❶ 大數據時代下的人群透視
人群透視又名人群分析,是按照用戶的屬性選取特定的人群,利用大數據的相關技術來探索數據背後的本質。常見的分析需求有觀察特定地區的購買轉化率、指定投放渠道新增用戶數和轉化率、發生業務行為的留存率等等。
我們先來看一個簡單的例子,我們為昨天的活躍用戶創建了一個指定的人群。產品人員想分析出用戶中男性比例是否高於女性,利用相關的分析技術得到分布圖。
未知是有些用戶沒有填寫性別資料(利用身份證信息也可以自動補全或者通過其他的規則和模型識別)
讀到這,想必大家對什麼是人群透視有了一定的了解。那為什麼要做人群透視?我先給大家描述一個場景,運營人員發送某個月的用戶留存突然大幅降低了,看到這個數據後,接下來應該馬上去找到是什麼原因導致的。首先,運營人員會確認各個渠道的留存率情況(按照引流渠道進行人群的劃分),發現某個渠道的新用戶注冊迅速增加,但留存率急劇下降;最後發現是由於渠道投放人員設置了針對特定人群的廣告投放,但是這些用戶卻因為產品本身無法帶來滿足和愉悅而放棄。
上述就是一個由淺及深的人群透視分析場景,如果有這樣一款數據分析工具,無需專業的數據分析師就能完成大部分的數據分析工作是不是很酷。
人群透視當前還有更多的場景。進行不同活動的效果分析對比、按照人群分析產品的走勢、增長環節找到最優的決策點。
熟悉大數據相關或者數倉模型相關的同學肯定對事實表和維度表不陌生,事實表是指特定主題域下的業務行為,維度表中記錄的是對某一個實體的描述信息。注冊的行為表就是一張事實表,而用戶畫像表或者商品表我們可以稱為維度表。人群透視就是按照用戶屬性維度表選取合適的取值來看在事實業務表上的表現情況。查看杭州地區女性的消費類型分布情況,其中「杭州地區女性」就是維度表的屬性特徵,消費類型則是消費記錄事實表的記錄。
首先明確我們要分析的業務指標。以渠道作為例子,我們想分析各個渠道的新用戶增長、注冊和登陸轉化率情況。首先建立一張事實表,明確存儲的粒度、業務欄位集合。
按照渠道我們需要分析出每一個渠道的每天廣告位點擊情況、新增激活設備數、新增用戶注冊數、新增登陸用戶數、設備激活轉化率、注冊激活轉化率、登陸活躍用戶轉化率、激活成本、注冊成本、活躍成本、總成本。
指標通常是數值類型,同時其計算規則應該滿足可累性,比如sum、max、min、cnt,函數應該符合這樣的關系:
f(A)=f(a,A-a) ,其中A是集合,a是A中的一個元素,即真對一個集合的計算可以進行迭代計算
比如mean、variance等就不是可累加的匯總函數
人群透視分析首先需要要按照屬性圈選出人群集合,這是一個倒排索引的查詢類別,市面上常用的倒排索引服務就是Eleastic Search。首先我們可以藉助其倒排查詢的能力快速勾選出用戶ID列表。
指標的查詢是一個正排索引查詢的過程,根據用戶ID查詢出相應記錄。常用的多維查詢工具有Kylin、Druid、Presto、ES等,下面分別比較下各個框架的優缺點。
由於大部分的業務的轉化需要一定時間的積累,大部分數據滿足T+1的查詢即可。同時T+1的數據可以利用數倉的數據直接進行匯總計算。如果一個業務分析指標的模型固定可以直接藉助Kylin完成數據的分析存儲。查詢的指標如果是互動式、靈活多變的,則可以採用ES、Presto這樣的存儲查詢方式。如上面的渠道分析模型,則直接可以採用Kylin進行存儲。
目標:滿足非大數據分析師日常的分析工作,幫助更快的發現問題、提出問題的方向和優先順序、執行解決問題。另外提供一套標準的框架來便於用戶導入合適的分析模型。
按照構建的生命周期我們可以分為五層,分別是人群指標定義、數據採集加工、數據存儲、數據查詢、數據圖表化展示。
按照功能模塊劃分,我們可以得到如下架構圖
場景的需求,明確要觀察分析的業務場景和數據來源。渠道的注冊轉化分析需要收集廣告的埋點點擊、App的打開埋點、用戶注冊事件、點擊成本統計等。最終藉助於數據倉庫加工成一張渠道轉化事實表。同樣的方式構建出渠道的維表信息。
人群 :符合某一個屬性取值的用戶集合。如借貸用戶群、理財用戶群體等。
人群組 :人群的組合,我們通常先真對不同的人群做對比,比如比較杭州和北京的借貸用戶群,人群組的管理可以選取哪些維度作為區分條件組,地理位置、性別等等。人群組用戶構建多維分析分析,劃分組的屬性列就是維度。對於一些連續數值列的屬性可以按照區間值進行分類處理。
指標類型通常是數值的聚合函數,聚合函數最好要能滿足可加性。
最常用的就是count,count函數無需構建在任何指標上,這種經常用於統計某一類人群的數量。
sum :統計某一列的數值的集合
max/min :統計數值最大/小的
distinct count :去重的數目統計
可以先根據表選取明確的指標列(只能是數值列,count的話數值取值默認為1),再勾選對應的聚合函數。這里可以選取不同表的不同數值列。
某一類維度的選取占整個人群的佔比,比如杭州地區的高收入人群的購買量。
對上提供一層通用的庫、表結構管理,提供一套統一的SQL給應用層面,對外根據具體的物理表存儲介質翻譯為具體的物理查詢計劃。查詢介面的請求和響應分裝為統一的結果,不對外體現具體的存儲細節。
dashboard的管理,可以為指定的人群創建一個指定的分析模板,同時可以進行圖標的新增、修改、刪除等操作。
圖表類型 :支持單維圖表和二維圖表。單維圖表通常就是數量等,常見的有餅圖、柱狀圖、儀表盤等
高級功能:選取一個圖表,可以自己勾選要展示的維度(維度可以來源為維度表也可以來源於事實表,如時間可以來源於事實表)和指標,構建一個二維甚至是多維圖形。
