導航:首頁 > 網路數據 > 簡述對大數據

簡述對大數據

發布時間:2023-02-28 16:11:32

㈠ 簡述什麼是大數據

大數據是指那些數據量特別大、數據類別特別復雜的數據集,這種數據集不回能用傳答統的資料庫進行轉存、管理和處理,是需要新處理模式才能具有更強大的決策力、洞察發現力和流程優化能力的海量、高增差率和多樣化的信息資產。

大數據的主要特點就是數據量大、數據處理速度快、數據真實性高、數據類別復雜等,它們合起來被稱為4大數據也可以應用在警察預測犯罪的發生、預測選舉結果,同時還能通過手機定位數據和交通數據建立城市規劃,現在醫療行業也在做大數據的分析。

(1)簡述對大數據擴展閱讀:

社會發展速度非常快,科技也很發達,信息的流通和人們之間的交流也非常密切,而大數據就是這個時代高科技的產物。對於大部分行業而言,怎麼運用這些大規模數據是贏得競爭的關鍵,但同時,大數據在經濟發展中的意義不能取代一切對於社會問題的理性思考。

數據行業非常的受歡迎,人才需要求量也非常大,而且企業給大數據工程師的薪資比一般工程師的薪資也要高很多。

㈡ 對大數據的理解與思考

對大數據的理解與思考
首先,大數據的到來,對人們的觀念將帶來深遠的影響。
我們以前習慣認為:找到現象背後的原因,比清楚現象是什麼更重要。通過「塔吉特懷孕預測」的例子可以看到,通過關聯分析、聚類分析等數據挖掘方法,大家很容易找到事物之間的關系。但是,這些大數據分析結果,並不會直接告訴我們,事物之間為什麼存在這些關系。在不清楚為什麼存在這些關系之前,又的確看到了這些關系帶來了價值;所以,在大數據應用領域就需要改變以前的思考方。即:先找到「是什麼」再去找「為什麼」;清楚是什麼,與搞清楚為什麼同等重要。
手工統計時代,出於收集全部數據非常困難或代價巨大的原因,很多數據分析都是採用抽樣數據;但是,現在不同了,隨著信息技術的發展,現在很多領域都能夠方便的收集到全量數據。諸如無紙化辦公的興起、信息系統的使用、電子商務的發展等等,都為收集全量數據提供了便捷的條件。那麼,這時候數據的「樣本」=「全體數據」。這相對以前來說,也是革命性的影響。
在抽樣分析時代,個別樣本的質量甚至決定結果的質量。在大數據時代,這也變了,可以允許個別數據的不精確,甚至錯誤。舉個簡單例子來說明這個道理,比如在溫室大棚里放一隻溫度計,當這只溫度計有問題時,整個溫度都是不準確的。若在大棚里均勻分布十幾只溫度計,其中一隻有問題,對溫室大棚溫度的統計結果無礙大事,基本可以忽略其影響。
其次,大數據應用,影響商業變革和社會進步。
大數據應用正改變著企業的業務發展方式。比如:京東、天貓通過對交易數據的「二次利用」,尋找目標客戶、定向推薦商品。也正是這些數據的二次利用給他們提供了大量價值,促進了這些企業的發展,推動著他們在營銷、供應鏈與客戶服務等領域的管理變革。同時,交易數據並不因為二次利用,而降低其價值;這也是,大數據應用與傳統資源使用不同的地方。
數據的「混搭」分析,推動著商業發展和社會的進步。比如歷史天氣信息與航班誤點信息,這兩個不同領域的信息一塊兒分析,便可以推算未來幾天航班的誤點率。再比如,通過神經中樞腫瘤患病率和手機使用時間長短之間的大數據關聯分析,來研究神經中樞腫瘤患病率是否與手機使用時間長短有關系等等。
大數據的應用,也促生了很多商業機會。隨著大數據時代的到來,形成了很多大數據擁有公司,以及大數據技術公司;數據與技術的結合變促生了很多大數據應用,因此帶來了很多商業機會。例如,現在很多商業銀行對自己大量客戶的交易信息分析,規劃新的理財產品,與其他商家合作,聯合搞定向促銷等等。
再次,大數據時代不再有個人隱私,將形成新的信息安全機制。
現在還經常聽到諸如某某窺探我的隱私之類的話語,但是,在大數據時代幾乎沒有個人隱私,這不是駭人聽聞。因為,現在微博、搜索引擎、社交網路、電商購物,已經成了我們生活中必不可少的一部分。根據每個人在互聯網上留下的痕跡,通過大數據分析,很容易分析出一個人的愛好、習慣、性格、癖好等等。所以,大家都被「第三隻眼」實時監控著,在大數據時代,幾乎沒有個人隱私!
沒有個人隱私,是否就代表每個人可以隨便傳播別人隱私了呢?答案當然是否定的。因為傳播別人隱私是不道德的,甚至是違法的。所以,現在新的信息安全規則正在重新定位,其中一個基調是:讓數據使用者承擔責任,不能濫用別人的隱私;我個人感覺這也比較合理。
總結
大數據只是「新概念」,並不是「新事物」。過去數據就存在,只是我們沒有收集這些數據。但是,現在收集了這些數據,這個世界變得不一樣了;它更新了人們過去對數據應用的認識,加快了商業和社會發展的新陳代謝,從中也讓大家也看到了很多機會。大數據時代,已經到來。極目遠眺,也看不到盡頭。

