已收集到的大數據進行分析。許多公司都收集了大量的數據,他們感覺這些數據存在著商業價值,但並不知道怎樣從這些弄出來的值大的數據。不同行業的數據集有所不同,比如,如果你處於網路營銷行業,你可能會有大量Web站點的日誌數據集,這可以把數據按會話進行劃分,進行分析以了解網站訪客的行為並提升網站的訪問體驗。4、重點分析對你的行業有價值的大數據。大數據的類型和內容因行業而異,每一類數據對於每個行業的價值是不一樣的。比如電信行業的呼叫詳細記錄(CDR),零售業、製造業或其他以產口為中心的行業的RFID數據,以及製造業(特別是汽車和消費電子)中機器人的感測器數據等等,這些都是各個行業中非常重要的數據。5、使用社交媒體數據來擴展現有的客戶分析。客戶的各種行為比如評論品牌、評價產品、參與營銷活動或表示他們的喜好等等,會在客戶中相互影響。社交大數據可以來自社交媒體網站,以及自有的客戶能夠表達意見及事實的渠道。我們可以使用預測性分析發現規律和預測產品或服務的問題。我們也可以利用這些數據來評估市場知名度、品牌美譽度、用戶情緒變動和新的客戶群。6、理解非結構化的大數據。非結構化的信息主要指的是是使用文字表達的人類語言,這與大多數關系型數據有著很大的不同,你需要使用一些新的工具來進行自然語言處理、搜索和文本分析。把基於文本內容的業務流程進行可視化展示。7、把客戶的意見整合到大數據中。通過運用大數據(與原有的企業資源集成),我們可以對客戶或其他商業實體(產品,供應商,合作夥伴)實現360度全景分析,分析的維度屬性從幾百個擴展到幾千個。新增的粒狀細節帶來更准確的客戶群細分,直銷策略和客戶分析。8、分析大數據流,實時操作業務,提升業務動作水平。實時監測和分析的程序已經在企業運營中存在了很多年,那些需要全天候運行的能源、通訊網路或任何系統網路、服務或設施的機構早就在使用這類型的程序。最近,從監控行業(網路安全、態勢感知、欺詐檢測)到物流行業(公路或鐵路運輸、移動資產管理、實時庫存),越來越多的組織正在利用大數據流的應用。9、整合大數據以改善原有的分析應用。對於原有的分析應用,大數據可以擴大和擴展其數據樣本。尤其在依賴於大樣本的分析技術的情況下,比如統計或數據挖掘;而在欺詐檢測、風險管理或精確計算的情況下同樣也得用上大樣本的數據。