❷ 什麼是大數據時代
利用相關演算法對海量數據的存儲、處理與分析,從海量數據中發現價值,服務於生產和生活。
大數據無處不在,社會各行各業都可以找到大數據的印記,在金融,餐飲,電信,體育,娛樂等領域都可以感受到大數據對各行各業的影響
1、更多,更亂,但內部有關系可循。
示例:
大約20年前,亞馬遜剛成立時,傑夫·貝索斯讓50個書評員來為他賣書,他意識到不僅僅可以請人來寫書評,還可以用數據技術來提供圖書推薦。起初他使用的是小數據,不是大數據,把客戶進行分類,比如說有人對中國旅遊或者是對園藝感興趣,系統會自動提供推薦。他的同事告訴他,剛剛開始使用這個數據推薦時,使用體驗並不好;在進一步分析後,亞馬遜決定不對人進行分類,而是對用戶的需求分類。這個做法做法非常成功,以至於到今天,推薦系統為亞馬遜帶去30%的銷售收入。
這就是數據收集和再處理。亞馬遜有交易數據,每買一本書就是一個交易,然後對這個數據進行分析。但今天我們已不再滿足於交易數據了,轉而收集起溝通數據。你看了某一個書評、某一個交流會給商家更多的信息和細節。
2、數據可以被重復使用(數據的產生和收集本身並沒有直接產生服務,最具價值的部分在於:當這些數據在收集以後,會被用於不同的目的,數據被重新再次使用)
示例:
比方說這家公司實時車輛交通數據採集商Inrix,該公司目前有1億個手機端用戶。Inrix可以幫助你開車,避開堵車,為司機呈現路的熱量圖,紅的就表面堵車。如果只提供數據,這個產品沒什麼特色,
但值得一提的是,Inrix並沒有用交警的數據,這個軟體的每位用戶在使用過程中會給伺服器發送實時數據,比如走的多快,走到哪裡,這樣每個客戶都是探測器。
每天早上起來想一下,這么多數據我能用來干什麼,這些價值在哪裡可以找到,能不能找到一個別人以前都沒有做過的事情。你的想法和思路,是最重要的資產。
示例:
我們可以通過大數據來確定哪些地方會有火災。以前防火檢查員只有13%的時間可以准備預測,現在他們找到火災隱患的概率達到了70%,比以前提高了6倍。將效率提高6倍是一個巨大無比的進步,未來的公共服務業可以由此獲得更多便利。
❸ 什麼是大數據,大數據時代有哪些趨勢
行業主要上市公司:易華錄(300212)、美亞柏科(300188)、海量數據(603138)、同有科技(300302)、海康威視(002415)、依米康(300249)、常山北明(000158)、思特奇(300608)、科創信息(300730)、神州泰岳(300002)、藍色游標(300058)等
本文核心數據:大數據產業鏈、產業規模、應用市場結構、競爭格局、發展前景預測等
產業概況
1、定義:大數據產業覆蓋范圍廣
根據中國信通院發布的《大數據白皮書》,大數據產業是以數據及數據所蘊含的信息價值為核心生產要素,通過數據技術、數據產品、數據服務等形式,使數據與信息價值在各行業經濟活動中得到充分釋放的賦能型產業。不同機構對大數據的定義也有所不同,具體如下:
2、產業鏈剖析:大數據產業鏈龐大
大數據產業鏈覆蓋范圍廣,上游是基礎支撐層,主要包括網路設備、計算機設備、存儲設備等硬體供應,此外,相關雲計算資源管理平台、大數據平台建設也屬於產業鏈上游;
大數據產業中游立足海量數據資源,圍繞各類應用和市場需求,提供輔助性的服務,包括數據交易、數據資產管理、數據採集、數據加工分析、數據安全,以及基於數據的IT運維等;
大數據產業下游則是大數據應用市場,隨著我國大數據研究技術水平的不斷提升,目前,我國大數據已廣泛應用於政務、工業、金融、交通、電信和空間地理等行業。
大數據產業上游基礎設施具體包括IT設備、電源設備、基礎運營商及其他設備,相關代表企業華為、中興通訊、艾默生、三大運營商等。
中游大數據領域可以細分為數據中心、大數據分析、大數據交易與大數據安全等子行業,相關代表企業包括寶信軟體、數據港、久其軟體、拓爾思、上海數據交易中心、貴陽大數據交易所與華雲數據等。
在下游應用市場,我國大數據應用范圍正在快速向各行各業延伸,除發展較早的政務大數據、交通大數據外,在工業、金融、健康醫療等眾多領域大數據應用均初見成效。
產業發展歷程:十年來大數據產業高速增長,信息智能化程度得到顯著提升
我國大數據產業布局相對較早,2011年,工信部就把信息處理技術作為四項關鍵技術創新工程之一,為大數據產業發展奠定了一定的政策基礎。自2014年起,「大數據」首次被寫進我國政府工作報告,大數據產業上升至國家戰略層面,此後,國家大數據綜合試驗區逐漸建立起來,相關政策與標准體系不斷被完善,到2020年,我國大數據解決方案已經發展成熟,信息社會智能化程度得到顯著提升。
產業政策背景:優化升級數字基礎設施,鼓勵大數據產業發展
2014年,大數據首次寫入政府工作報告,大數據逐漸成為各級政府關注的熱點,政府數據開放共享、數據流通與交易、利用大數據保障和改善民生等概念深入人心。此後國家相關部門出台了一系列政策,鼓勵大數據產業發展。
當前,隨著5G、雲計算、人工智慧等新一代信息技術快速發展,信息技術與傳統產業加速融合,數字經濟蓬勃發展,數據中心作為各個行業信息系統運行的物理載體,已成為經濟社會運行不可或缺的關鍵基礎設施,在數字經濟發展中扮演至關重要的角色。數據中心作為大數據產業重要的基礎設施,其快速發展極大程度地推動了大數據產業的進步。在2021年3月發布的「十四五」規劃中,大數據標准體系的完善成為發展重點。
產業發展現狀
1、行業整體情況:大數據產業規模維持高速增長 主要應用於金融和政府領域
——大數據產業規模:2021年超過800億元