㈢ 你對大數據有哪些認識

"大數據"是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。從數據的類別上看,"大數據"指的是無法使用傳統流程或工具處理或分析的信息。它定義了那些超出正常處理范圍和大小、迫使用戶採用非傳統處理方法的數據集。 亞馬遜網路服務(AWS)、大數據科學家JohnRauser提到一個簡單的定義:大數據就是任何超過了一台計算機處理能力的龐大數據量。 研發小組對大數據的定義:"大數據是最大的宣傳技術、是最時髦的技術,當這種現象出現時,定義就變得很混亂。" Kelly說:"大數據是可能不包含所有的信息,但我覺得大部分是正確的。對大數據的一部分認知在於,它是如此之大,分析它需要多個工作負載,這是AWS的定義。當你的技術達到極限時,也就是數據的極限"。 大數據不是關於如何定義,最重要的是如何使用。最大的挑戰在於哪些技術能更好的使用數據以及大數據的應用情況如何。這與傳統的資料庫相比,開源的大數據分析工具的如Hadoop的崛起,這些非結構化的數據服務的價值在哪裡。

㈣ 大數據是什麼

大數據是什麼意思呢?
如果從字面意思來看,大數據指的是巨量數據。那麼可能有人會問,多大量級的數據才叫大數據?不同的機構或學者有不同的理解,難以有一個非常定量的定義,只能說,大數據的計量單位已經越過TB級別發展到PB、EB、ZB、YB甚至BB級別。
最早提出「大數據」這一概念的 是全球知名咨詢公司麥肯錫,它是這樣定義大數據的:一種規模大到在獲取、存儲、管理、分析方面大大超出了傳統資料庫軟體工具能力范圍的數據集合,具有海量的數據規模、快速的數據流轉、多樣的數據類型以及價值密度低四大特徵。
研究機構Gartner是這樣定義大數據的:「大數據」是需要新處理模式才能具有更強的決策力、洞察發現力和流轉優化能力來適應海量、高增長率和多樣化的信息資產。若從技術角度來看,大數據的戰略意義不在於掌握龐大的數據,而在於對這些含有意義的數據進行專業化處理,換言之,如果把大數據比作一種產業,那麼這種產業盈利的關鍵在於提高對數據的「加工能力」,通過「加工」實現數據的「增值」。

㈤ 對大數據的理解,哪些是正確的

在麥肯錫全球研究所給出的定義中指出:大數據即是一種規模大到在獲取,存儲,管理,分析方面大大超出了傳統資料庫軟體工具能力范圍的數據集合。簡單而言大數據是數據多到爆表。大數據的單位一般以PB衡量。那麼PB是多大呢?1GB=1024MB ,1PB=1024GB才足以稱為大數據。
其次,大數據具有什麼樣的特點和結構呢?
大數據從整體上看分為四個特點,
第一,大量。

衡量單位PB級別,存儲內容多。
第二,高速。

大數據需要在獲取速度和分析速度上要及時迅速。保證在短時間內更多的人接收到信息。
第二,多樣。

數據的來源是各種渠道上獲取的,有文本數據,圖片數據,視頻數據等。因此數據是多種多樣的。
第三,價值。

大數據不僅僅擁有本身的信息價值,還擁有商業價值。大數據在結構上還分為:結構化,半結構化,非結構化。結構化簡單來講是資料庫,是由二維表來邏輯表達和實現的數據。非結構化即數據結構不規則或不完整,沒有預定義的數據模型。由人類產生的數據大部分是非結構化數據。

那我們身邊有哪些東西是大數據呢?
在生產生活中常見的有電信數據:通話數據、簡訊數據、手機瀏覽數據。銀行數據,微信聊天數據等。

最後,大數據能做什麼?
人們的生活離不開它,因為他在日常生活中發揮的作用逐漸加強。例如:用戶畫像,幫助人們制定個性化的需求,知識圖譜。人工智慧例如:谷歌的「阿爾法狗」在圍棋大賽中贏得、阿里巴巴的ET、網路的無人駕駛汽車等。數字貨幣,物聯網等。

㈥ 用簡單的話說說什麼是大數據

大數據基本含義其實就是是海量數據。
有人說,大數據就像國王的新衣,每個人都在國王面前說著動聽的話,國王信以為真,其實竟然不知道自己在裸奔。
的確,網路上有很多人在談大數據,但是他們只會談,不會做,因為他們根本就沒有做過,包括那些所謂的「大數據專家」,他們真的做過嗎?沒有。
事實上,這些人對大數據內在的問題一點兒都不了解,更別說知道大數據的水有多深了。
大數據基本含義其實就是是海量數據。
而現在大家聊得最多的大數據是基於已經存在的大數據的應用開發。目前,在大數據方面,無法深入應用的原因在於,從收集到使用的大數據價值鏈出現了問題。從理論上來說,從收到用的螺旋式循環是一個巨大的渦輪,只有先數據化運營,然後才能運營數據。而現在的情況是,用數據的人不知道大數據從哪裡來,做數據的人不知道大數據如何使用。用的人不敢用,因為大數據的真實性;做的人不知道怎麼用,因為大數據的復雜性。這一問題造成的結果就是,數據量變得越來越大,而且越來越無法有效地使用。
大數據怎麼玩?
大數據源:首先確保有足夠龐大的數據源作為數據資源,才能玩的起來大數據。再次,對於大數據真實性的核實也非常關鍵。如果所採用的數據為虛假數據,那麼基本上可以宣告以此為基礎的所有分析,應用都是空中樓閣。或者還可能帶來致命的錯誤。嚴謹,真實,0誤差,是對數據源的基本要求。
玩數據的人員:
人員的素質。包括,技術素質:數據採集,數據錄入,數據分析等環節的人員的素質。都包含在大數據體系中。
道德素質:對於有些人員惡意泄露數據,或者對數據惡意篡改的行為都是潛在風險。
數據模型設置:
數據模型建設非常重要。可能只是一個參數或者關注數值的變化,就能給大數據帶來巨大的偏差。
數據備份的安全:
龐大的數據,不僅是存儲和備份的問題。其本身的安全保障性能也是需要人們亟待去解決的問題。近幾年互聯網排頭兵們龐大的資料庫屢屢被攻破和信息泄露,讓人們不得不加強對於網路數據安全的關注和保護措施。
大數據應用創新:
對於大數據的核心輸出模式。也就是應用場景的創新還需要進行更加精準的定位和創新設計。再好的原材料,碰不上個好廚子,也是白費。
追捧熱詞和時代的潮流毋庸置疑,但是在追求熱潮的時候,作為科技領域的踐行者,一定要保持一顆嚴謹的心。這樣才能真正的成為弄潮兒!