近年來我國大數據行業取得快速發展,賽迪CCID統計,我國大數據市場規模由2019年的619.7億元增長至2021年的863.1億元,復合年增長率達到18.0%,大數據市場規模包含了大數據相關硬體、軟體、服務市場收入。
——大數據市場結構:產業整體以大數據服務為主,應用領域以金融和政府領域為主
從產業結構來看,目前,我國的大數據產業進入高質量發展階段,大數據軟體和大數據服務的需求開始不斷提升,大數據硬體佔比有所下降但仍占據主導地位,
CCID統計,2021年我國大數據市場結構中,大數據硬體、大數據軟體和大數據服務的市場佔比分別為40.5%、25.7%和33.8%。近幾年大數據硬體的佔比在逐漸下降,大數據軟體和大數據服務的佔比在逐步提高。未來我國大數據軟體和服務市場相比硬體市場將呈現更好的發展態勢。
從應用領域來看,大數據分析產品及服務已經從最早的為電信領域客戶提供經營分析、為銀行領域客戶提供風控管理等輔助性經營決策,發展到目前的為金融、電信、政府、互聯網、工業、健康醫療、電力等多個行業領域客戶提供預測性分析、自主與持續性分析等,以實現企業決策與行動最優化。大數據分析產品及服務應用已經十分廣泛,但由於各下游領域業務特點的不同,決定了其對大數據分析產品及服務的具體需求存在一定差異。
CCID統計,2021年我國大數據分析市場下遊行業中,金融、政府、電信和互聯網位居應用領域前四名,市場佔比分別為19.1%、16.5%、15.2%和13.9%,合計超過60%;其他重點應用領域主要包括健康醫療、交通運輸、工業、電力等。
2、細分市場一:金融大數據
——金融大數據需求:金融業務規模不斷擴大,帶動大數據需求提升
從金融領域需求來看,近年來,中國金融領域業務規模不斷擴大,其中中國銀行業金融機構不斷積極擁抱金融科技,推動數字化轉型,整體行業規模擴大;保險業和證券業的收入也隨著市場經濟的發展而提升。
近年來,隨著新一代信息技術加速突破應用,以移動金融、互聯網金融、智能金融等為代表的金融新業態、新應用、新模式正蓬勃興起,我國金融業開始步入一個與信息社會和數字經濟相對應的數字化新時代,金融數字化轉型成為金融行業轉型發展的焦點。2019年,人民銀行印發《金融科技發展規劃(2019-2021年)》,構建起金融科技「四梁八柱」的頂層設計,明確了金融科技發展方向和任務、路徑和邊界。2022年1月,人民銀行再次發布《金融科技發展規劃(2022-2025年)》明確提出,從戰略、組織、管理、目標、路徑以及考評等方面將金融數字化打造成金融機構的「第二發展曲線」。隨著金融業務規模不斷擴大,加之新一代信息技術的發展,大數據在金融領域的需求將不斷提升。
——金融大數據應用場景
過去幾年,金融大數據帶來了重大的技術創新,為行業提供了便捷、個性化和安全的解決方案。目前,中國金融大數據典型的應用場景包括股票洞察、欺詐檢測和預防、風險分析與金融服務領域。
3、細分市場二:政府大數據
——政府大數據需求:互聯網政務服務用戶規模不斷提升
從政府領域需求來看,根據中國互聯網路信息中心(CNNIC)發布的第49次《中國互聯網路發展狀況統計報告》數據顯示,互聯網政務服務發展展現出了巨大潛能。截至2021年12月,我國互聯網政務服務用戶規模達9.21億,較2020年12月增長9.2%,占網民整體的89.2%。「十四五」規劃綱要提出要「推進網路強國建設,加快建設數字經濟、數字社會、數字政府,以數字化轉型整體驅動生產方式、生活方式和治理方式變革」。2021年,我國各省市積極探索、持續推進互聯網政務服務建設發展,努力提升公共服務、社會治理等數字化、智能化水平。截至2021年11月,全國已有20多個省(區、市)相繼出台數字政府建設的有關規劃,為我國互聯網政務服務發展注入新的活力。
——政府大數據應用場景
中國政府大數據主要應用於信息共享、政務數據管理、城市網路管理與社會管理幾大領域。加強電子政務建設,管理好政府的數據資產,完善政府決策流程,將是未來數年大數據在公共管理領域發展的重要方向。大數據將對政府部門的精細化管理和科學決策發揮重要作用,從而提高政府的服務水平。輿情監測、交通安防、醫療服務等將是公共管理領域重點應用領域。
4、細分市場三:互聯網大數據
——互聯網大數據需求:互聯網行業規模不斷提升
在人工智慧、雲計算、大數據等信息技術和資本力量的助推和國家各項政策的扶持下,2021年,互聯網和相關服務業發展態勢平穩向好。企業業務收入和營業利潤保持較快增長;互聯網平台服務和數據業務實現快速發展,信息服務收入較快增長;多省份保持增長態勢。2021年我國規模以上互聯網和相關服務企業完成業務收入15500億元,同比增長21.2%。
2022年上半年,我國規模以上互聯網和相關服務企業完成互聯網業務收入7170億元,同比增長0.1%。
註:2021年及以前年份,規模以上互聯網和相關服務企業,指獲得《增值電信業務經營許可證》在中國大陸境內經營全國或區域性增值電信業務、上年度互聯網業務收入500萬元及以上的企業。2022年,規模以上互聯網和相關服務企業口徑由互聯網和相關服務收入500萬元以上調整為2000萬元及以上。
——互聯網大數據應用場景
在互聯網行業,除了社交、B2C業務之外,像在線音視頻業務、廣告監測、精準營銷等等,也是未來潛在應用場景。
產業競爭格局
1、區域競爭:中國大數據企業主要分布在華南和華東沿海地區
根據企查貓數據,截止2022年9月23日,全國大數據產業中「存續」及「在業」的企業多集中分布在華南和華東沿海地區。其中,廣東省的大數據企業最多。
2、企業競爭:技術領域創新和經驗是關鍵,融合應用領域行業龍頭更能獲得青睞