㈦ 大數據有哪些特徵試簡述這些特徵對於大數據的意義,

大數據有4個特徵,簡稱4v 。第一個是數據量大volume,數據量大單機無法承受,必須用集群。第二內個是容variety,數據形式多種多樣,也就是利用傳統資料庫不好處理了,第三個是velocity,速度快,生成數據太快,價值隨時間變得越來越少,要求短時間要能做完計算,第四個是value,價值密度低,因為數據收集起來容易,但有用信息藏得太深,需要有效挖掘真正的價值。 4個特徵代表數據處理時候因為大遇到的困難,需要各種技術合力使得大數據真正為我所用!

㈧ 對大數據的理解,哪些是正確的

「大數據」是近年來IT行業的熱詞,大數據在各個行業的應用逐漸變得廣泛起來,如2014年的兩會,我們聽得最多的也是大數據分析,那麼,什麼是大數據呢,大數據時代怎麼理解呢,一起來看看吧。

互聯網時代的大數據

大數據的定義。大數據,又稱巨量資料,指的是所涉及的數據資料量規模巨大到無法通過人腦甚至主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。

大數據的特點。數據量大、數據種類多、 要求實時性強、數據所蘊藏的價值大。在各行各業均存在大數據,但是眾多的信息和咨詢是紛繁復雜的,我們需要搜索、處理、分析、歸納、總結其深層次的規律。

大數據的採集。科學技術及互聯網的發展,推動著大數據時代的來臨,各行各業每天都在產生數量巨大的數據碎片,數據計量單位已從從Byte、KB、MB、GB、TB發展到PB、EB、ZB、YB甚至BB、NB、DB來衡量。大數據時代數據的採集也不再是技術問題,只是面對如此眾多的數據,我們怎樣才能找到其內在規律。

大數據的挖掘和處理。大數據必然無法用人腦來推算、估測,或者用單台的計算機進行處理,必須採用分布式計算架構,依託雲計算的分布式處理、分布式資料庫、雲存儲和虛擬化技術,因此,大數據的挖掘和處理必須用到雲技術。

大數據的應用。大數據可應用於各行各業,將人們收集到的龐大數據進行分析整理,實現資訊的有效利用。舉個本專業的例子,比如在奶牛基因層面尋找與產奶量相關的主效基因,我們可以首先對奶牛全基因組進行掃描,盡管我們獲得了所有表型信息和基因信息,但是由於數據量龐大,這就需要採用大數據技術,進行分析比對,挖掘主效基因。例子還有很多。

大數據的意義和前景。總的來說,大數據是對大量、動態、能持續的數據,通過運用新系統、新工具、新模型的挖掘,從而獲得具有洞察力和新價值的東西。以前,面對龐大的數據,我們可能會一葉障目、可見一斑,因此不能了解到事物的真正本質,從而在科學工作中得到錯誤的推斷,而大數據時代的來臨,一切真相將會展現在我么面前。

㈨ 談談對大數據的理解和認識!

隨著大數據的概念提出,越來越多的人,開始關注數據,注重數據帶來的巨大的價值。大家談論的也都是與大數據相關的專業話題了,無論是商業BI,還是阿里雲。都是越來越多的行業內部人員乃至關注大數據的看客的討論熱點了。

大數據的鼻祖又是什麼呢?

大數據現實體現最初是人口普查,最早是在美國,10年為一個周期做一次人口普查工作,第一次,在1880年用了8年做完,到1890年,人口繼續增長,經過科學的預測,如果還是按照老方法去做,需用13年做完,這顯然跟不上時代的要求。所以人們開始從記錄,採集,整理,分析等多個領域尋求加快數據分析的速度,大數據的概念也慢慢被提出。

大數據在我們現在生活有哪些體現?