根據大數據產業聯盟調研和發布的2022大數據企業投資價值百強榜單來看,榜單共選取了10個細分領域,涉及大數據基礎軟體、數據治理與分析、數據安全、商業智能、營銷大數據5個通用領域,以及政府大數據、金融大數據、工業大數據、健康醫療大數據、空間地理信息大數據5個融合應用領域。
大數據基礎軟體、數據治理與分析、數據安全、數據可視化等,是所有細分行業應用場景的基礎支撐,體現了大數據技術價值和作用。在這些細分領域提供技術解決方案的企業中,技術創新能力較強、在各自的細分領域有較長時間技術積累的廠商是投資機構的關注重點。
政府大數據、金融大數據發展相對成熟,落地實踐案例多和品牌知名度高的企業受市場關注程度較高。工業大數據、健康醫療大數據、空間地理信息大數據等市場仍處於待爆發階段,在各自細分領域建立競爭優勢的企業容易獲得投資機構的青睞。
註:2022年大數據企業投資價值百強榜是從企業估值/市值、營收狀況、創新投入、產品競爭力、細分市場潛力、領導層能力等多個維度進行綜合評比,同時結合行業專家打分,評選出2022年度大數據領域最具投資價值的100家企業。
產業發展前景:大數據將繼續保持高速增長
大數據作為新一代信息技術的重要標志,對生產製造、流通、分配、消費活動以及經濟運行機制、社會生活方式和國家治理能力均產生重要影響。伴隨國家快速推動數字經濟、數字中國、智慧城市等發展建設,未來大數據行業對經濟社會的數字化創新驅動、融合帶動作用將進一步增強,應用范圍將得到進一步拓寬,大數據市場也將保持持續快速的增長態勢。預計2027年我國大數據市場規模將達到2930.9億元,未來六年復合年增長率為22.6%。
更多本行業研究分析詳見前瞻產業研究院《中國大數據產業發展前景與投資戰略規劃分析報告》。
❹ 大數據賦能:如何利用大數據驅動,精細化運營
互聯網時代,很明顯的一個特徵就是大多數信息都是以數據的形式進行記錄,大數據的產生,簡化了人們對世界的認知。通過將人的行為轉化成無數個可以量化的數據節點,從而為人提供了一個「數據畫像」。
大數據等技術的出現,給平台提供多樣化的營銷渠道,比如千人千面的商品推薦,C2M式的需求定製等。類似這樣的大數據應用,既能提高用戶體驗又能提昇平台效率。
1、大數據時代,數據如何驅動運營
在大數據的驅動下,呈現給用戶的內容都是經過演算法精密篩選的。
當你打開資訊類APP時,演算法根據你的歷史瀏覽類別算出你的閱讀偏好,據此向你推薦內容;當你打開短視頻APP時,你刷到的視頻都是你感興趣並且關注的標簽內容;當你使用打車軟體時,演算法給你推薦你可能會選擇的計程車和價格……
經過演算法推薦,用戶閱讀到的都是自己感興趣或與自己生活圈子相關的信息內容,不感興趣或者觀點相左的內容會被演算法過濾。
2、大數據識別有價值信息,輔助決策
對於大數據來說,它不僅面臨著如何識別一些重要的信息,而且還要將這些用於決策。
目前業內對於大數據的分析更多地注重在數據識別、儲存、定性描述相關分析等領域。
大數據分析的優點不在於「大」,而在於「准」,尤其在這個信息量大的時代,採用哪些數據進行分析,從而得出更准確的結論則更重要。
3、大數據連接、賦能、跨行業數字化
通過數據對不同行業賦能,幫助不同行業進行數據價值挖掘。傳統行業和數據行業結合的點在於將線上和線下的資源打通。例如新零售在大數據的賦能下,將廣告和營銷做結合,能夠清晰的看到你的用戶長成什麼樣。
4、如何解讀數據成了非常重要的技能
互聯網時代,人人都在說大數據、數據分析、數據運營。數據是為你的工作提供反饋和指導的工具,數據會告訴你問題出在哪裡;你想達到一個運營推廣目標,數據會告訴你途徑和方法。
5、企業如何利用大數據分析精準運營
無疑,大數據時代,數據資產已成為企業的核心競爭力。但數據在手,不會運用它,就會變得沒有價值。在當下企業數字化浪潮中,數據是企業轉型的基礎元素,如何將企業不同業務、類型的數據應用起來,推動企業運營,增加收入、降低成本、提高效率,控制風險等,是很多企業面臨的難點。
數據對運營的重要性已不言而喻,互聯網平台更是以數據驅動運營。產品研發從立項開始已經受到數據的驅動,而運營過程中的產品設計優化、市場渠道推廣、用戶需求、用戶行為和用戶價值等運營活動更離不開數據。
那麼,數據從何而來呢?
構建數據需求: 構建平台關心的數據需求,圍繞著用戶的需求展開,通過數據賣點制定重要事件的採集。可以從數據上,明確看到你的用戶增加、流失、渠道來源,從而幫助你做更好的數據管理,提升投放效率。
數據報表呈現: 數據採集完之後通過動態計算,形成報表,了解你關心數據的升降,你的運營、產品是否有效提升,都能在報表數據得到體現。
在精細化運營的大背景下,學會用數據分析來弄清用戶從哪來、對什麼感興趣、為什麼流失尤為重要。
01、用戶分群,尋找更多的核心用戶
用戶分群本質來上來說,就是將用戶分割成很多的群體,詳細的看每個群體用戶特徵。最經典的用戶模型是R(最近購買時間)F(頻次)M(消費金額),三個維度畫出九宮格立體的象限,了解你最高價值客戶的分布和特徵,輔助你進行決策。同時,通過高活躍核心用戶的運營,能夠幫助你理解你的客戶。
02、營銷轉化漏斗分析
互聯網營銷就像個漏斗,線上曝光後,客戶在瀏覽所發布的內容時,被層層過濾和篩選,沒有需求的、與目標客群不符的都會離開,直到意向客戶的預約。
03、客戶瀏覽來源分析
互聯網營銷要在線上的各個渠道曝光,建立線上營銷矩陣,官網、APP、公眾號、小程序、朋友圈等等,哪個渠道的推廣效果好,客戶瀏覽多,對後期的投放具有非常重要的指導意義,更好的發揮自身的優勢,同時彌補短板。
互聯網運營是個循序漸進的過程,大數據分析可以幫助你加快和不斷完善這個過程。我們來看看中移互聯網大數據如何通過大數據技術分析,真正從數據「觸摸」獲得實際價值。
中移互聯網大數據平台-利用數據驅動運營
中移互聯網大數據產品有數通過專業的SDK數據採集,經過大數據平台服務分析,提供專業的運營數據分析、用戶畫像分析、渠道分析、以及自定義事件分析等,實現數據化管理與運營。
幫助企業洞察用戶畫像和行為,根據用戶畫像結合實時用戶數據,精準定位目標用戶,實時了解用戶行為變化,從中發現用戶需求的改變,及時調整運營策略,降低業務推廣成本,實現效益最大化。
幫助企業隨時掌握各項數據,包括應用分析和網頁分析(含H5),提供全面准確的運營分析、用戶分析、渠道分析等系列服務,並輸出相應的數據報表。完美的解決了企業無法獲取應用或網頁運營分析數據、無法分析渠道投放效果、無法統計應用收入情況等疑難問題。
❺ 什麼是大數據,大數據的的基本特徵是什麼
大數據(big data),是指無法在可承受的時間范圍內用常規軟體工具進行捕捉、管理和處理的數據 *** 。 1. 數據量大,TB,PB,乃至EB等數據量的數據需要分析處理。 2. 要求快速響應,市場變化快,要求能及時快速的響應變化
大數據(Big Data)是指「無法用現有的軟體工具提取、存儲、搜索、共享、分析和處理的海量的、復雜的數據 *** 。」業界通常用4個V(即Volume、Variety、Value、Velocity)來概括大數據的特徵。
一是數據體量巨大(Volume)。截至目前,人類生產的所有印刷材料的數據量是200PB(1PB=210TB),而歷史上全人類說過的所有的話的數據量大約是5EB(1EB=210PB)。當前,典型個人計算機硬碟的容量為TB量級,而一些大企業的數據量已經接近EB量級。
二是數據類型繁多(Variety)。這種類型的多樣性也讓數據被分為結構化數據和非結構化數據。相對於以往便於存儲的以文本為主的結構化數據,非結構化數據越來越多,包括網路日誌、音頻、視頻、圖片、地理位置信息等,這些多類型的數據對數據的處理能力提出了更高要求。
三是價值密度低(Value)。價值密度的高低與數據總量的大小成反比。以視頻為例,一部1小時的視頻,在連續不間斷的監控中,有用數據可能僅有一二秒。如何通過強大的機器演算法更迅速地完成數據的價值「提純」成為目前大數據背景下亟待解決的難題。
四是處理速度快(Velocity)。這是大數據區分於傳統數據挖掘的最顯著特徵。
社群營銷,是基於圈子、人脈概念而產生的營銷模式。通過將有共同興趣愛好的人聚集在一起,將一個興趣圈打造成為消費家園。
可以通過大數據預測進行組建社群為企業做宣傳搞活動,讓社群形成一個宣傳途徑或者一個小的發布平台,不過性質的社群,依賴於群主對群的組織和維護能力。
作為一名工作兩年多的大數據系統研發師,之前在北京老男孩教育學習了四個多月的大數據,總結我學習和工作兩年來對大數據的理解,從具體的應用上,也大概可以分為三類。一是決策支持類的二是風險預警類的第三種是實時優化類的從三個維度,我個人對大數據在各行業應用的可能性做了一個定位,但這個定位還是非常定性和粗略的,具體可能還需要對行業有更多的大數據應用的探討和探索。我也是看書學的,但是效果很慢。
「大數據」是指以多元形式,許多來源搜集而來的龐大數據組,往往具有實時性。
大數據(big data,mega data),或稱巨量資料,指的是需要新處理模式才能具有更強的決策力、洞察力和流程優化能力的海量、高增長率和多樣化的信息資產。
大數據的5V特點:Volume(大量)、Velocity(高速)、Variety(多樣)、Value(價值密度)、Veracity(真實性)。
第一,Volume(大量),數據體量巨大。從TB級別,躍升到PB級別。
第二,Variety(多樣),數據類型繁多,如前文提到的網路日誌、視頻、圖片、地理位置信息,等等。
第三,Value(價值密度),價值密度低。以視頻為例,連續不間斷監控過程中,可能有用的數據僅僅有一兩秒。
第四,Velocity(高速),處理速度快。1秒定律。最後這一點也是和傳統的數據挖掘技術有著本質的不同。物聯網、雲計算、移動互聯網、車聯網、手機、平板電腦、PC以及遍布地球各個角落的各種各樣的感測器,無一不是數據來源或者承載的方式。
所以通俗來說,大數據就是通過各種不同渠道收集到的大量數據,堆積起來幫助做決策分析的數據組
那麼什麼是大數據呢技術?大數據的概念是什麼呢?本文就為大家詳細解讀大數據的構成、模型和未來大數據發展方向: 大數據概念: 隨著每天互聯網上海量數據的產生,數據分析尤其顯得重要。所謂大數據技術,就是從各種各樣類型的數據中,快速獲得有價值信息的能力。 大數據產生的原因: 大數據時代的來臨是由數據豐富度決定的。首先是社交網路興起,互聯網上每天大量非結構化數據的出現。另外,物聯網的數據量更大,加上移動互聯網能更准確、更快地收集用戶信息,比如位置、生活信息等數據。從這些數據每天增加的數量來說,目前已進入大數據時代。 大數據書籍推薦: 一、《大數據-正在到來的數據革命.以及它如何改變 *** .商業與我們的生活》 大數據浪潮,洶涌來襲,與互聯網的發明一樣,這絕不僅僅是信息技術領域的革命,更是在全球范圍啟動透明 *** 、加速企業創新、引領社會變革的利器。 二、《大數據——大價值、大機遇、大變革(全彩)》 從實證的角度探討了大數據對社會和商業智能的影響,能否對大數據進行處理、分析與整合將成為提升企業核心競爭力的關鍵,什麼是大數據技術?既是一場大機遇,也將引發一場大變革!