現如今,大數據體現最多的可能是社交網路之中了比如:facebook,微信等網路社交平台。其中也不乏實際應用的例子。

微信幾乎每個人都有,但微信的朋友圈可以向定向的人群發送指定的廣告,還可以選擇地區,可以選擇性別,年紀分類,教育程度分類,給所有用戶進行初步分類之後,再是根據你朋友圈的發文或者交流信息進行提取分析,進一步給每個客戶貼上獨特的標簽,最後把相關信息給到銷售部門,進行精準營銷。

如今還有絕大多數的公司對於大數據渴望又不知道如何下手,其中大致包括兩個方面。

1、想做數據分析,但是之前沒有相關的數據意識,基礎數據丟失或從未搜集,或者數據孤島嚴重,行業數據相對獨立而難以共享。

2、數據產生的體量大,維度高,提取難度大。例如某個知名商業銀行的信用卡部門,每天收集大量的個人客戶的多維度信息,面對大量信心無法價值化,因為涉及個人隱私和安全,數據不可買賣,又不知道如何內部進行分析促進其他相關業務增長。

此外,在整個企業的運作過程還可以分為交易數據和交互數據。

農夫山泉,幾年前銷量並不如今,當時他們基本上只掌握了大量的交易的數據,通過分析得出,農夫山泉的利潤始終上不來,是因為運輸成本很高,如何降低運輸成本成為問題的關鍵點,交互數據的需求成為至關重要的一環,所以決定,每個採集人員每天到10至20個銷售點,取收集大量的交互數據,其中包括水的位置,排列形狀,天氣,優惠活動,市場反饋等一系列交互數據,一個月一個人收集的信息量大約3個TB,繼而委託sap公司進行分析開發出物流成本控制處理系統,從而進行運輸預測,運輸安排和中轉站的一系列重新部署,最終直接降低運輸成本,提高了運輸效果,終於坐到飲用水市場第一的位置。

通過今天的介紹,希望給大家一些對於大數據的基本認識,也希望大家一同關注大數據發展,共同分享大數據帶來的驚喜。如果您還存在疑惑或是想要了解更多,歡迎關注西線學院。

㈩ 對大數據的理解

大數據是指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產,簡單來說大數據就是海量的數據,就是數據量大、來源廣、種類繁多(日誌、視頻、音頻),大到PB級別,現階段的框架就是為了解決PB級別的數據。
大數據的7大特徵:海量性,多樣性,高速性,可變性,真實性,復雜性,價值性
隨著大數據產業的發展,它逐漸從一個高端的、理論性的概念演變為具體的、實用的理念。

很多情況下大數據來源於生活。比如你點外賣,准備什麼時候買,你的位置在哪,商家位置在哪,想吃什麼……這都是數據,人一多各種各樣的信息就越多,還不斷增長,把這些信息集中,就是大數據。
大數據的價值並不是在這些數據上,而是在於隱藏在數據背後的——用戶的喜好、習慣還有信息。

閱讀全文

與簡述對大數據相關的資料

熱點內容
哪些紅頭文件的抬頭下面是雙紅線 瀏覽:638
炒股app有哪個 瀏覽:108
汽車鑰匙編程器哪個好 瀏覽:688
誤刪除文件怎麼恢復 瀏覽:885
360wifi擴展器版本升級 瀏覽:336
word批量刪除某個同一圖片logo 瀏覽:637
蘋果5應用需要證書 瀏覽:531
觸摸屏編程有哪些優勢 瀏覽:550
ps文件存儲環境 瀏覽:74
文件名怎麼改不了大小寫 瀏覽:613
眼睛驗光數據什麼樣算假近視 瀏覽:269
1在編程里代表什麼 瀏覽:193
密碼文件櫃哪裡便宜 瀏覽:949
box文件怎麼打開 瀏覽:114
線切割編程哪個好用 瀏覽:70
反詐app官方已下載怎麼注冊 瀏覽:496
安卓5flash游戲 瀏覽:895
什麼卡有免費微信提示 瀏覽:511
iphone看不了文件管理 瀏覽:783
數據包如何上傳寶貝 瀏覽:885

友情鏈接