要提一下魔據的數據不錯的
大數據(big data),或稱海量資料,指的是所涉及的資料量規模巨大到無法通過目前主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。
4V特徵:Volume(大量)、Velocity(實時)、Variety(多樣)、Value(價值)。
大數據已經成為各類大會的重要議題,管理人士們都不願錯過這一新興趨勢。毫無疑問,當未來企業嘗試分析現有海量信息以推動業務價值增值時,必定會採用大數據技術。
大數據(BigData)是指「無法用現有的軟體工具提取、存儲、搜索、共享、分析和處理的海量的、復雜的數據 *** 。」業界通常用4個V(即Volume、Variety、Value、Velocity)來概括大數據的特徵。
數據體量巨大(Volume)。截至目前,人類生產的所有印刷材料的數據量是200PB,而歷史上全人類說過的所有的話的數據量大約是5EB(1EB=210PB)。
數據類型繁多(Variety)。相對於以往便於存儲的以文本為主的結構化數據,非結構化數據越來越多,包括網路日誌、音頻、視頻、圖片、地理位置信息等,這些多類型的數據對數據的處理能力提出了更高要求。
價值密度低(Value)。價值密度的高低與數據總量的大小成反比。如何通過強大的機器演算法更迅速地完成數據的價值「提純」成為目前大數據背景下亟待解決的難題。
處理速度快(Velocity)。大數據區分於傳統數據挖掘的最顯著特徵。根據IDC的「數字宇宙」的報告,預計到2020年,全球數據使用量將達到35.2ZB。
-------------------------------------------
社交網路,讓我們越來越多地從數據中觀察到人類社會的復雜行為模式。社交網路,為大數據提供了信息匯集、分析的第一手資料。從龐雜的數據背後挖掘、分析用戶的行為習慣和喜好,找出更符合用戶「口味」的產品和服務,並結合用戶需求有針對性地調整和優化自身,就是大數據的價值。
所以,建立在上述的概念上我們可以看到大數據的產業變化:
1大數據飛輪效應所帶來的產業融合和新產業驅動
2信息獲取方式的完全變化帶來的新式信息聚合
3信息推送方式的完全變化帶來的新式信息推廣
4精準營銷
5第三方支付——小微信貸,線上眾籌為代表的互聯網金融帶來的全面互聯網金融改革
6產業垂直整合趨勢以及隨之帶來的產業生態重構
7企業改革以及企業內部價值鏈重塑,擴大的產業外部邊界
8 *** 及各級機構開放,透明化,以及隨之帶來的集中管控和內部機制調整
9數據創新帶來的新服務
❻ 大數據時代的商業法則
大數據時代的商業法則
大數據時代給企業帶來了前所未有的商機,在大數據時代,企業必須學會利用大數據精確地分析、導入用戶、促成交易,並用最有效率的方式組織生產。在大數據時代,企業必須遵循新的商業法則,否則就會被大數據的浪潮所淹沒。法則1:解讀用戶的真實需求 解讀用戶的真實需求,就是通過數據的收集、分析挖掘出用戶內心的慾望,提高企業產品推送的成功率,並將其轉化為企業的訂單。
大數據看似神秘莫測,其實在解讀用戶需求上的操作思路卻極其簡單,即盡可能掌握用戶的個人信息和關注信息。當關注信息指向個人時,就能夠相對精準地定義出用戶的需求。
在這一過程中,主要的操作模式有兩種:靜態輻射模式和動態跟蹤模式。
靜態輻射模式
靜態輻射模式的數據分析在一個時間節點上進行,盡量擴大分析對象,並用標簽來篩選出最可能成交的用戶。這是大數據應用中最典型的一種模式。由於一些大企業主動會進行用戶標簽的管理,需要大數據助力營銷的企業就可以「借船出海」。
標簽與購買的關系有兩種:一類標簽與購買的關系非常明顯。例如,一個常常瀏覽經管類書籍的用戶一定是這類書籍的潛在購買者。
另一類標簽與購買的關系卻並不十分明顯。這就需要企業提前進行分析,有時還需要藉助第三方專業機構的分析結果。
例如,新浪微博會根據用戶平時的瀏覽和表達為用戶貼上「標簽」。但是,這些標簽與有些購買行為之間的關系就並不明顯。金夫人是國內婚紗攝影巨頭,他們首先利用自己作為網路大客戶的身份,無償獲取了網路提供的婚紗攝影客戶調研分析數據,發現美食、影院等標簽的用戶最有可能購買婚紗攝影產品。利用這一跨資料庫的結果,金夫人在新浪微博的平台上鎖定了「年齡20~35左右的某地區女性」群體,加上了美食、影院等標簽,精準鎖定了高轉化可能的用戶,並購買了平台提供的「粉絲通」服務,對他們進行定向廣告推送。一般來說,推送5~6萬個用戶大約會得到70~80個電話咨詢,這種轉化過來的電話咨詢顧客被稱「顧客資源」,從顧客資源到最後的成單,轉化率優異,大約在40%。
動態跟蹤模式
動態跟蹤模式的數據分析在一個時間周期內進行,盡量縮小分析對象,不斷通過用戶的行為來為用戶貼上標簽,伺機發現產品推送的時點。由於這種分析針對小群體,無法由第三方機構提供統一的規模化服務,所以,對於企業來說是有高門檻的,需要企業練好內功。這種模式中,企業對於用戶不斷產生的新數據,要進行隨時跟蹤,並隨時在雲端進行處理。
例如,Target超市以20多種懷孕期間孕婦可能會購買的商品為基礎,將所有用戶的購買記錄作為數據來源,通過構建模型分析購買者的行為相關性,能准確地推斷出孕婦的具體臨盆時間,這樣Target的銷售部門就可以有針對地在每個懷孕顧客的不同階段寄送相應的產品優惠券。在一個個例中,他們居然比用戶更早知道了她懷孕的信息。
又如,亞馬遜基於自己對用戶的了解來進行精準營銷,在網站上的推薦和電子郵件對於產品的推送成為了促進成交的利器。調研公司Forrester分析師蘇察瑞塔·穆爾普魯稱,根據其他電子商務網站的業績,在某些情況下,亞馬遜網站推薦的銷售轉化率可高達60%。這一轉化率遠遠高於其他電子商務網站,難怪一些觀察員將亞馬遜的推薦系統視為「殺手級應用」。最新的消息顯示,亞馬遜已經注冊了「未下單、先發貨」的技術專利,這是更加精準的需求預判和更加直接的產品推送,他們對於大數據的應用已經是爐火純青!
法則2:形成社會化協作的生產安排
如果能依靠大數據進行產品推送實現購買,海量需求就會從互聯網洶涌而來。這意味著產品的數據增多、涉及原料增多、消費者零散下單……這一變化使得工業時代標准化的產品生產模式受到前所未有的顛覆,生產端需要基於大數據形成前所未有的柔性,來對接消費端的柔性。
互聯網商業環境對價值鏈提出了新的挑戰:鏈條上的采購、生產、物流、分銷、零售各環節中,除了生產之外的其他環節也需要強大的數據處理能力,各個環節的數據處理系統和數據本身必須是共享的,而且,這些系統和內容還必須向全社會開放。要達到這種要求,顯然應該應用價值鏈接網,並用大數據來進行生產協調。
大數據的確給價值鏈重塑帶來了機會。在工業經濟時代,生產更多地通過「規模經濟」來獲利,大規模標准化的生產最大程度地降低了單位成本。但在互聯網經濟時代,生產更應該通過「范圍經濟、協同效應和重塑學習曲線」來獲利,因為,多種類、小規模的生產需要價值鏈上的靈動協作。
基於互聯網這樣一個平台,所有的價值鏈環節可以實現數據共享和集中處理。另外,因為使用統一的數據構架,所以不會出現數據孤島,浪費有價值的數據。由此,價值鏈各個環節之間可以無縫鏈接,實現最敏捷、最合理的生產。基於互聯網這樣一個平台,企業入圍合作即可以獲得充分的信息,也不再會遭遇太高的學習門檻。更厲害的是,用戶參與生產也變得容易,模塊化的選擇題,讓業余者也可以發出專業的需求信號。由此,從始端原料的生產者到終端的消費者,全部都被植入了價值鏈(或稱為價值網),社會化協作得以真正實現。而在大數據出現以前,這幾乎是不可能的!
順應法則贏未來
獨具特色的大數據商業法則,將會引發未來商業格局的變化。未來的贏家,將屬於能夠適應新的商業法則和新的商業邏輯的代表者。
在用大數據掘金的世界,誰掌握大數據,並能利用大數據實現上述兩大商業法則的變革,誰就能贏得未來。
因此,我們可以肯定地判斷出,掌握了大數據的資源整合類企業,將會成為大數據時代的企業贏家。這類企業是商業生態(價值網)中的「舵手」,通過靈敏地識別市場需求,指揮網路成員協同生產,獲得組合創新優勢。由於控制了整個網路,此類企業擁有網路收益的剩餘索取權,往往獲利最為豐厚。工業經濟時代,企業是依賴品牌、聲譽和社會資本實現資源整合。互聯網時代,資源變得無限豐富,協作變得極度頻繁,企業更需要依靠大數據來發現需求、整合資源。可以這樣說,掌握了大數據,這類企業就知道「用戶要什麼,哪裡有什麼,如何用資源去滿足用戶需求」。
未來的資源整合企業將基於大數據來運作。維克托·邁爾·舍恩伯格等人在《大數據時代》中,將基於大數據的資源整合企業分為三種:第一種是掌握數據的企業,這類企業掌握了埠,掌握了數據的所有權;第二種是掌握演算法的企業,負責處理數據,挖掘有價值的商業信息,這些企業被稱為「數據武士」;第三種是掌握思維的企業,他們往往先人一步發現市場的機會,他們既不掌握數據技能,也不掌握專業技能,但正因為如此才有廣闊的思維,能夠最大程度串聯資源,形成商業模式,他們相當於「路徑尋找者(pathfinder)」。
按照各自生產要素的價值性和稀缺性,很難說哪類企業真正將在大數據的商業模式中獲益,三類企業各自有各自的貢獻,各自有各自的稀缺之處。
ITASoftware是美國四大機票預訂系統,是一個典型的掌握數據的企業,其將數據提供給Farecast這家提供預測機票價格的企業,後者是一個典型的掌握演算法和思維的企業,直接接觸用戶。結果,ITA Software僅僅從這種合作中分得了一小塊收益。
Overture是搜索引擎付費點擊模式的鼻祖,如果把谷歌看作是媒體,那麼Overture則是相當於廣告代理公司,通過演算法細分不同的瀏覽用戶,向廣告投放企業提供目標用戶的付費點擊(選出他們最需要的用戶)。Overture是典型掌握演算法和思維的企業,雅虎、谷歌則是掌握數據的企業。事實上,谷歌的兩大金礦AdWords和AdSense技術,都是借鑒了Overture的演算法。但是,Overture不能直接接觸到用戶,沒有數據,喪失了話語權,只能獲得少量收益,以至於最後被雅虎收購。
基於大數據的資源整合類企業,它們的生態鏈又將遵循兩個法則。
法則一:接觸用戶的企業總是能夠獲得最多的收益,這和價值鏈上的分配原則是高度一致的。終端價格和原料供應之間的差價全部是由售賣終端產品的企業獲取的。
法則二:掌握數據的企業具有這個商業生態內最大的議價能力,最終最有可能成為贏家。演算法可以攻克,也可以購買,事實上,擠入這個行業的企業並不在少數。而思維則存在一種肯尼斯·阿羅所說的「信息悖論」,即信息在被他人知曉前都價值極高,但卻無法被證實。一旦公開證實它,又因所有人都知道而失去了價值。所以,不管思維和演算法企業走得多快,只要數據企業隨時可以封鎖數據源,就依然把握著「殺手鐧」。甚至,有的數據企業在看不清楚商業模式時,將數據釋放讓思維和演算法企業進行試錯,而一旦試錯成功,則收回數據所有權,模仿其商業模式。
BAT的數據帝國
因此,我們可以說,在大數據時代,資源整合企業的競爭,將會決定未來商業世界的版圖。
在很多人還沒有弄清楚大數據時代的商業法則時,國內互聯網三巨頭BAT(網路、阿里、騰訊)已經在迅速地構建自己的「數據帝國」。
在互聯網的大世界中,用戶有諸多的入口,可以通過不同的APP上傳數據。BAT的原則是,有關吃穿用住行的一切服務商,只要能夠增加他們的數據種類和質量,他們通通拿下。這里,體現出一種典型的「數據累積的邊際收益遞增效應」,即每多增加一個單位的數據,可挖掘的價值就有一個加速的增長,每增加一個種類的數據,可挖掘的價值就有一個加速的增長。某些時候,BAT甚至根本不考慮數據在現階段能否變現為收益,僅僅是納入麾下,等待未來的開發。
現實的情況是,經過了幾輪的收購之後,BAT基本上覆蓋了吃、穿、用、住、行、社交等各個領域的數據入口,加之其原來的龐大數據入口,在數據規模上的優勢已經無與倫比。短時間內,任何企業想要超越他們,幾乎都是不可能的。
BAT不僅是在做掌握數據的企業,也是在做掌握演算法和思維的企業。一方面,擁有龐大的商業用戶群和擁有用戶群消費偏好的大數據,只要具有相應的內容,就可以形成成交、獲取收益。另一方面,他們甚至可以開放應用程序介面(APIs)把自己掌握的數據授權給別人使用,這樣數據就能夠重復產生價值。這方面,阿里巴巴的百川計劃就是一個典型。簡單來說,他們向其他廠商的APP免費開放數據,但他們不收費,僅僅需要他們回饋數據作為代價。這個計劃實施以後,所有的APP都會是他們的入口。
可以說,BAT的帝國是基於數據建立的。甚至有人預言,數據作為「表外資產」一定會在某個時候被會計准則納入。因為,相對於無形資產,這種資產的價值更大。
值得一提的是,傳統工業經濟思維的人根本看不懂大數據時代的商業邏輯。某學者曾對阿里巴巴的收購(零售、文化、金融等)提出過質疑,他列舉蘋果和谷歌收購的案例,認為他們都是在進行專業領域的收購,這是有利於增強競爭力的,但阿里進行的都是多元化收購,是不利於增強競爭力的。
實際上,這是沒有看懂阿里巴巴商業模式的表現。互聯網時代的大多數商業模式,早就脫離了行業的限制,而在某種程度上走向了「大一統」,即「導入流量+大數據分析變現流量」。這種模式里數據就是通用的邏輯,難怪在大數據出現時,維克托·邁爾·舍恩伯格等人就斷言,行業專家和技術專家的光芒會被數據專家掩蓋住,因為後者不受舊觀念的影響,能夠聆聽數據發出的聲音。
盡管BAT強悍如斯,但在他們的夾縫中,仍然有一些商機,企業也可以搭建入口、解讀需求、安排生產。如果說大數據改造商業的神奇已經毋庸置疑,那為何眾多企業依然拿不起放在眼前的這把金鑰匙?很大程度上是因為這些企業缺乏數據基因。
大數據和互聯網經濟的來襲,使得企業只能「被動接網」。面對海量的潛在需求,不僅無法解讀,也無法調動生產進行對接。這就出現了大量企業被互聯網的海量需求「反噬」,並導致供應鏈失控的案例。
在大數據時代,企業規模、資金、生產技術不再重要,品牌也不再擁有神力。獲取數據、分析處理數據、挖掘數據價值的能力成為企業的立身之本。目前我國大部分企業還沒有意識到我們已經進入大數據時代,就像我們大多數消費者沒有意識到我們的消費行為隨時在被計算一樣。在這樣的一個時代,只有建立在數據之上的企業、按照大數據時代的商業法則運營的企業才能更好地生存。
以上是小編為大家分享的關於大數據時代的商業法則的相關內容,更多信息可以關注環球青藤分享更多干貨
❼ 大數據時代下,眾口更易調
眾口難調最早出現於宋代歐陽修詩詞《歸田錄》卷一中:補仲山之袞,隨曲盡於巧心,和傅說之美,實難調於眾口。大意是我盡管想像仲山,傅說那樣當一位名臣,花盡了自己的力氣,但是還是不能讓所有的人滿意。後眾口難調一詞大多形容眾人口味不同,很難調和得使大家都滿意,亦比喻人多意見多,很難協調統一。眾口易調則指大眾各種各樣的需求會更加容易被滿足,滿意度也會逐漸提高。
大數據就是巨量的資料,這些巨量資料來源於世界各地產生的數據。大數據有以下五個特點,大量,高速,多樣,低價值密度及真實性。而大數據時代是指互聯網普及,數據量激增,人們使用數據分析解決問題,從而推動精準營銷的時代。
僅以我淺薄的認識立一個標準的話,眾口易調就是與以往時代相比,大數據時代下需求不被滿足的情況在變少。從以下幾點論證。
第一, 大數據時代,企業可以精準捕捉用戶需求,基於用戶畫像等技術,提供個性化服務。例如我們經常使用的淘寶,當我們在淘寶購物時,可以選擇其中的標簽以便於我們更加方便的篩選出自己所需要的物品,其購物推薦也會根據你往日購買的商品,瀏覽記錄以及你的收藏來推薦一些你所感興趣的商品。雙十一剛過去不久,想必大家都不陌生,今年的雙十一天貓創下了2684億的成交額,相對於2018年,增加了五百多億的成交額,自2009年第一個雙十一購物節開始,每年的成交額都在逐步增加,這何嘗不是因為在新的一年裡天貓對於大眾的需求通過大數據的分析掌握的更加精準,以此推出的商品及雙十一的折扣活動等滿足了更多人的需求,創下了這一驚人的銷售額。除此之外,其他類型的軟體,例如音樂,小說,視頻等,都會設置用戶標簽,由用戶選擇,從而能夠更精準的推薦用戶感興趣的內容。
第二,大數據時代下,企業更容易收到用戶反饋,調查用戶需求的改變,從而推出更加適合的商品。大數據時代以前,企業要做用戶反饋調查,需要花費大量時間人力物力做問卷調查,統計艱難不說,效果往往不盡人意。而在大數據時代下,健全的網路反饋機制則解決了這一難題,除了省去了大量精力外,效率更加高效。譬如淘寶,京東等購物軟體,大火的王者榮耀,和平精英等游戲及其他類型的軟體大多都有AI客服以及人工客服,這都是為了更加方便用戶的及時反饋,面對上千萬乃至上億用戶的反饋,些這巨量的數據通過計算機快速的統計分析處理,以方便企業做出及時調整,滿足客戶需求,增加客戶的滿意度。
最後,現代社會要針對不同人的需求,而大數據提供的豐富資源恰巧為我們提供了不同需求的不同內容。社會資源的內容更加具有針對性,特色性,絕大多數人的需求都更容易被滿足。綜上所述,我認為大數據時代下眾口更易調。
❽ 大數據時代的好處有哪些
大數據是大量、高速、多變的信息,它需要新型的處理方式去促成更強的決策能力、洞察力回與最佳答化處理。大數據為企業獲得更為深刻、全面的洞察能力提供了前所未有的空間與潛力。
藉助大數據及相關技術,我們可針對不同行為特徵的客戶進行針對性營銷,甚至能從「將一個產品推薦給一些合適的客戶」到「將一些合適的產品推薦給一個客戶」,得以更聚焦客戶,進行個性化精準營銷。
大數據時代下的精準營銷是指通過大數據獲取對象的喜好,行為偏好,對不同對象進行不同營銷。大數據精準營銷的核心可以概括為幾大關鍵詞:用戶、需求、識別、體驗。
大數據是信息通信技術發展積累至今,按照自身技術發展邏輯,從提高生產效率向更高級智能階段的自然生長。無處不在的信息感知和採集終端為我們採集了海量的數據,而以雲計算為代表的計算技術的不斷進步,為我們提供了強大的計算能力,這就圍繞個人以及組織的行為構建起了一個與物質世界相平行的數字世界。
大數據雖然孕育於信息通信技術的日漸普遍和成熟,但它對社會經濟生活產生的影響絕不限於技術層面,更本質上,它是為我們看待世界提供了一種全新的方法,即決策行為將日益基於數據分析做出,而不是像過去更多憑借經驗和直覺做出。
事實上,大數據的影響並不僅僅限於信息通信產業,而是正在「吞噬」和重構很多傳統行業,廣泛運用數據分析手段管理和優化運營的公司其實質都是一個數據公司。麥當勞、肯德基以及蘋果公司等旗艦專賣店的位置都是建立在數據分析基礎之上的精準選址。
而在零售業中,數據分析的技術與手段更是得到廣泛的應用,傳統企業如沃爾瑪通過數據挖掘重塑並優化供應鏈,新崛起的電商如卓越亞馬遜、淘寶等則通過對海量數據的掌握和分析,為用戶提供更加專業化和個性化的服務。